
Quantum mechanics 
 

In the previous chapter we have already seen that in case of an atomic electron we can not 
speak about trajectory, and we have seen the wave-particle nature of electron. In 1924 de-
Broglie suggested to describe the atomic electron by using its wave nature. In 1926 
Schrödinger wrote his famous equation to describe the motion of the electron. This is the 
basic equation of quantum mechanics. In this equation he used a so called wave function to 
describe the state of the electron. The Greek letter psi is used, and in general ( , , , )x y z tΨ , or 
in one dimension ( , )x tΨ . Ψ  usually represents a complex function in the mathematical 
sense. 
 
What is the meaning of the wave function Ψ  for a particle? 
 
The wave function describes the distribution of the particle in space. It is related to the 
probability of finding the particle in various regions. If we imagine a volume element dV  
around a point, the probability that the particle will be found in that volume element is 
measured by 2 dVΨ . The so called probability density is 2ρ = Ψ . We can say only where 
the particle is likely to be, not where it is. 
 
How is the wave function Ψ  determined for a given problem?  
 
The wave function can be obtained by the solution of the Schrödinger equation for the given 
physical situation. The time dependent Schrödinger equation: 
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where m is the mass of the particle and V is the potential energy. In all the situations we will 
meet here, the space and time variables can be grouped separately and the consequence that 
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called stationary solution. Considering this separated solution we can obtain the time 
independent Schrödinger equation: 
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It turned out for some system that acceptable solutions exist only when some physical 
quantity for example the energy of the system has certain special values that is quantized. 
 
Quantum mechanical description of the motion of a free particle. 
 
We begin with a quantum-mechanical analysis of a free particle that moves along a straight 
line without being acted on any force. In this case the potential energy is zero 0V = , so the 

Schrödinger equation in one dimension: 
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The solution of this equation: ( )
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The wave function for the free particle: 
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We know from electrodynamics the wave function of a monochromatic plane wave: 
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Comparing the two equations: 
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Einstein, Planck formula for the energy of a quantum. 
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obtained these two very important formulas.  
 
Travelling through a potential step 
 
Suppose that the particle is moving in a region where there is a potential step. We discuss one 

dimension stationary state. The wave function: ( , ) ( )
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step as it is shown on the next figure: 
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( ) 0, if x<0V x = , and 0( ) , if x>0V x V= . E is the energy of the particle, and 0E V< . The 

energy of the particle is less than the height of the potential step. Like the situation in case of 
a free electron in a conductor. In this case due to classical mechanics the particle cannot be to 
the right of the origin, because the kinetic energy would be negative, which is impossible. So 
x>0  is a classically forbidden region. 
We do not go into details, in quantum mechanics we have to solve the adequate Schrödinger 
equation in both region and write the probability density in the right side region: 

08 ( )
2

2 2( ) ( )
m V E

x
x x eρ ϕ

−
− ⋅

= =∼  
 
The function is not zero inside the potential step (this region is forbidden for Newtonian 



mechanics), and exponentially decreases with the distance. So a particle that is initially to the 
left of the potential step has some probability of being found to the right side. How great this 
probability is depends on the distance and the particle’s energy and the height of the potential 
step. 
 
Tunnelling through a rectangular potential barrier 
 
Suppose that the potential step has a finite size, denote it by a. See the next figure: 
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There are three different potential energy regions. Solving the suitable Schrödinger equations 
can be obtained the probability density in the right side region: 
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So there is a finite probability of finding the particle whose energy is smaller than the height 
of the potential barrier to go through the potential barrier. This effect is really a quantum 
mechanical effect and is called tunnel effect. 
 
Application of tunnel effect 
 
Tunnelling has a number of practical applications, some of considerable importance. 
 

1. When you twist two copper wires together or close the contacts of a switch, current 
passes from one conductor to the other despite a thin insulator oxide layer between 
them. The electrons go through this thin insulating layer by the tunnel effect. If there 
are only a few atomic layers between the two conductors the tunnelling probability is 
enough for conducting. 

2. Another example is the cold electron emission. Consider a free electron in a metal.  
V

m etal surface

x0A

energy levels of 
electrons

potential energy 
for an electron

 
A is the so called work function we have already seen at the photoelectric effect. This 
amount of energy is needed for the electron on the highest energy level to escape from 
the metal. This energy may be transferred by heating, or by absorption of a photon. 
But the electron may also escape by applying a strong external electric field. The 
potential energy distribution is shown on the next figure. 
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The resultant potential energy distribution is similar to a potential barrier, and its size 
is denoted by the dotted line. Some electron in the metal can go through the barrier. 

3. The scanning tunnelling microscope (STM) uses electron tunnelling to create images 
of surfaces down to the scale of individual atoms. An extremely sharp conducting 
needle is brought very close to the conductor surface, within 1 nm, and moved by 
piezocheramics with high resolution. The space between the surface and the tip forms 
a potential energy barrier. If the tip is close enough to the surface, electrons from the 
sample can tunnel through this barrier from the surface to the tip, forming a tunnelling 
current. The tunnelling current is measured. The tunnelling current has an exponential 
function of the distance between the tip and the surface, so we can get the surface 
topography. tunnelling current

kdI Ue−∼ . U is the voltage between the surface and the tip, 
and d is the distance 

4. The radioactive alpha decay 
Tunnelling is also important effect in nuclear physics. The emission of alpha particles 
from unstable nuclei also carried out by tunnelling. The alpha particle can escape only 
by tunnelling, because its energy in the nucleus is less then the height of the potential 
barrier. Depending on the barrier height and width for a given kind of alpha-emitting 
nucleus, the tunnelling probability can be low or high. 

 
 

The quantum mechanical model of the Hydrogen atom 
 
We are looking for only the stationary solution. Use the time-independent Schrödinger 
equation, and the potential energy function of the proton electron electrostatic interaction. 
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Here k is the Coulomb constant and e is the elementary charge, r is the electron proton 
distance.  
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Due to the spherically symmetric potential-energy function, the hydrogen-atom problem can 
be solved in spherical coordinates ( , , )r ϑ ϕ . The Schrödinger equation with this potential-



energy function can be solved exactly. The solution gives the possible energy values of the 
electron and the wave functions. 
 
Without details in the process of finding solutions, we find the wave functions and the 
corresponding energy levels. These are: 
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The number n is called principal quantum number. So the energy of the electron is quantized 
and this result is the consequence of Schrödinger equation. Although the energies of the 
hydrogen atom states can be described by the single quantum number n, the wave functions 
describing these states require three quantum numbers.  
 
Principal quantum number: 1,2,3,...n =  
Orbital quantum number: 1,2,3,..., 1l n= −  
Orbital magnetic quantum number , 1,...0,... 1,m l l l l= − − + −  
 
The orbital quantum number is a measure of the magnitude of the angular momentum 
associated with the quantum state; it is also a quantized quantity. The orbital magnetic 
quantum number is related to the orientation in space of this angular momentum vector. That 
is, only certain discrete values of the magnitude and components of orbital angular 
momentum are permitted. 
 
The possible values of the magnitude L of orbital angular momentum L

G
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 in a given direction, say the z-direction: 
zL m= = , where , 1,...0,... 1,m l l l l= − − + − . 

This quantum number can be zero or a positive or negative integer up to, but no larger in 
magnitude than l. This quantum number is also called magnetic quantum number. 
 
We recall that angular momentum quantization was put into the Bohr model as an ad hoc 
assumption with no fundamental justification, with Schrödinger equation it comes out 
automatically. 
 
The electron spin 
 
In 1896 Zeeman discovered that in the presence of a magnetic field, some spectral lines were 
split into groups of closely spaced lines. The Zeeman effect is the splitting of atomic energy 
levels when the atoms are placed in a magnetic field. This effect confirms experimentally the 
quantization of angular momentum. 
 
The orbiting electron around the nucleus is equivalent to a current loop. The current loop has 
a magnetic dipole momentum. We do not go into details; the magnetic dipole moment is 
proportional with orbital angular momentum. The orbital angular momentum is quantized, so 
magnetic dipole momentum is also quantized. In magnetic field there is an interaction with 
magnetic dipole momentum and this interaction splits the energy levels. Without a magnetic 
field these states all have the same energy. 
 



 
 
Due to experience the number of the new spectral lines is limited by the so called selection 
rules. 0, 1mΔ = ∓ . So we can say there are allowed transitions; and forbidden transitions. 
 
Due to experience the ground state splits into two lines. In this case 1, 0, 0n l m= = = , 
so it was impossible to explain this effect by the Zeeman splitting. In 1926 Goudsmidt and 
Uhlenbeck, proposed that the electron might have some additional spin angular momentum, 
and it is also quantized.  
 

The spin momentum S
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 in a given direction, say the z-direction: 
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introduction of spin the splitting of the ground state can be explained. 
11, 0, 0,
2sn l m m= = = = ± . 

The Stern Gerlach experiment proved the existence of the spin. 


