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2.5 Oscillatory motion 
 

2.5.1 Simple harmonic oscillation 
 
One of the most frequent motions in nature is oscillatory or vibrational motion. A particle is 
oscillating when it moves periodically about an equilibrium position. The oscillatory motion 
is the result of the so called linear restoring force. This is a force whose magnitude is 
proportional to the displacement of a particle from some equilibrium position, and the 
direction is opposite to that of the displacement. Such a force is exerted by an elastic cord or 
by a spring obeying Hooke’s law: 

, 0xF Dx D= − >  
The proportionality factor D is called stiffness, or force constant of the spring. 
Suppose that the straight line of the motion is the x-axis. Apply Newton’s II law. The equation 
of motion: 

m x Dx= −
i i

 
Solve this second order differential equation for the x(t) function: 

Dx x
m

= −
i i

, 

Introduce the next symbol: 
2
0

D
m

ω =  

The differential equation: 
2
0x xω= −

i i
, 

2
0 0x xω+ =

i i
 

It is a second order homogeneous linear differential equation with constant coefficients. The 
general solution is the linear combination of the two independent partial solutions like: 

1 0sinx tω= , 

2 0cosx tω= . 
The linear combination: 

1 0 2 0( ) sin cosx t C t C tω ω= + , or 

( )0( ) sinx t A tω δ= + . 
In the first general solution the two integration constants are 1C , and 2C . In the second 
solution the two integration constants are A and δ . The displacement x is a sinusoidal 
function of the time t. The coefficient 0ω  is called angular frequency. The maximum value of 
the displacement is called amplitude of the oscillation A. As the function repeats itself after a 

time 
0

2π
ω

 so this is the period of the motion T. 

0

2 2 mT
D

π π
ω

= =  

The time of period is determined completely by the mass of the oscillating particle and the 
stiffness of the spring. 
The frequency of the oscillation is the number of cycles in unit time: 
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0
1f
T

=  

The quantity ( )0tω δ+  is called phase of the oscillation and this δ  is the initial phase. The 
amplitude A and the initial phase can be obtained from the initial condition. The plot of the 
displacement versus time function is shown on the figure: 

T

x

t

A

A−  
displacement time function: 

( )0sinx A tω δ= +  
velocity time function: 

( )0 0cosx A tω ω δ= +
i

 
acceleration time function: 

( )2
0 0sinx A tω ω δ= − +

i i
. 

 
The linear restoring force is a conservative force. To obtain the potential energy we apply: 

F V= −∇
G

 
In one dimension: 

x
VF
x

∂
= −

∂
, but the linear restoring force xF Dx= −  

VDx
x

∂
− = −

∂
 

21
2

V Dx C= +  

Choosing the zero of the potential energy at the equilibrium position, we get: 0C =  

( ) 21
2

V x Dx=  

In case of conservative force the mechanical energy remains constant: 
constantE T V= + =  

( ) ( )
2

2 2 2 2 2 2
0 0 0

1 1 1 1cos sin
2 2 2 2

m x Dx mA t DA tω ω δ ω δ+ = + + + =
i

 

( ) ( )2 2 2 2
0 0

1 1cos sin
2 2

DA t DA tω δ ω δ= + + + =  

( ) ( )2 2 2 2
0 0

1 1sin cos
2 2

DA t t DAω δ ω δ⎡ ⎤= + + + =⎣ ⎦  

During an oscillation, there is a continuous exchange of kinetic and potential energies. 
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2.5.2 Damped oscillations 
 
In simple harmonic motion the oscillations have constant amplitude. If there are friction or air 
resistance the amplitude gradually decreases, that is the oscillatory motion is damped. To 
explain the damping dynamically we assume a force that is proportional to the velocity but 
oppositely directed. The forces acting on the particle are the linear restoring force, and the 
damping force: 

xF Dx= −  
d

xF xκ= −
i

 
The equation of motion: 

m x Dx xκ= − −
i i i

 

0m x x Dxκ+ + =
i i i

 

0Dx x x
m m
κ

+ + =
i i i

 

Introducing: 

0 , 2D
m m

κω α= =  

2
02 0x x xα ω+ + =

i i i
 

0ω  is the natural angular frequency without damping. 
This is a homogeneous linear second order differential equation with constant coefficients. 
Use the next exponential function as a trial solution: 

t
px eλ=  

2 2
02 0t t te e eλ λ λλ αλ ω+ + =  

( )2 2
02 0, 0t te eλ λλ αλ ω+ + = ≠  

The characteristic equation: 
2 2

02 0λ αλ ω+ + =  
The roots of this equation: 

2 2
12 0λ α α ω= − ± −  

If the roots do not coincide 1 2λ λ≠ , then 1teλ and 2teλ  are linearly independent and the general 
solution is the linear combination: 

1 2
1 2( ) t tx t C e C eλ λ= +  

If 1 2λ λ= , it can be shown that the general solution is: 

1 2( ) t tx t C e C teλ λ= + . 
Due to the roots there are three different cases: 
If 0α ω> , it is called over damping, the motion is not oscillatory motion. 
If 0α ω= , it is called critical damping, the motion is not oscillatory motion. 
If 0α ω< , it is called under damping, or small damping, the two roots are conjugate complex 
numbers. 
Introduce: 

2 2
0γ ω α= −  
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12 iλ α γ= − ±  
And the general solution: 

( ) ( ) ( ) ( )1 2 1 2
i t i t t i t i tx t C e C e e C e C eα γ α γ α γ γ− + − − − −= + = +  

Use the Euler-relation: 
cos sinie iϕ ϕ ϕ= +  

( ) ( ) ( )1 2cos sin cos sintx t e C t i t C t i tα γ γ γ γ−= + + −⎡ ⎤⎣ ⎦  

( ) ( ) ( )1 2 1 2cos sintx t e C C t i C C tα γ γ−= + + −⎡ ⎤⎣ ⎦  
The general solution of the differential equation: 

( ) [ ]cos sintx t e A t B tα γ γ−= + , 
the other form: 

( ) ( )sintx t Ce tα γ δ−= + . 
The real form of the solution shows that the motion is oscillatory, and that the amplitude 

tCe α−  decays exponentially with time. The angular frequency of oscillation γ  is less than that 
of the undamped oscillation 0ω . 

x

t

 
This is the x-versus time function in case of under damping. 
In the first real solution the two integration constants are A and B, in the second one the two 
constants are C andδ . They can be determined by using the initial conditions. It is needed to 
know the initial position 0x , and the initial velocity of the particle 0v . 
 

2.5.3 Forced harmonic oscillations, Resonance 
 
In this section we shall study the motion of a damped harmonic oscillator that is driven by an 
external harmonic force that varies sinusoidally with time. The forces are: 

xF Dx= − , linear restoring force 
d

xF xκ= −
i

, damping force 

0 cosdriving
xF F tω= , driving force 

The equation of motion: 

0 cosm x Dx x F tκ ω= − − +
i i i

 
Here 0F  is the amplitude of the force, and ω  is the cyclic frequency of this harmonic driving 
force. 

0 cosm x x Dx F tκ ω+ + =
ii i
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0 cosFDx x x t
m m m
κ ω+ + =

i i i
 

 
Introducing: 

0 , 2D
m m

κω α= = , and 0
0

Ff
m

=  

2
0 02 cosx x x f tα ω ω+ + =

i i i
 

This is a non-homogeneous second order linear differential equation with constant 
coefficients. The general solution of this equation equals the sum of the general solution of 
the corresponding homogeneous equation and a partial solution of the non-homogeneous 
equation: 

( ) ( ) ( )gen. inh. gen. hom. part. inh.x t x t x t= +  
The homogeneous equation: 

2
02 0x x xα ω+ + =

i i i
, 

and as we have seen, the solution of this equation contains a term . te α−  which tends to zero. 
This is called transient term. Therefore after sufficient time this solution may be disregarded 

( )gen. hom. 0x t → . 
Thus the steady-state function or stationary solution is the partial solution of the non-
homogeneous equation. Find this partial solution of the inhomogeneous equation: 

2
0 02 cosx x x f tα ω ω+ + =

i i i
 

Set up a complex helping equation, it has no physical meaning, i  is the complex unit: 
2
0 02 sini y i y i y if tα ω ω+ + =

ii i
 

Add the two equations: 

( ) ( )2
0 02 cos sinx i y x i y x iy f t i tα ω ω ω⎛ ⎞+ + + + + = +⎜ ⎟

⎝ ⎠

i i i i i i
 

Introduce a new complex variable: 
z x iy= +  

The two derivatives: 

z x i y= +
i i i

 

z x i y= +
i i ii i i

 
Apply the Euler-relation: 

2
0 02 i tz z z f e ωα ω+ + =

i i i
 

This is a complex equation; let’s look for the solution in the next form: 
( )i tz Ae ω δ−=  

( ) ( ) ( )2 2
0 02i t i t i t i tA e Ai e Ae f eω δ ω δ ω δ ωω α ω ω− − −− + + =  

Simplify the equation by the term i te ω , 
2 2

0 02iAe i fδ ω α ω ω− ⎡ ⎤− + + =⎣ ⎦ , 

( ) ( )2 2
0 0cos sin 2A i i fδ δ ω ω αω⎡ ⎤− − + =⎣ ⎦ . 

The above equation is a complex algebraic equation, and it can be satisfied by two real 
equations as: 
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( )2 2
0 0cos 2 sinA fδ ω ω αω δ⎡ ⎤− + =⎣ ⎦  

( )2 2
0sin 2 cos 0A δ ω ω αω δ⎡ ⎤− + =⎣ ⎦ . 

The unknown quantities are A and δ , and the solutions: 

2 2
0

2tan αωδ
ω ω

=
−

, 

( )
0
22 2 2 2

0 4

fA
ω ω α ω

=
− +

 

The real part of the solution is: 
( ) ( )cosx t A tω δ= −  

So the stationary solution is a simple harmonic motion with constant amplitude and with the 
same angular frequency as the driving force. 
 
The amplitude A depends on the amplitude of the driving force and on the cyclic frequency of 
the driving force. The next graph shows that A assumes a maximum value at a certain 
frequency rω , called resonant frequency. 

rωO

A

ω

1α

2α

1 2α α<

 
The separate curves correspond to different values of the parameter α . When the frequency 
of the driving force is the resonance frequency, the oscillating system is in the state of 
resonance. As the damping decreases the height of the resonance curve increases and becomes 
sharper. To determine the resonance frequency consider the amplitude: 

( )
0
22 2 2 2

0 4

fA
ω ω α ω

=
− +

 

The amplitude has maximum if: 
( ) ( )22 2 2 2

0 4f ω ω ω α ω= − +  
has minimum. 
To get the minimum, take the derivative of the ( )f ω  function: 

( )( ) ( )2 2 2 2 2 2
0 02 2 4 2 4 2df

d
ω ω ω α ω ω α ω ω

ω
= − − + = − + . 

For the minimum: 
2 2 22 0o rα ω ω− + =  
2 2 2 2
0 2rω ω α γ α= − = −  

Resonance occurs only in under damping system. In case of resonance the frequency of the 
driving force is less than the natural frequency. 
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2.6 First order momenta 
 
Consider a particle in a reference system with a position vector rG  and consider a reference 
point A with position vector Ar

G . 

x y

z

O
reference point

rG

Ar
G

Ar r−G G
A

particle

 
The statical momentum or the momentum of mass relative to point A is defined as: 

( )A AS r r m= −
G G G  

The angular momentum or the momentum of the linear momentum of a particle relative to the 
point A is given by: 

( )A AL r r p= − ×
G G G G  

The torque about a given point A, it is also called the momentum of the force is defined as: 
( )A AM r r F= − ×

G GG G  
 

2.6.1 Relation between angular momentum and torque 
 
Consider the angular momentum of a particle about a point A: 

( )A AL r r p= − ×
G G G G  

Take the first time derivative of the equation: 

( ) ( ) ( )A AA A AL r r p r r p r r p r r F⎛ ⎞= − × + − × = − × + − × =⎜ ⎟
⎝ ⎠

i i i iiG GG G G G G G G G G G G  

( )A A A Av v p M v p M= − × + = − × +
G GG G G G G  

We have obtained: 

A A AL M v mv= − ×
iG G G G  

In the calculation we have used that the vector product of two parallel vectors is zero: 
0v p v mv× = × =

G G G G  
If the reference point is at rest in the reference system, 0Av =

G , and: 

A AL M=
iG G

 
The time rate of change of the angular momentum of a particle is equal to the torque of the 
force applied to it with respect to the same point A. (the point A is at rest.) We call this 
equation as theorem for angular momentum. 
 

2.7 Central forces 
 
A force whose line of action passes through a fixed point or centre of force is called a central 
force. Central forces are of fundamental importance in physics, they include such forces as 
gravity, electrostatic forces, and others. 
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Choose the fixed point to be the origin of the reference system. In this case rG and F
G

are 
parallel vectors, and: 

0OM r F= × =
G GG . 

In central field the torque on a particle about the origin is zero.  
Due to the theorem for angular momentum: 

O OL M=
iG G

, 
but the momentum of the force is zero: 

0OM =
G

 
therefore: 

constant vectorOL =
G

 
In case of central force, the angular momentum relative to the centre of force is a constant of 
motion. 
As constant vectorOL r mv= × =

G G G , in central field the trajectory of the particle is always in the 
same plane. 
The angular momentum of a particle is related to the rate at which the position vector sweeps 
out area. Consider the motion of a particle in central field during tΔ : 

O

( )r tG

( )r t t+ Δ
G

rΔ
G

 
The area AΔ  of the shaded triangular segment is: 

1
2

A r rΔ = ×Δ
G G . 

Divided by tΔ  and taking the limiting value as tΔ  tends to zero we get: 

0

1lim
2t

dA A r v
dt tΔ →

Δ
Λ = = = ×

Δ
G G  

The swept area in unit time is called areal velocity vector: 

( )1
2

r vΛ = ×
G G G  

Λ
G

 is a vector, whose magnitude is given above and perpendicular to the plane of the motion. 
Apply the definition of the angular momentum: 

L r mv= ×
G G G  

The connection between angular momentum and areal velocity: 
1
2 2

Lr v
m

Λ = × =
GG G G  

In central field constant vectorL =
G

 so Λ
G

 the areal velocity is also constant vector. 
 

2.8 The Law of Universal Gravitation 
 
All bodies in nature mutually attract one another. The law which this attraction obeys was 
established by Newton (1687). The gravitational interaction between two point particles can 
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be expressed by an attractive central force proportional to the gravitational masses of the 
particles and inversely proportional to the square of the distance between them. 

M

r

reG

F
G m

 

2 r
MmF e
r

γ= −
G G  

γ  is called the universal gravitational constant measured by Cavendish (1798) with a very 
sensitive torsion balance. 

2
11

26,67 10 Nm
kg

γ −= ⋅ . 

reG  is a unit vector: 
1r re e⋅ =

G G  
In the law of universal gravitation we have used the so called gravitational mass of a particle. 
The gravitational mass characterizes the participation in the gravitational interaction, and can 
be measured by spring. The inertial mass characterizes the inertial properties of bodies. The 
next question arises: we ought to distinguish the inertial and gravitational mass? In 1909 the 
Hungarian physicist L. Eötvös was the first who measured that the gravitational mass is 
proportional to the inertial mass, and for simplicity the proportionality factor is chosen to be 
one, so: 

gr inm m m= =  
 
The gravitational interaction is carried out through a gravitational field. The gravitational field 
is conservative field. Consider the elementary work done: 

( )2 2r r r r
Mm MmF dr e dr e dr e r de
r r

γ γ⋅ = − ⋅ = − +
G G G G G G G  

As 1r re e⋅ =
G G , and 0r re de⋅ =

G G , we get: 

2

MmF dr dr
r

γ⋅ = −
G G  

The right side can be written as a differential: 

constantMmF dr d
r

γ⎛ ⎞⋅ = − − +⎜ ⎟
⎝ ⎠

G G  

F dr dV⋅ = −
G G  

Therefore the potential energy: 

constantMmV
r

γ= − +  

The arbitrary constant is chosen so that the potential energy in the infinity is zero: 
if r = ∞ , and 0V = , then constant 0=  

The gravitational potential energy: 
MmV

r
γ= − . 
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The gravitational force on a test particle is proportional to its mass m, so the force can be 
written: 

F mf=
GG

 
The second term f

G
 characterizes the gravitational field which is produced by a mass 

distribution. f
G

 is called gravitational field strength, or gravitational field intensity. The 
gravitational field strength due to the mass point M at a distance r is: 

2 r
F Mf e
m r

γ= = −
GG G  

We can introduce the gravitational potential as the gravitational potential energy of unit mass: 
V MU
m r

γ= = − . 

Close to the surface of the Earth the gravitational potential energy is V mgh= , if the 
reference point is on the Earth and there the potential energy is zero. 
 

2.9 The Motion of Planets in Gravitational Field 
 
The gravitational field is central and conservative field. Describe the motion of a planet 
around the Sun. Denote the mass of the planet by m and the mass of the Sun by M. We 
assume that M greatly exceeds the mass of the planet. So we suppose that the Sun remains at 
rest at the origin of the plane polar coordinate system. 

M
r

m

O 0ϕ =

ϕ

 
In central field the torque on a particle about the origin is zero: 

0OM =
G

 
Due to the theorem for angular momentum we have: 

0OL =
iG

, so constant vectorOL =
G

 
The angular momentum of the particle about the Sun is constant. As we know the sector or 
areal velocity is in a connection with the angular momentum, and it must be also constant: 

2
OL
m

Λ =
GG

, constantΛ =
G

. 

In central field the sector or areal velocity is constant. That is in the gravitational field of the 
Sun the planet moves in a plane which passes through the centre of force (Sun) and the 
position vector sweeps out equal areas in equal time. So we have proved Kepler’s II. Law. 
Kepler’s II. Law states: 
The position vector of any planet relative to the Sun sweeps out equal areas in equal times 
(law of areas). 
 
The gravitational field is central field: 

constantΛ =
G

. 
The gravitational field is conservative field, so the mechanical energy remains constant too. 
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21 constant
2

MmT V mv
r

γ+ = − =  

From this two conservation laws we can deduce the equation of the orbit in plane polar 
coordinate system. 
Without calculation: 

( )
1 cos

pr ϕ
ε ϕ

=
+

, 

where 
24p

Mλ
Λ

= . 

It is just the equation of a conic section (ellipse, parabola, or hyperbola) with the origin at the 
focus. So it is the general equation of a second order curve, which is the locus of points P 
whose distance from a given point (focus) and a given straight line (directrix) have a constant 
quotient. The distance p is called the parameter of the curve, ε  is called the excentricity of the 
curve. 

F

directrix

0ϕ =
ϕ

p
s

p
ε

r

 
constantr

s
ε= =  

From the figure: 

cos pr sϕ
ε

+ = , and cosps r ϕ
ε

= −  

Instead of s we can use the definition: 
rs
ε

=  

cosr p r ϕ
ε ε
= − , so cosr p rε ϕ= − , and ( )1 cosr pε ϕ+ =  

Therefore: 

1 cos
pr

ε ϕ
=

+
 

The excentricity ε  is the quotient of two distances that is 0ε ≥ . 
if 1ε < , the curve is ellipse 
(if 0ε = , the curve is circle, special ellipse) 
if 1ε = , the curve is parabola 
if 1ε > , the curve is hyperbola. 
 
When the curve is circle or ellipse, we call the moving particle as a planet. So we have got 
Kepler’s I. Law. 
Kepler’s I. Law states: 
All planets move in elliptical orbits having the Sun as one focus (law of orbits). 
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To obtain Kepler’s III. law write the area of an ellipse: 
A abπ= , 

where a and b are the semi-major and semi-minor axes respectively. 

b
F ′

pa
2a p−

c cF

 
2 2 2a b c= + , and 

( ) ( )2 222 2a p p c− = +  
2 2 2 24 4 4a p ap p c+ − = +  

( )2 24 4a c ap− =  
2b ap= . 

Calculate the area of the ellipse: 
3 1
2 2A ab a ap a pπ π π= = =  

If we multiply the sector velocity with the time T required for the particle to complete one 
orbital path we obtain also the area of the ellipse. 

A T= Λ . 
Take the square of the equation: 

2 2 2A T= Λ , or 3 2 2 2a p Tπ = Λ  
It is known that: 

24p
Mγ
Λ

= , and 2

4
Mpγ

= Λ  

We can obtain: 
3 2 2

4
Mpa p Tγπ = , 

Finally: 
2

2 34T a
M
π
γ

=  

This equation is just Kepler’s III. law. 
Kepler’s III. Law states: 
The square of the period of any planet is proportional to the cube of the semi-major axis of its 
orbit, and the proportionality factor is the same for all planets around the Sun (law of periods). 


