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4.7 Cyclic process 
 
A cyclic process is a sequence of processes that leaves the system in the same state in which it 
started 
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When a system is carried through a cyclic process its initial and final internal energies are 
equal. So the total internal-energy change in any cyclic process is zero. Apply the first law for 
a cyclic process: 

o o o
E Q WΔ = +  

o
0EΔ = , 

o o
'W Q= . 

The work done by the system in a cyclic transformation is equal to the heat absorbed by the 
system. 
 
Heat engine: Any device for transforming heat into work or mechanical energy is called heat 
engine. All the heat engines absorb heat from a source at a relatively high temperature called 
hot reservoir, perform some mechanical work, and discard some heat at a lower temperature 
called the cold reservoir. The schematic diagram of a heat engine is shown on the figure: 

Hot reservoir at
temperature HT

Cold reservoir at
temperature CT

Heat engine

o
W ′

 
o

0W ′ > , 
o

0Q = . 
Refrigerator is a heat engine operating in reserve. It takes heat from a hot place and gives off 
heat to a colder place and requires a net input of mechanical work. The schematic diagram of 
the refrigerator shows, the heat leaving the system and given to the hot reservoir is greater 
then taken form the cold reservoir. 
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Hot reservoir at
temperature HT

Cold reservoir at
temperature CT
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4.7.1 The Carnot Cycle 
 
The most important cycle is called Carnot cycle. This consists of two isothermal and two 
adiabatic processes. Suppose that the working substance is an ideal gas. 
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The four processes are: 
1. The gas expands isothermally at temperature HT  absorbing heat HQ , 

2

1

ln 0H H
VQ nRT
V

= > . 

2. It expands adiabatically until its temperature drops to CT . 
3. It is compressed isothermally at CT , rejecting heat CQ , 

4

3

ln 0C C
VQ nRT
V

= < . 

4. It is compressed adiabatically back to its initial state at temperature HT . 
 
We define the thermal efficiency of an engine as: 

o
'

H

We
Q

= , 

where HQ  is the absorbing heat, and 
o

'W  is the work done by the system in a cycle. We have 
already seen, that the work done by the system in a cyclic transformation is equal to the heat 
absorbed by the system. 
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o o
'W Q= , 

In this situation: 
o

H CQ Q Q= + , 
therefore: 
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Due to the Poisson equation: 
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This surprisingly simple result says that the efficiency of a Carnot engine depends only on the 
temperatures of the two heat reservoirs. The Carnot engine has the maximum efficiency 
operating between the same two temperatures. 
 

4.8 Speed distribution of the molecules in a gas 
 
In a gas all molecular velocities are possible. The molecular speed distribution was originally 
derived by Maxwell for ideal gas. This formula is called Maxwell’s speed distribution law: 
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as 

( ) dnn v
dv

= , 

so 
( )dn n v dv=  
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This formula gives the number dn  of molecules moving with a speed between v and v dv+ , 
irrespective of the direction of motion. T is the absolute temperature, k is the Boltzmann 
constant, m0 is the mass of a molecule, N is the number of molecules. The molecular velocity 
distribution for oxygen at two temperatures (80 K and 800 K) is shown in the figure: 

( )n v

pv 210 /v m s⋅

80T K=

800T K=

40 8 12 16  
The peak of the curve represents the most probable speed for the corresponding temperature. 

pv  can be obtained from the next equation: 

0dn
dv

= . 

The distribution curve is not symmetrical about the most probable speed. Without proof: 
2

p
kTv
m

= . 

The average speed is defined as: 

( )
0

1v n v vdv
N

∞

= ∫ , 

and it is called the centre of the distribution. Due to the asymmetry it is a bit larger than the 
most probable value. The shown area on the next figure is just the number of molecules, 
whose speed is between v  and v dv+ . 

n

v vdv

T

 
Without proof: 

0

8kTv
mπ

= . 

Also the integral of the quantity ( )2v n v  over all v must equal the average value of 2v , and its 
square root is called root-mean-square speed denoted by: 

2
rmsv v= , 

( ) 2

0

1
rmsv n v v dv

N

∞

= ∫ . 

This root-mean-square speed as we have already seen: 
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m

= = . 

Remark: We find the total number of molecules by integrating the distribution function form 
zero to infinity with respect to the speed: 

( )
0

N n v dv
∞

= ∫ . 

 

4.9 Thermal expansion 
 
Most solid materials expand when heated. Suppose a rod of material has a length 0L  at some 
initial temperature 0T . When the temperature increases by an amount TΔ , the length 
increases by LΔ . Experiment shows that if TΔ  is not too large, LΔ  is directly proportional to 

TΔ  and to 0L . The proportionality constant α  (which is different for different materials) is 
called the temperature coefficient of linear expansion. 

0L L TαΔ = Δ , 

0 0 0L L L L L Tα= + Δ = + Δ , 

( )0 1 .L L Tα= + Δ  
The unit of α is: 

[ ] 1 1
oK C

α = =  

In case of metals α  is in the order of 5 110
K

− . 

The relation above is approximately correct for sufficiently small temperature changes. 
When the characteristics of a body do not depend on the direction, then the body is called 
isotropic. 
 
In case of isotropic bodies AΔ  the change in area is proportional to the change in temperature 

TΔ . If 0A ab= , then: 

( ) ( )0 1 1A A A a T b Tα α= + Δ = + Δ + Δ , 

( )2 2
0 1 2A A ab T Tα α+ Δ = + Δ + Δ , 

( )2 2
0 0 0 2A A A A T Tα α+ Δ = + Δ + Δ , 

( )2 2
0 2A A T Tα αΔ = Δ + Δ . 

Because 1TαΔ � , so 2 2T Tα αΔ Δ� , that is the second term is negligible: 
0 2A A TαΔ = Δ  

In case of isotopic solids the experiments show that if the temperature change TΔ  is not too 
great, the increase in volume VΔ  is approximately proportional to the temperature change. 
The proportionality constant β , which characterizes the volume expansion properties of a 
particular material, is called the temperature coefficient of volume expansion. 

0V V TβΔ = Δ , 

( )0 0 1V V V V Tβ= + Δ = + Δ  
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The volume expansion coefficient for a solid material is related to the linear expansion 
coefficient. To obtain the relation, consider a solid block with dimensions of a, b and c. The 
original volume is: 

0V a b c= ⋅ ⋅  

( ) ( ) ( )0 1 1 1V V a T b T c Tα α α+ Δ = + Δ + Δ + Δ , 

( )2 2 3 3
0 1 3 3V V abc T T Tα α α+ Δ = + Δ + Δ + Δ , 

( )2 2 3 3
0 3 3V V T T Tα α αΔ = Δ + Δ + Δ . 

If TΔ  is small the terms containing 2TΔ  or 3TΔ may be neglected 3 3 3T Tα αΔ Δ�  and  
2 23 3T Tα αΔ Δ� . 

03V V TαΔ = Δ , 
we obtain: 

3β α= . 
 
Because the shape of a liquid is not definite, only the change in volume with temperature is 
significant. For liquids β  is about ten times greater than that of solids. 
 

4.9.1 An atomic model of thermal expansion of a solid 
 
Model of a crystalline solid: an assembly of atoms held together in a regular three 
dimensional cubic lattice by a system of spring-like inter-atomic forces. The forces between 
neighbouring particles in a crystal may be visualized by imagining every particle to be 
connected to its neighbours by springs. In case of cubic crystal, all springs are assumed to 
have the same spring constant. Anisotropy is associated with differing spring constants in 
different directions. At any given temperature the atoms vibrate about their equilibrium 
position, the higher the temperature the greater being the amplitude of vibration. 

U
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0

2T

1x 2x x

 
Consider only one dimension. Suppose that x represents the distance between two nearest 
neighbour atoms in lattice. The figure shows the potential energy function ( )U x  associated 
with the inter-atomic force. At temperature 1T  the particle can oscillate between two limits 
whose mid point is 1x . This is just the average lattice spacing at temperature 1T . Because of 
the asymmetry of the potential energy curve at a higher 2T  temperature the amplitude of the 
oscillation being greater and the mid point is shifted to a greater distance. Thus we see that 
when the temperature is increased the average distance between atoms increases, which leads 
to an expansion of the whole solid body. 
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4.10 Heat transfer 
 
The heat flow or heat transfer is an energy transfer that takes places because of a temperature 
difference. There are three ways of heat transfer: conduction, convection, and radiation. 
 

4.10.1 Conduction 
 
The transfer of energy arising from the temperature difference between adjacent parts of a 
body is called heat conduction. If we place one end of a metal rod in a flame and hold the 
other end, this end gets hotter and hotter, even though it is not in direct contact with the flame. 
Consider a slab of material of cross-sectional area A and thickness xΔ , whose faces are kept 
at different temperatures. Measure the heat QΔ  that flows perpendicular to the faces in time 

tΔ . Experiments show that the rate of flow of heat through the slab is proportional to the area 
A, proportional to the temperature difference TΔ  and inversely proportional to xΔ . That is: 

Q TA
t x

Δ Δ
Δ Δ
∼ . 

In the limit of a slab of infinitesimal thickness dx across which there is a temperature 
difference dT we obtain the fundamental law of heat conduction in which the heat flow rate H 
is given by: 

dQ dTH kA
dt dx

= = − . 

H is the time rate of heat transfer across the area A. The quantity dT
dx

 is called temperature 

gradient. k is the thermal conductivity, its numerical value depends on the material of the slab. 
Taking a unit cross-sectional area: 

h k T= − ∇  
Here h is the heat flow rate through unit cross sectional area (heat current density). The heat 
current density is proportional to the temperature gradient. 
This linear connection is not true strictly, because the value of k slightly depends on the 
temperature, but can be taken to be practically constant if the temperature difference between 
two parts of the slab is not too great. 
 
Let us apply this law to a rod of length L and constant cross-sectional area A in which a steady 
state has been reached. In a steady state the temperature at each point is constant in time. 

Hot fixed
temperature

Cold fixed
temperatureHeat flow

HT CT
Insulator

H CT T>

L

 
 

dTH kA
dx

= − , 

but for a constant A and k the temperature gradient dT
dx

 is the same at all cross sections. 

Hence, T decreases linearly along the rod so that: 
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H CT TdT
dx L

−
− = , and H CT TH kA

L
−

= . 

For thermal insulation in buildings, engineers use the concept of thermal resistance denoted 
by R. The thermal resistance R of a slab of material with thickness L is defined to be: 

LR
k

= , 

using this concept, the heat flow rate: 
( )H CA T T

H
R
−

= , 

or expressed with the heat current density: 
H CT Th

R
−

= . 

That is the heat current density is equal to the temperature drops divided by thermal 
resistance. This simple expression makes the calculation of isolation very easy in case of 
several layers. 
 
Consider a compound slab, consisting of n layers having different thermal resistances. In 
steady state the heat flow rate is the same so: 

1 2

1 2

n

n

TT Th
R R R

ΔΔ Δ
= = = ⋅⋅⋅⋅ =  

Take the sum of all equations: 

1 1

n n

i i
i i

T hR
= =

Δ =∑ ∑ , 

1 1

n n

i i
i i

T h R
= =

Δ =∑ ∑ . 

Finally the heat current density: 

1

1

n

i
i

n

i
i

T
h

R

=

=

Δ
=
∑

∑
. 

In addition to conduction, convection and radiation are important processes by which heat is 
transferred. 
 

4.10.2 Convection 
 
Convection is when the heat flow is associated with mass flow. In the example the warm fluid 
rises due to buoyant force and its place is taken by cooler fluid. On the figure there is 
convection between objects at different temperatures. 
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4.10.3 Radiation 
 
Radiation is when the heat is transferred by electromagnetic radiation. All object radiate 
electromagnetic radiation. The amount and character of the radiation is determined by the 
temperature and surface of the object. In general, the rate of energy emission increases with 
the fourth power of the absolute temperature. 

Low
temperature

HT CT

High
temperature

 
In the above case there is a net effect due to radiation, and energy is transferred from the 
warmer object to the cooler object. Since electromagnetic radiation travels through empty 
space, the radiation does not require physical contact for the transfer of energy. 

4.11 Reversible and Irreversible Processes 
 
Quasi-static processes: 
Processes in which the system passes through a continuous sequence of equilibrium states are 
said to be quasi-static. In a quasi-static process the change of the variation is so slow that 
there is enough time for the thermodynamic variables to take a new value but it is the same at 
all point of the system. Only quasi-static processes can be plotted with a continuous line on 
the p-V diagram, and they are ideal processes. 
 
Reversible processes are that satisfy the following conditions:  
(a) it can be carried out with equal ease in two opposite direction, 
(b) in each case the system passes through the same intermediate states, 
(c) after carrying out the direct and reverse processes, the system and the surrounding 

return to their initial states. 
Any process which does not satisfy even one of these conditions is irreversible. It can be 
shown that all quasi-static processes are reversible processes. The reversible processes are 
only idealisations. There are no strictly quasi-static processes in nature, because all thermal 
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processes takes place at a finite rate and not infinitely slowly. All real processes in nature are 
irreversible. 
 
Reversible Cycle: 
A cyclic process is a sequence of processes such that the system returns to its original 
equilibrium state. If the processes involved are all reversible, we call it a reversible cycle. An 
important reversible cycle is the Carnot cycle discussed earlier. 
 
We defined the efficiency e of a heat engine as the ration of the net work done by the engine 
during one cycle to the heat taken form the high temperature reservoir. 

o
'

H

We
Q

=  

In case of Carnot cycle we have got the next result: 

1 C

H

Qe
Q

= + , or 1 C

H

Te
T

= − . 

It means that: 

1 1C C

H H

Q T
Q T

+ = − ,  

0C H

C H

Q Q
T T

+ = . 

This equation states that the algebraic sum of quantities Q
T

 for a Carnot cycle is zero. 

 
As a next step, we state that any reversible cycle is equivalent – to as close an approximation 
as we wish, - to an arbitrary reversible cycle superimposed on a family of isotherms. 

p

V

A

B

 
We can approximate the actual cycle by connecting the isotherms by suitably chosen adiabatic 
lines, thus forming an assembly of Carnot cycles. The adjacent Carnot cycles have a common 
isotherm and the two travels; in opposite directions cancel each other in the region of overlap 
as far as heat transfer and work done are concerned. We can write then, for the isothermal-
adiabatic sequence of lines as: 

0Q
T
=∑ , 

or in the limit of infinitesimal temperature differences between the isotherms: 

0dQ
T

=∫v . 

∫v indicates that the integral is evaluated for a complete traversal of the cycle, starting and 
ending at any arbitrary point of the cycle. If the integral of a quantity around any closed path 
is zero, the quantity is called state variable, that is, it has a value that is characteristic only of 
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the state of the system, regardless of how the state was arrived at. We call the variable in this 
case the entropy S. 

QdS
T
δ

= , and 0dS =∫v . 

As we have already seen in conservative fields: 

( ) ( )1 2

0
g g

B A

A B

dS dS dS= + =∫ ∫ ∫v  

( ) ( )1 2

0
g g

B B

A A

dS dS− =∫ ∫ , 

so 

( ) ( )1 2g g

B B

A A

dS dS=∫ ∫ . 

This equation tells us that the change of the entropy between any two equilibrium states is 
independent of the path connecting those states. The change in entropy between A and B 
where the integral is evaluated over any reversible path connecting there two states: 

B B

B A
A A

QS S dS
T
δ

− = =∫ ∫  (reversible process) 

 

4.11.1 The second law of thermodynamics 
 
The first law of thermodynamics expresses the conservation of energy in thermodynamic 
processes, but the first law cannot answer the direction of thermodynamic processes. 
There are several statements as the second law but all of them are equivalent. 
The second law of thermodynamics states: 
It is impossible for any system to undergo a process in which it absorbs heat from a reservoir 
at a single temperature and converts it completely into mechanical work, while ending in the 
same state in which it began. 
In other words: it is impossible in principle for any heat engine to have a thermal efficiency of 
100 %. 
 

4.11.2 The Efficiency of Engines 
 
We have already seen the efficiency of a reversible Carnot cycle. The result we have got: 

1 1C C

H H

T Qe
T Q

= − = + . 

Carnot stated the next theorem: 
All Carnot engines operating between the same two temperatures have the same efficiency, 
irrespective of the nature of the working substance. The efficiency of all reversible engines 
performing a Carnot cycle between the same temperatures is the same, and no irreversible 
engine working between the same two temperatures can have a greater efficiency than this: 

irr reve e≤ . 
Consider an irreversible Carnot cycle (suppose that the piston moves with friction during the 
process). In this care the absorbing heat HQ  decreases and CQ  the rejected heat increases: 
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1 1C C

H H

Q Te
Q T
′

= + ≤ −
′

, 

that is 

0C H

C H

Q Q
T T
′ ′
+ ≤ , 

so for the cyclic process: 

0Q
T
δ

≤∫v  

Consider now the next irreversible cycle: 

A
B

irreversible process

reversible process 

0
irrev rev

B A

A B

Q Q
T T
δ δ

+ ≤∫ ∫ . 

We can change the direction of a process in case of a reversible process. 

0
irrev rev

B B

A A

Q Q
T T
δ δ

− ≤∫ ∫ , 

irrev rev

B B

A A

Q Q
T T
δ δ

≤∫ ∫ . 

but for a reversible process this is just the change of entropy, so 

irrev

B

B A
A

Q S S
T
δ

≤ −∫ . 

The change of the entropy in case of an irreversible process is always greater than the integral 

of Q
T
δ . If the process is reversible then the change of the entropy equals to the integral. 

 

4.11.3 Entropy and the second low 
 
If we consider a system which is adiabatically isolated form the surrounding that is: 

0Qδ = , 
then 

.

.
0

irrev process

B A rev process
S S− ≥ , 

or 
0B AS S− = , reversible adiabatic process 

and 0B AS S− > , irreversible adiabatic process 
Thus, when an irreversible process occurs in an isolated system, the entropy grows. The 
entropy of a system in its equilibrium state is maximum. This statement is just one form of the 
Second Law of thermodynamics. 


