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4 Time varying electromagnetic field 
 

4.1 Electromagnetic Induction 
 

4.1.1 Induction due to motion of conductor 
 
Consider the Faraday’s experiment. The figure shows a coil of wire connected to a current 
measuring galvanometer. Near the coil there is a bar magnet. When the coil is hold stationary 
the galvanometer does not show current flow, but if we move the coil either toward or away 
from magnet the meter shows current in opposite direction respectively. 

S N

moving the coil

G

the meter shows current 
We call this an induced current, and the corresponding emf that has to be present to cause this 
current is called induced emf. As we move the conductor in magnetic field the charge carriers 
move with the conductor and experience a force (Lorentz Force). 
This force is an extraneous force, it has not electrostatic origin: 

( ) FF q v B E v B
q
∗

∗ ∗= × → = = ×
JJGJJG G JG JJG G JG

 

E∗
G

is the strength of the extraneous field. The induced electromotive force (emf) along the 
conductor is: 

( )AB
AB AB

E d s v B d s∗= ⋅ = × ⋅∫ ∫
JJG G G JG G

E   

If the moving conductor forms a loop, due to the induced emf a current flows through it. 
Consider a straight conductor moving in homogeneous magnetic field, perpendicular to the 
plane directed into the page. 

B
G

E∗

G

d sG

l

vG

 
The vectors ,v B and ds

GG G  mutually perpendicular to each other. Due to the induced electric 
field the emf along the conductor: 

p
( )

AB

E d s v B d s vBds Blv
+ +

∗

− −

= ⋅ = × ⋅ = =∫ ∫ ∫
JJG G G JG G

E   

Bl v=E . 
We used that vG  and B

G
 are perpendicular, both are constant over the length of the conductor, 

and their vector product is parallel to dsG . 
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Suppose the moving conductor slides along a stationary U shaped conductor as in figure. The 
moving conductor has become a source of emf, charges moves within it from lower to higher 
potential and in the remainder of the circuit charge moves from higher to lower potential. If 
the resistance of the sliding bar is r and the external resistance is R then: 

Bl v=E . 

B
G

E∗

G

d sG

I

RvG

r

 
RI U IR

R r R r
= ⇒ = = <

+ +
E

E E  

The device above is called linear generator. The mechanical power needed to move the rod is 
converted into electrical power. 
 
If a directed closed conductor loop moves in magnetic field the induce emf is: 

( )v B d s= × ⋅∫
G JG G

v
0

E , (Neumann’ Law) 

Consider the linear generator again, when the conductor moves toward the right a distance ds, 
the area enclosed by the circuit is increased by d A l ds=  and the change in magnetic flux 
through the circuit is d B dA Bl dsΦ = = . 

B
G

d s
l R

vG

 
The time rate of change of flux is therefore: 

d dsBl Blv
dt dt
Φ
= =  

Faraday’s Law of induction states that the induced emf in a circuit is equal to the negative rate 
of change of the magnetic flux through it. This is called flux-rule. 

0 d
dt
Φ

= −E   

This is the alternative form of the equation for the emf in a moving conductor. It is often 
easies to apply the flux-rule instead of Neumann’s Law to obtain the induce emf. The 
negative sign is due to Lenz’s Law: The direction of the induced current is such that its effect 
would oppose the change in magnetic flux, which gave rise to the current. 
 
Remark: If we have a coil of N turns and the flux varies the same rate through each turn, the 
induced emf’s are in series and must be added: 

0 dN
dt
Φ

= −E . 
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4.1.2 The emf induced in a rotating coil, AC generator 
 
Consider a conducting coil of N turns each of area A being made to rotate with angular speed 
ω  in a uniform magnetic field. B. 

N

S

A

B
JG nGα

.constω =
+

 
At 0t =  be n B↑↑

GG , where nG  is the normal of the coil. As const.ω = , the angle tα ω= . The 
flux through each turn is cos cosBA BA tα ωΦ = = . 
Apply the Faraday’s Law. The induced emf in the coil is: 

( )
0

sindN NBA t
dt

ω ωΦ
= − = − −E . 

0
sinNBA tω ω=E . 

Introduce NBAω=0E , it is called maximum value of the emf,  
0

sin tω= 0E E  
The output from a simple generator is a sinusoidally varying emf. 
 

4.1.3 Induction due to the change of flux-linkages 
 
a) mutual induction 

secondary circuitprimary circuit

iron core

G

 
As the current in the primary circuit is varied with the rheostat, the magnetic field due to the 
current is varied also. A part of the magnetic flux through the secondary circuit is also varied. 
It is found experimentally that an emf and induced current appears in the secondary circuit. 
The secondary circuit is not moving in a magnetic field so no “motional” emf is induced in it. 
In such a situation no one portion of circuit can be considered the source of emf, the entire 
circuit constitutes the source. 
The setting up of an induced current signifies that the changes in the magnetic field produce 
extraneous forces in the loop. The electric field due to the extraneous forces causes the current 
carriers in a conductor to start moving and an induced current is set up. In case of mutual 
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induction one circuit acted as a source of magnetic field and emf was induced in a separate 
independent circuit linking some of the flux. 
 
b) self induction 

E

G

 
Due to experiences if we disconnect the source from the coil and make short-circuit, the 
ammeter shows a decreasing current. Whenever a current is present in any circuit, this current 
sets up magnetic field that links with the same circuit and varies when the current varies. So 
there is an induced emf in it resulting from the variation in its own magnetic field. Such an 
emf is called self induced emf. 
 
In the two previous cases, we must conclude that the induced current in the loop is caused by 
an induced electric field which is associated with the changing magnetic field. This field is 
called non-electrostatic field and denote it by nE

G
. So the induced emf in this case is the line 

integral of nE
G

 around the loop, and according to experiences the Faraday’s Law of induction 
in case of changing flux: 

dt
dU

o Φ
−=  

Faraday’s Law, integrated form: 

n
g A

dE d s B d A
dt

⋅ = − ⋅∫ ∫
JJG G JG JG
v  

In a varying magnetic field an emf is induced in any closed circuit and is equal to the negative 
of the time rate of change of the magnetic flux through the circuit. 
If an electrostatic field, produced by electric charges is also present in the same region, it is 
always conservative and so its line integral around any closed path is always zero. Hence in 
the next equation E

G
 is the total electric field inducting both electrostatic and non electrostatic 

contributions: 

g A

dE d s B d A
dt

⋅ = − ⋅∫ ∫
JG G JG JG
v  

To obtain the differential form of Faraday’s Law of induction, let’s transform the left hand 
side in accordance with Stokes’s theorem: 

( )
g A

E d s E dA⋅ = ∇× ⋅∫ ∫
JG G GG
v  

Since the loop and the surface are stationary the operation of time differentiation and 
integration over the surface can have their places exchanged; or: 

A

d BB d A d A
dt t

∂
− ⋅ = − ⋅

∂∫ ∫
JGJG JGG

 

The Faraday’s Law: 

( )
A A

BE dA d A
t

∂
∇× ⋅ = − ⋅

∂∫ ∫
JG JGGG

 



Electrodynamics and Optics GEFIT252  Lecture Summary 

 51 

0
A

BE d A
t

⎛ ⎞∂
∇× + ⋅ =⎜ ⎟

∂⎝ ⎠
∫

JGJG JG
, 

Due to the arbitrary chosen surface the integrand must be zero: 

0BE
t

∂
∇× + =

∂

JGJG
, 

The differential form of Faraday’s Law of induction: 
BE
t

∂
∇× = −

∂

JGJG
 

The negative time rate of change of magnetic field at a point equals to the curl of the field E
G

. 
The curl of the vector E

G
 is not zero, consequently the induced electric field is non 

conservative field. It is important to remark that the time-varying magnetic field causes 
electric field to appear in space regardless of whether or not there is a wire loop in this space. 
The presence of a loop only makes it possible to detect the existence of an electric field at the 
corresponding points of space as a result of a current being induced in the loop. 
 
Electric field is set up not only by charges but time-varying magnetic field as well. The field 
set up by the charges have sources so the field lines begins and terminate at charges, and if 
they are at rest or in stationary motion this field is conservative. The field set up by time-
varying magnetic field have no sources, the field lines are closed curves, and non 
conservative. 
 

4.1.4 Self Inductance of a Long Solenoid 
 
The magnetic field and induction inside a long solenoid is: 

NIH
l

= , NIB
l

μ=  

Denote the flux of one turn by mΦ . The flux through each turn: 

m
A

NIB dA A
l

μΦ = ⋅ =∫
GG

 

The flux of the coil is: 
2

m
N AN I

l
μΦ = Φ =  

The flux of a long solenoid is proportional to the current. The proportionality factor is called 
self inductance, denoted by L: 

LI=Φ , 
2N AL

l
μ

=  

L is numerically equal to the flux linkage of a circuit when unit current flows through it. The 
coefficient L depends only on the shape of the conductor, so the geometry and medium inside 
it. 
Unit of L is: 

[ ] VsL 1 1henry 1H
A

= = =  

 
If the current varying with time then ( ) ( )t LI tΦ =  and so the self induced emf is: 
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i
d dIU L L I
dt dt
Φ

= − = − = −
i

 

In case of a solenoid generally the number of turns is a great number and as L is proportional 
to N2 the self inductance is so great that we can consider it as the self inductance of the whole 
circuit. 
 

4.1.5 Mutual inductance of two closely wound coils 
 
Consider the next figure: 

1N 2N

( )1I t
 

The current I1 in coil 1 sets up magnetic field as: 
1 1

1
( )N I tB

l
μ=  

The flux through one turn: 
1

1 1( )N A I t
l

μΦ =  

In case of closely wound coils this is also the flux of one turn through the second coil, so the 
whole flux of coil 2 is: 

1 2
12 2 1 1( )N N AN I t

l
μΦ = Φ = . 

The total flux through the second coil is proportional to the current of the first coil. The 
proportionality factor is called the mutual inductance of the two coils and denoted by L12 or 
M: 

12 12 1L IΦ =  
And the mutual inductance: 

1 2
12

N N AL M
l

μ= =  

The induced emf in the coil 2: 
12 1 1

12 12
d dI dIU L M

dt dt dt
Φ

= − = − = −  

The idea of mutual inductance is used in the transformer. 
 

4.2 The generalization of the loop theorem for a single loop 
 
Consider the next single loop. Denote the resistance of the whole circuit by R, the capacitance 
by C, the inductance of the coil by L, (at the same time this is the inductance of the whole 
circuit), and the applied emf by E . 
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C

LR

1g2g

C

2g
Q

E  
Set up a closed curve g along the circuit shown in the figure, and apply the Faraday’s Law of 
induction: 

0 dU
dt
Φ

= −  

g

dE d s
dt
Φ

⋅ = −∫
JG G
v  

1 2g g

dIE d s E d s L
dt

⋅ + ⋅ = −∫ ∫
JG G JG G

 

The next term is the potential difference across the capacitor: 

2g

QE d s E ds
C

⋅ = =∫ ∫
JG G

 

Due to the differential form of Ohm’s Law: 
j E E E j Eρ ρ∗ ∗= + ⇒ = −
G JG JG GG G

, 

1 1g g

Q dIj d s E d s L
C dt

ρ ∗⋅ − ⋅ + = −∫ ∫
G G GG

 

The next term is just the emf of the circuit by definition: 

1g

E d s∗ ⋅ =∫ E
GG

 

 

In case of thin wires: j ds↑↑
G G  and Ij

A
= : 

1 1g g

dsj d s I IR
A

ρ ρ⋅ = =∫ ∫
G G

, 

R is the resistance of the whole circuit. 
Q dIIR L
C dt

− + = −E  

The generalization of the loop theorem: 
QL I RI
C

+ + = E
i

 

The charge of the capacitor is varying due to the current. The transferred charge in time dt is: 

IdtdQ = , that is dQI Q
dt

= =
i

, and I Q=
i ii

 

The differential equation for the charge: 
QLQ RQ
C

+ + = E
ii i
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This is a non-homogeneous linear differential equation of the second order with constant 
coefficients for the Q(t) function. 
 

4.2.1 Energy in an inductor, magnetic energy density 
 
Consider a serial RL circuit shown on figure, and apply the generalized loop equation: 

R L

E
 

dIL R I
dt

+ = E  

Multiplying this equation by I, we have: 
2dIL I R I I

dt
+ = E  

To maintain a current in a circuit, energy must be supplied. The energy required per unit time, 
in other words the power is IE , the power of the seat of emf. The term 2R I  is the energy 
spent in moving the electrons through the crystal lattice of the conductor and is transferred to 

the ions that make up the lattice, so the power dissipated in the resistor. The last term dIL I
dt

 

is then interpreted as the energy required per unit time to build up the magnetic field in space. 
Therefore the rate of increase of the magnetic energy is the first term , and can be written as: 

21
2

dI dL I L I
dt dt

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

That is the magnetic energy: 
21 constant

2mW LI= +  

Due to agreement, if I = 0 the energy of the magnetic field is zero: 
0 constant=0mW = ⇒  

The energy due to magnetic field: 
21

2mW LI=  

Consider now a long solenoid: 

L IΦ = , and NI HlH I
l N

= ⇒ =  finally B A NΦ =  

1 1 1 1
2 2 2 2m

HlW L I I I BAN BH Al
N

= = Φ = =  

The volume of the coil and the volume of the space of the magnetic field is: Al V=  
1
2mW B H V= ⋅
JG JJG

 

The magnetic energy density is defined as: 
1
2

m
m

Ww B H
V

= = ⋅
JG JJG

: 

Although this expression has been justified for the magnetic energy density in a very special 
case, a more detailed analysis would indicate that the result is completely general. 
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If B
G

is the magnetic induction and H
G

 is the magnetic field strength at a point then the energy 
stored in an elementary volume dV is: 

1
2mdW B H dV= ⋅
JG JJG

, 

and in a finite volume: 
1
2m m

V V

W w dV B H dV= = ⋅∫ ∫
JG JJG

 

 

4.3 Forced electrical oscillations in a serial RLC circuit 
 
Consider the next electrical circuit: 

R L C

E
 

 
The generalized loop equation is: 

QL I R I
C

+ + = E
i

 

The generalized loop equation for the charge: 
QLQ RQ
C

+ + = E
i i i

 

Let’s suppose that an alternating emf is applied as: 
0 cos t=E E ω  

0E  is the maximum value of the applied emf, ω  is the cyclic frequency. 

0 cosQLQ RQ t
C

ω+ + = E
i i i

 

The loop equation coincides with the differential equation of forced mechanical oscillations. 

0 cosm x x Dx F tκ ω+ + =
i i i

 
The correspondence between the forced oscillation and the electrical circuit is 

x Q→  
m L→  

Rκ →  
1D
C

→  

0 0
1D

m LC
ω ω= → =  

2 2
R

m L
κα α= → =  

0 0F → E  
We know that the general solution of a non homogeneous equation equals the sum of the 
general solution of the corresponding homogeneous equation and a partial solution of the non 
homogeneous equation: 
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inh.gen. hom.gen. inh.part.Q Q Q= +  
As the general solution of the homogeneous equation contains an exponential decreasing 
term: 

2
hom.gen.

R t
LQ e

−
∼ , 

after sufficient time elapses, becomes very small and it may be disregarded. This is called 
transient process. So the stationary solution of the non-homogeneous equation is a partial 
solution of this non homogeneous equation. 
 
We look for this solution and denote it by Q. Set up a helping equation, multiply it by the 
complex unit i and add it to the original loop equation: 

0 cosQLQ RQ t
C

ω+ + =
i i i

E  

0 sinQLQ i RQ i i i t
C

ω
′

′ ′+ + =
i i i

E , 

( ) ( )0
1 cos sinL Q i Q R Q i Q Q i Q t i t
C

ω ω⎛ ⎞ ⎛ ⎞′ ′ ′+ + + + + = +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

i i i i i i
E  

Use the Euler-relation: 
cos sinie iϕ ϕ ϕ= +  

Introduce the complex charge:  
'Q Q i Q= + ,  

0
1 i tLQ RQ Q e
C

ω+ + =
i i i

E  

Use the complex emf: 

0
i te ω=E E  

1LQ RQ Q
C

+ + =
i i i

E  

We shall try to find the partial solution in the next form: 

0
i tQ Q e ω=  

0Q  is the complex amplitude of the charge. 
Take the first and second derivatives of the complex charge: 

0
i tQ i Q e i Q Iωω ω= = =

i

, 

The first derivative of the complex charge is the complex current I . 

( )2 2
0

i tQ i Q e Qωω ω= = −
i i

 
Inserting into the differential equation: 

2 1L Q i RQ Q
C

− + + = Eω ω  

Instead of the differential equation we have a simple complex algebraic equation for Q . 
1i Q R i L

i C
ω ω

ω
⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

E  

Introduce the complex impedance as: 
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1Z R i L
i C

ω
ω

= + + , or 1Z R i L
C

ω
ω

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
 

The equation we have obtained is called the complex Ohm’s Law: 
I Z = E , 

I
Z

=
E . 

Introduce the inductive reactance: LX Lω= , and the capacitive reactance 1
CX

Cω
=  

The complex impedance may be represented on a complex plane: 

ϕ

LX

CX R

Z
CL XX −

Re

Im

 

( )1
L CZ R i L R i X X

C
ω

ω
⎛ ⎞

= + − = + −⎜ ⎟
⎝ ⎠

 

The absolute value of the complex impedance is called the real impedance or simply 
impedance. 

( )
2

22 21
L CZ R L R X X

C
ω

ω
⎛ ⎞

= + − = + −⎜ ⎟
⎝ ⎠

 

The so called trigonometric form of the complex impedance is: 
iZ Ze ϕ=  

ϕ  is the argument: 
1L
Ctg

R

ω
ωϕ

−
= , or 

Z
R

=ϕcos  

The complex current: 
( )0 0

i t
i t

i

eI e
Ze ZZ

−= = =
E EE ω

ω ϕ
ϕ  

Initiate the maximum value of the real current: 
0

0I
Z

=
E  

( )
0

i tI I e ω −ϕ=  
Apply the Euler-relation for the complex current: 

( ) ( ) ( )0 0 0cos sini tI I e I t i I tω ϕ ω ϕ ω ϕ−= = − + −  
The real part of the current and so the solution is: 

( ) ( )0 cosI t I tω ϕ= − , 
where 

0
0 2

2 1
I

R L
C

=
⎛ ⎞+ ω−⎜ ⎟ω⎝ ⎠

E  
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If 0ϕ >  then the current lags behind the applied emf with a phase lag of ϕ . 
If 0ϕ <  then the current leads the emf with a phase of lead of ϕ  
 

4.3.1 Instantaneous voltages across the different circuit element 
 
1. Resistor: 

( ) ( )
0 0ei t i t

R RU I R I R U eω ϕ ω ϕ− −= = =  
( )

0
i t

R RU U e ω ϕ−= , where 0 0RU I R=  
The real part of the voltage across the resistor: 

( ) ( )0 cosR RU t U tω ϕ= −  
We have shown that the potential difference between the terminals of a resistor is in phase 
with the current. 
 
2. Capacitor: 
 

( ) 2 22
0 0 0

1 i t i ti i t
C C C

Q IU e I e X I e U e
C i C C

π ππ ω ϕ ω ϕω ϕ

ω ω

⎛ ⎞ ⎛ ⎞− − − −− ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠= = = = =  

The real part of the voltage across the capacitor: 

( ) 0 cos
2C CU t U t πω ϕ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
, where 1

CX
Cω

= , and 0 0C CU I X=  

We used the formula, that 21 i
e

i

π
−

= . 

The voltage across a capacitor lags the current by 
2
π . 

3. Inductor 
 

( ) ( ) 2 22
0 0 0 0

i t i tii t i t
L L LU L I LI e i L I e e X I e U e

π ππ ω ϕ ω ϕω ϕ ω ϕω ω
⎛ ⎞ ⎛ ⎞− + − +⎜ ⎟ ⎜ ⎟− − ⎝ ⎠ ⎝ ⎠= = = = =

i

 
The real part of the voltage across the inductor: 

( ) 0 cos
2L LU t U t π⎛ ⎞= ω −ϕ+⎜ ⎟

⎝ ⎠
, where LX Lω= , and 0 0L LU I X=  

We used the formula, that 2
πi

ei = . 

The voltage across the inductor leads the current by 
2
π . 

 
At the analysis of alternating-current circuits we often apply the rotating vector diagrams. In 
such diagrams the instantaneous value of a quantity that varies sinusoidally with time is 
represented by the projection onto the horizontal (real) axis. The length of the complex vector 
corresponds to the maximum value of the quantity and rotates counter-clockwise with 
constant angular speed ω . These rotating vectors are called phasors and the diagram 
containing them phasor diagrams. It is called complex phase diagram also. 
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RUCU

LU

Re

constantω =

I

+
Im

E

 
L R CU U U+ + = E  

 
The complex description cannot be used for the transient process and when the applied emf is 
not sinusoidal function. 
 

4.3.2 The effective value of varying current 
 
To characterize an alternating current we use the concepts of effective or root-mean-square 
value. The effective value of an alternating current is that steady current which would do the 
same work on the same resistor during a time T (time of period) as the alternating current. 

R

rmsI

R

0 sinI I tω=  
Determine the effective value of sinusoidally varying current: 

2
rmsW I RT= ,  ( )2

0

T

W I t Rdt= ∫  

The two works are equal to each other that is: 

( )2 2

0

T

rmsI RT I t R dt= ∫  

( )2 2

0

1 T

rmsI I t dt
T

= ∫  

This is the root-mean-square value of an alternating current: 

( )2

0

1 T

rmsI I t dt
T

= ∫  

This is the square root of the average value of the square of the current or voltage. If 
0 sinI I tω= , then: 

( )
2 2 2

2 2 0 0 0
0

00 0

1 sin 2sin 1 cos 2
2 2 2 2

TT T

rms
I I ItI I t dt t dt t

T T T
ωω ω
ω

⎡ ⎤= = − = − =⎢ ⎥⎣ ⎦∫ ∫  

0

2rms
II = , similar way 0

2rms =
E

E  
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4.3.3 Power in an RLC series circuit 
 
When a source with an instantaneous emf ( )tE  supplies an instantaneous current ( )I t , to a 
circuit, the instantaneous power it supplies is: 

( ) ( ) ( ) ( ) ( )0 0
0 0cos cos 2cos cos

2
IP t t I t t I t t tω ω ϕ ω ω ϕ= = − = −

E
E E  

Apply the next trigonometrical expressions, and add the equations:  
( )cos cos cos sin sinα β α β α β+ = −  

( )cos cos cos sin sinα β α β α β− = +  

( ) ( )cos cos 2cos cosα β α β α β+ + − =  
If tωα = , and ϕωβ −= t , then 2 tα β ω ϕ+ = − , and α β ϕ− = . 
The instantaneous power is: 

( ) ( )0 0 cos 2 cos
2
IP t t= − +⎡ ⎤⎣ ⎦

E ω ϕ ϕ  

The time average of this instantaneous power is: 
0 0 0 0cos cos cos
2 2 2 rms rms
I IP Iϕ ϕ ϕ= = =

E E
E  

The time average of the power is denoted by over bar, and cosϕ  is called power factor. 


