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Abstract

The goal of this lecture note is to give a presentation of some key issues regarding the
non-perturbative renormalization of periodic quantum field theories, i.e., sine-Gordon mod-
els in the framework of the functional renormalization group (FRG) method. Sine-Gordon
type Lagrangians consist of scalar fields similarly to the simplest and well-studied scalar the-
ory, the ϕ2n model, however, they have an additional symmetry to the reflection one, i.e.,
the periodicity which makes their phase structure even more complex with a wider range of
applicability. Thus, sine-Gordon models represent an excellent playground to discuss the sub-
tleties of the FRG method which is one of the aims of this lecture note. The first part of
the lecture note is devoted to applications of sine-Gordon models to Higgs, inflaton, branon
and axion physics, topological phase transitions, superconductivity, superfluidity, bosonisa-
tion, spin-models, topological defects and conformal field theory. The second part stands for
the introduction of the FRG method where the relation between the Wetterich, the Wegner-
Houghton and the Polchinski equations is discussed and after that the FRG method is applied
for sine-Gordon models.
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1 Introduction, Motivation, Aims

1.1 Motivation
Quantum Field Theory (QFT) is a natural choice to describe the physics of elementary particles.
In QFT the construction of models is based on symmetry considerations. However, the requirement
of quantisation and relativistic description leads to energy (or length) scale-dependent parameters.
In order to obtain the low-energy effective theory of a particular QFT one has to take into account
that scale-dependence which requires renormalization. Therefore, at the heart of every quantum
field theory, there is the need for renormalization.

In the framework of the well-known perturbative renormalization procedure, the interaction
Lagrangians are decomposed in a Taylor series in the fields which generates the vertices of the
theory. Keeping only a finite number of terms each interaction vertex can be treated independently.
However, there are theories which cannot be considered in this traditional way since the symmetries
of the Lagrangian impose the requirement of taking infinitely many interaction vertices into account
and any truncation of these infinite series would lead to an unacceptable violation of essential
symmetries of the model. Sine-Gordon type scalar quantum field theories contain a periodic self-
interaction thus belong to these problematic models where the Lagrangian of the sine-Gordon
model reads as

L = 1
2(∂µϕ)2 + u cos(βϕ) (1)

where the Fourier amplitude u and the frequency β are the parameters of the model. Both the
sine-Gordon theory and its generalizations have important physical realizations.

• For example, the sine-Gordon model has been used to describe the vortex dynamics and
the topological phase transitions of superfluid films, it is equivalent to the Coulomb-gas in
arbitrary dimensions which is a neutral gas of interacting point-like charges with Coulomb
interaction, in d = 2 dimensions it is equivalent to the XY classical spin model and to
the fermionic Thirring-model (via bosonisation). The sine-Gordon model has been received
application in Higgs, inflaton, branon and axion physics and it is a paradigmatic example of
Integrable and Conformal Field Theory thus its conformal properties such as the c-function
have been studied in detail.

• One possible extension is the massive sine-Gordon model which contains an explicit mass
term in addition to the periodic self-interaction and it has been used to describe the vortex
dynamics of superconducting films and in Higgs, inflaton and branon physics. It is equivalent
to the Yukawa-gas, to the XY spin model with external field and to the two-dimensional
Quantum Electrodynamics (QED2).

• Another example is the layered sine-Gordon model, i.e., system of coupled periodic scalar
quantum field theories, which has been used to describe the vortex dynamics of magnetically
coupled superconducting films, it is equivalent to the layered vortex-gas, to a layered XY
spin model where the coupling between the layers mediated by the external field, finally it is
the bosonic counterpart of the multi-flavor QED2 and with a different coupling of the layers,
to the multi-color two-dimensional Quantum Chromodynamics (QCD2).

• The analytic continuation of the original periodic Lagrangian to imaginary frequencies β → iβ

which is called the sinh-Gordon theory is another paradigmatic model of Conformal Field
Theory similarly to the interpolating models between the sine- and sinh-Gordon models, i.e.,
the so called shine-Gordon and sn-Gordon Lagrangians.

Therefore, sine-Gordon models are of relevance for both statistical physics, quantum field the-
ory, conformal field theory, high energy physics and cosmology but they are perturbatively non-
renormalizable if their Taylor series is truncated (however, I show that in two-dimensions all terms
of the Taylor expansion can be summed up).
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1. INTRODUCTION, MOTIVATION, AIMS

The general goal of this lecture note is to present the non-perturbative renormalization of
sine-Gordon type theories in the framework of the Functional Renormalization Group (FRG). The
history of FRG approach runs back over decades rooted from Kenneth G. Wilson and Leo P.
Kadanoff. Starting from the Wegner-Houghton RG equation published in 1973, which is based on
the Wilson-Kadanoff blocking, through the Polchinski RG equation formulated in 1984, one arrives
at the modern form of FRG which is usually called the Wetterich equation,

k∂kΓk[ϕ] = 1
2Tr

[
k∂kRk

Γ(2)
k [ϕ] +Rk

]
, (2)

where Γk[ϕ] =
∫

ddx Lk[ϕ] is the effective action depending on the running scale k, Γ(2)
k [ϕ] denotes

its second functional derivative and the trace Tr stands for an integration over all the degrees of
freedom of the field ϕ, while Rk is a regulator function, the choice of which is arbitrary within
certain limits. When the running scale goes to zero k → 0 the scale-dependent effective action
Γk=0[ϕ] is the exact effective action of the intended quantum field theory.

By inserting (1) into (2) one can perform the non-perturbative renormalization of the sine-
Gordon scalar model which is the aim of this lecture note. The structure is chosen to be a lecture
note for the FRG study of SG models which, I hope, helps the reader to understand the findings
more easily.

1.2 Aims
Let me summarise the research goals, aims of this lecture note which are centered around the FRG
method and its application to sine-Gordon (SG) type models.

1. The application of the FRG method for sine-Gordon models
Symmetries and dimensionality can be used to determine the phase structure. SG type models
are periodic, thus, one has to use a method which retains their essential symmetry, i.e. the
periodicity. The FRG method is suitable to perform the renormalization non-perturbatively
without violating the periodicity which motivates the use of the FRG method for SG type
models.
It was known that the SG model, which contains a periodic self-interaction, undergoes an
infinite-order (topological) phase transition in d = 2 dimension if the frequency of the model
is chosen as a critical value β2

c = 8π. However, a complete mapping of the phase structure, the
examination of the model in higher dimensions, the renormalization and the phase structure
of theories obtained by different generalizations of the SG model were not discussed in the
literature. Such a generalization is, for example, the addition of a mass term to the SG theory
or the coupling of SG models in various ways.
One of my most important goals of this lecture note is to develop and apply a method suitable
for the RG study of SG models in the framework of the FRG approach [1, 2, 3]. This new
procedure allows to obtain the critical frequency β2

c = 8π of the 2D-SG model [1] and to
study whether it depends on the choice of the regulator function or the approximations used
[4, 5]. It provides us the complete mapping of the phases of the massless, massive, layered
(coupled) SG models [6, 7, 8] in different dimensions and the generalization for imaginary
(sinh-Gordon) and complex (shine-Gordon) frequencies and the discussion on the elliptic
deformation, i.e., the sn-Gordon model.

2. Sine-Gordon models in low-dimensions
The use of bosonization transformations is an important tool for the study of fermion and
gauge fields in low dimensions. These allow us to rewrite the action of a model containing
fermion and gauge fields onto a scalar theory of bosons. Such low-dimensional models play an
important role in Integrable and Conformal field theory. For example, the bosonic forms of
the fermionic Thirring model, the single and multi-flavor QED2 and the multiflavor QCD2 are
SG-like theories. Various results have been obtained for these models, including the mapping
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1. INTRODUCTION, MOTIVATION, AIMS

out their phase structure and the study of conformal properties of their SG counterparts but
no systematic renormalization group study of the corresponding SG theories was performed
in the literature.
In addition SG models receive application in the vortex dynamics of superconductors with
high transition temperatures which are mostly layered, so the resulting superconducting
condensate shows a strong anisotropy. Such a layered arrangement can be formed not only due
to the crystal structure, but also from artificially layered superconducting films separated by
insulating layers where the elementary excitations with the lowest energy are superconducting
eddy currents, which have magnetic moment, i.e., vortices and antivortices. It was known
that SG models, like the pure SG and the massive SG theories can be used to map out
the vortex dynamics of superfluid and superconducting films. Their generating functional
can be rewritten into the partition function of the two-dimensional Coulomb and Yukawa
gases and can be mapped onto two-dimensional XY spin models, too. However, it was not
known in the literature which SG model should be used to study the vortex dynamics of a
system with superconducting layers. Will there be a difference if we assume a magnetic or
Josephson coupling between the layers? How does the phase transition temperature depend
on the number of layers?
Thus, one of the aims of this lecture note is to investigate the low-energy behavior of the two-
dimensional SG models obtained by bosonization by using the FRG method and to study how
their phase structure depends on the number of flavors and colors [9]. In addition, the FRG
method provides us a framework to consider the conformal properties such as the c-function
and central charges of these SG-type models [10, 11]. Another goal here is to examine the
phase structure of layered superconducting systems in the framework of the FRG method
[12, 13, 14] and to study the dependence of the critical temperature on the number of layers
and to compare the coupled SG models which are the bosonised version of multiflavor QED2
and multicolor QCD2 to the layered SG models used for the vortex dynamics of high transition
temperature superconductors and to investigate the phase structure of the corresponding XY
spin models [15, 16] too.

3. Sine-Gordon models in higher dimensions
SG type scalar field theories are known to play an important role in low dimensions. One
might expect no room for any physical application for SG models in d > 2 dimensions,
however, scalar fields naturally appear in various cases which opens the door for possible
applications of SG type models in d = 4 dimensions, too. The four most natural situations
among these are the followings (i) the physics of large extra dimensions with an SG type
Randall-Sundrum warp factor which results in an SG type effective Branon action, (ii) SG
type inflationary potentials, (iii) mass generation by SG type Higgs potentials, (iv) the axion
potential which naturally appears as a periodic function.
The main concepts of these cases are the followings. In inflationary cosmology the so called
natural inflation i.e., a periodic potential has already been used as a competing inflationary
model and one can generalise this idea by using the massive SG model which contains an
explicit mass term in addition to the periodic one thus it can also be used as a possible
extension of the standard model Higgs potential. In the framework of models of large extra
dimensions, in particular in the so-called Brane World Scenario, the usual choice for the
Randall-Sundrum warp factor are the absolute value and the quadratic functions which can
be replaced by the SG or massive SG models which result in SG type effective Branon actions.
Finally, one has to mention the periodic axion potential which was proposed to retain the CP
conserving nature of QCD where gauge symmetry and renormalizability allow the inclusion
of CP violating terms but experimental data do not favour such an extension.
The same SG type model can be used in the above examples and each of these can be
associated to a particular energy (or length) scale such as (i) the transplanckian physics of
the early Universe (ii) the cosmic inflation at the GUT scale, (iii) the Higgs physics at the
Electroweak scale. Thus, it is a natural question whether the RG running [17, 18] can be
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1. INTRODUCTION, MOTIVATION, AIMS

used to connect these energy scales which is considered in this lecture note in the framework
of the FRG method after discussing the applications of the massive SG model in Branon,
Inflaton and Higgs physics [18, 19, 20, 21].

4. Methodical issues of the FRG approach
The functional RG method is suitable to perform renormalization non-perturbatively, how-
ever, the use of approximations cannot be avoided which has important consequences. For
example, physical quantities (such as critical exponents) obtained by approximated FRG
equations could become regulator-dependent, i.e, they depend on the choice of the so-called
regulator function. In addition, the usual (standard) perturbative RG equations are derived
with a particular choice of the renormalization scheme, thus, β-functions (with higher loop
coefficients) are scheme-dependent, so the scheme-dependence of the perturbative RG ap-
proach is expected to be connected to the regulator-dependence of the FRG method. Thus,
it is unavoidable to study the regulator-dependence of the FRG method.
Indeed in order to make the FRG method predictive, the optimization of the regulator-
dependence is required. A rather general optimization procedure (the Litim–Pawlowski
method) leads to the Litim regulator which gives the closest theoretical propositions to
the experimental results, at least in the lowest order of the gradient expansion, however, it
is not a smooth function, so it cannot be used at higher orders. Another commonly used
optimization is the Principle of Minimum Sensitivity (PMS), where the optimal parameters
of a given regulator are chosen such as to make physical quantities as insensitive as possible
to any conceivable changes of the parameters entering the regulator. It can be applied at
any order of the gradient expansion, however, one cannot compare different regulators in this
way.
The aims in this lecture note are to study the regulator dependence by using known results
on critical value of the single flavour QED2 [22] and to introduce the so called Compactly
Supported Smooth (CSS) regulator [23] which solves the problem of differentiability (in case
of the Litim–Pawlowski optimization) and the comparability (in case of the PMS method)[24].
In addition, to discuss new optimisation strategies based on SG type models [25] by using
the appearance of Spontaneous Symmetry Breaking for cases where it is not allowed but the
truncated FRG equation signals it [26]. Finally, to investigate the FRG treatment of the field
independent term [27] which is used in the RG evolution of the cosmological constant.
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2 The classical and the quantum sine-Gordon model

2.1 The classical sine-Gordon model
Classical field theory can be used to describe the mechanics of continuous systems. In this section,
the classical sine-Gordon scalar field theory is introduced by taking the continuous limit of a discrete
model, i.e., torsional harmonic oscillators that can oscillate with a rotational motion around the
axis of the torsion spring, clockwise and counterclockwise. This system contains a chain of massless
rigid rods (pendulums) spaced a distance a apart and connected by an infinitely long horizontal
torsion spring wire. The displacement of each pendulum rod is perpendicular to the axis of the
wire. At the end of each pendulum rod with a uniform length l one finds point like particles with
equal mass m which feel gravitational force towards the Earth. The kinetic and potential energies
of such classical and discrete system with coupled pendulum rods read as [194]

T =
∑

n

1
2Θ ϕ̇2

n, V =
∑

n

1
2κ(ϕn+1 − ϕn)2 +

∑
n

mgl(1 − cosϕn), (3)

with Θ = ml2 where ϕ is the angle of the twist from its equilibrium position (ϕ̇ is its time derivative)
and κ denotes the torsion coefficient. Let me note, ϕ is not a compact variable, thus, its value is not
restricted into the regime [−π, π] but can be arbitrary. The Lagrangian of the system L = T − V

is the following, [194]

L =
∑

n

[
1
2Θϕ̇2

n − 1
2κ(ϕn+1 − ϕn)2 −mgl(1 − cosϕn)

]

=
∑

n

a

[
1
2

Θ
a
ϕ̇2

n − 1
2κa

(
ϕn+1 − ϕn

a

)2
− m

a
gl(1 − cosϕn)

]
. (4)

By introducing the mass-density µ = m/a and κ′ = κa (using the fact that κ depends inversely
on the length a, so, κ′ is independent of a), one can take the continuous limit, i.e., a → 0 which
results in the Lagrangian [194]

L =
∫
dx

[
1
2(µl2)

(
∂ϕ

∂t

)2
− 1

2κ
′
(
∂ϕ

∂x

)2
− µgl(1 − cosϕ)

]
, (5)

from which one can obtain the equation of motion, i.e., the Euler-Lagrangian equation which is
a wave equation with the propagation velocity v =

√
κ′/(µl2). This Lagrangian can be easily

extended to higher (spacial) dimensional cases and by introducing the variables x0 = vt, x1 = x,
x2 = y and x3 = z, ..., and rescaling the Lagrangian density (L → L/κ′) which can be written as

L = 1
2

(
∂ϕ

∂x0

)2
−

d−1∑
j=1

1
2

(
∂ϕ

∂xj

)2
− u(1 − cosϕ), S[ϕ] =

∫
ddxL, ddx = dx0dx1...dxd−1 (6)

with the action S[ϕ] where, for the sake of simplicity, u denotes the prefactor of the periodic term,
i.e., the Fourier amplitude. The covariant form of the above Lagrangian density can be taken by
assuming that the propagation velocity in the wave equation is the speed of light, i.e., v = c.
Thus, the corresponding relativistic (but not quantised) field theory and its equation of motion in
d = 1 + 1 dimensions reads

LSG = 1
2 (∂µϕ)(∂µϕ) − u (1 − cosϕ), ∂2

x0
ϕ− ∂2

x1
ϕ+ u sin(ϕ) = 0, (7)

which is the celebrated sine-Gordon model [28] and sine-Gordon equation where the field can be
redefined by a rescaling in order to introduce the frequency β,

LSG = 1
2 (∂µϕ)(∂µϕ) − u

β2 (1 − cos(βϕ)). (8)

9



2. THE CLASSICAL AND THE QUANTUM SINE-GORDON MODEL

The "name" of the former is related to the well-known Klein-Gordon model (free massive field
theory),

LKG = 1
2 (∂µϕ)(∂µϕ) − M2

2 ϕ2 (9)

and it is a field theoretical integrable model. The sine-Gordon model was know since the beginning
of the previous century and was investigated in great detail. It is a non-linear wave-equation with
a feature of having soliton and multisoliton solutions. The general solution of the sine-Gordon
equation (7) can be obtained through the solution of the corresponding equation for the static
case, ϕ ≡ ϕ(x1) by applying a Lorentz boost, x1 → (x1 − vx0/c)/

√
1 − v2/c2, [29]. The 1-soliton

(static) solution of (7) reads as, see for example [30]

ϕsoliton = 4 arctan
(
e±

√
u(x1−xc)

)
, (10)

which is considered as a particle (excited state) localised at the point xc which represents a sta-
ble configuration with a well defined energy. Since solitons are the solutions of non-linear wave
equations, the superposition principle does not hold for them. The 1-soliton solution with a
positive (negative) sign in the exponent called a kink (antikink) with the asymptotic conditions
∂x0ϕ(x0,±∞) = 0 and ϕ(x0,±∞) = 0(mod 2π). Thus, the vacuum states, related to these asymp-
totic cases are constant solutions with zero energy. In the kink configuration the field approaches
these different asymptotic values in opposite directions in space, i.e., the kinks (antikinks) repre-
sent twists in the field variable which take the system from one asymptotic case ϕ = 0 to another
ϕ = 2Nπ and the difference is 2Nπ, characterized by the integer N , called the kink number.
The stability of the kinks is the consequence of the topology. There is a conservation law which
corresponds to the stability of the kinks and the corresponding topological current jµ (µ = 0, 1):

jµ = 1
2π ε

µν∂νϕ(x0, x1) (11)

(where εµν is antisymmetric, with ε01 = −ε10 = 1 and ε00 = ε11 = 0 ) is conserved in the semi-
classical expansion: ∂µj

µ = 0. The conserved charge Q is equal to the kink number N :

Q =
∫ ∞

−∞
dx1 j

0 = 1
2π

∫ ∞

−∞
dx1

∂ϕ

∂x1
= 1

2π [ϕ(x0,∞) − ϕ(x0,−∞)] = N. (12)

This conservation law can be violated in quantum theory, and the topological current can become
anomalous.

2.2 The quantum sine-Gordon model
The quantisation and the study of properties of the quantised sine-Gordon model are the main
goals of the present lecture note, thus, in this section I give a brief introduction to QFT with
a special attention paid on the sine-Gordon scalar field theory. The quantisation of a classical
field theoric model, such as the previously introduced sine-Gordon or Klein-Gordon scalar theories
can be done in the traditional way in two steps: (i) the field ϕ and the canonically conjugated
momenta π = ∂L/∂ϕ̇ are considered operators over the Fock space, (ii) between them the following
commutation relations are assumed,

[ϕ̂(x0, x), π̂(x0, x
′)] = i~δ(x− x′), [ϕ̂(x0, x), ϕ̂(x0, x

′)] = [π̂(x0, x), π̂(x0, x
′)] = 0, (13)

where x denotes the set of all spacial coordinates and ~ = h/2π is the reduced Planck-constant.
This is, however, not the most convenient way of obtaining the quantised field theory, at least, it
is not suitable for calculating a cross section which is one of the key issue in high energy physics.
Instead, I use the more reliable path-integral (Feynman or functional integral) formalism which
is the standard choice in particle physics. It requires the introduction of the Euclidean spacetime
metric,

x0 = i(xE)0, ddx = i ddxE , xµx
µ = −(xE)2

0 −
d−1∑
j=1

(xE)2
j , ∂µ∂

µ = −∂2
(xE)0

−
d−1∑
j=1

∂2
(xE)j

(14)

10



2. THE CLASSICAL AND THE QUANTUM SINE-GORDON MODEL

which assures the convergence of the path-integral used in the definition of the (Euclidean) partition
function

ZE [J ] = N
∫

Dϕ exp
[
− 1
~

∫
ddxE (LE + ~Jϕ)

]
(15)

where J is the source term, N is an appropriately chosen normalization (ZE [J = 0] = 1). The letter
E denotes quantities which are calculated in the Euclidean metric, however, in the following I do
not indicate it explicitly and this convention has been used along the lecture note. From Eq. (15)
one can obtain observable quantities, but the presentation of the details of the path-integral method
is not the aim of this lecture note, so, I just briefly summarise its main properties. For example,
the path-integral in (15) can be evaluated if the Lagrangian density contains only quadratic terms
of the field and its derivatives which is the case for the Klein-Gordon model (9) where the result
reads as

ZKG[J ] = exp
[
~
2

∫
ddx ddy J(x)∆(x− y)J(y)

]
(16)

where ∆(x− y) is the solution of the differential equation (−∂µ∂
µ +M2)∆(x) = δ4(x) and called

as the scalar propagator (Green’s function) which has a simple form in momentum space, ∆(k) =
1/(k2 +M2). Let me now calculate the partition function of the ϕ4 scalar theory (continuous Ising
model) which contains a quartic self-interaction term in addition to the Klein-Gordon Lagrangian

Lϕ4 = LKG + Lint, Lint = −g4

4!ϕ
4. (17)

Using the following expression

−δZKG[J ]
δJ(x) = N

∫
Dϕ ϕ(x) exp

[
− 1
~

∫
ddx (LKG + ~Jϕ)

]
. (18)

the partition function of the ϕ4 theory is written as

Zϕ4 [J ] = N
∫

Dϕ exp
[
− 1
~

∫
ddxLint (ϕ)

]
exp

[
− 1
~

∫
ddx (LKG + ~Jϕ)

]
= N exp

[
− 1
~

∫
ddzLint

(
δ

δJ(z)

)]
ZKG[J ] (19)

which can be evaluated in the framework of perturbation theory using the Taylor expansion of the
interaction exponential generating a series in terms of the coupling g4. Let me note, the calculation
can be done in a more convenient way by using Feynman rules, i.e., graphical representations.
For example, if the scalar propagator ∆(x − y) is represented by a line, ∆(0) = ∆(x − y)|x=y is
equivalent to a closed loop. This perturbative treatment of scattering amplitudes (or S-matrices
which are operators mapping the incoming free particles to the free outgoing ones) leads to Feynman
diagrams. Let me apply the above scenario for the sine-Gordon model (7) which requires the Taylor
expansion of the interaction Lagrangian,

LSG = 1
2∂µϕ∂

µϕ− u(1 − cosϕ) = 1
2∂µϕ∂

µϕ+ u

∞∑
n=1

(−1)n

(2n)! ϕ
2n (20)

however, in order to preserve the essential symmetry of the model one has to keep infinitely many
interaction terms. Thus, if for any reason one has to truncate the summation, the perturbative
treatment cannot be applied for the sine-Gordon theory.

Let me give an example for the case when every term of the Taylor expansion can be summed
up. In particular the φ4 theory is considered in d = 1 + 1, i.e., in a single spatial dimension [31]. As
a first step, calculate the scattering amplitude of a 2 → 4 process (when we have 2 incoming and
4 outgoing particles). At the so-called tree-level, i.e., when no loops are included in the Feynman
diagrams this is found to be a constant and proportional to −g2

4/M
2. Thus, by adding − 1

6!
g2

4
M2ϕ

6
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2. THE CLASSICAL AND THE QUANTUM SINE-GORDON MODEL

term to the original Lagrangian (17) it provides us a theory where the 2 → 4 process vanishes.
Introducing β2 = g4/M

2 this new model reads

L = 1
2∂µϕ∂

µϕ− M2

β2

[
1
2β

2ϕ2 + 1
4!β

4ϕ4 + 1
6!β

6ϕ6
]
. (21)

Repeating this procedure and summing up all the monomials of the field, one finds that the
scattering amplitudes of all 2 → 2n processes vanish, i.e., there is no particle production at tree
level in the following Lagrangian,

LShG = 1
2∂µϕ∂

µϕ− M2

β2

[ ∞∑
n=1

1
(2n)!β

2nϕ2n

]
= 1

2∂µϕ∂
µϕ− M2

β2 [cosh (βϕ) − 1] , (22)

which is the so-called sinh-Gordon scalar theory and by the replacement β → iβ it recovers the sine-
Gordon model (in case of a periodic interaction the sign of the Fourier amplitude is irrelevant). The
details of the calculation are given in [31] and it was also shown that no particle production is found
in the sinh-Gordon theory model even beyond tree-level, i.e., at one-loop. Thus, it represents an
example for the case where infinitely many terms are summed up and as a result, the sine-Gordon
model is obtained.

2.3 Renormalization, Renormalization Group
Here, some properties of the renormalization and renormalization group are presented with a special
attention on the sine-Gordon model but similarly to the previous subsection, leaving the details
for the rest of the lecture note. Before I discuss the renormalization let us introduce the so called
effective action Γ[ϕ] which is related to the classical action

S[ϕ] =
∫
ddxL[ϕ]. (23)

In order to find that relation, one has to define Γ[ϕ] by the following Legendre transformation

Γ[ϕ] +W [J ] −
∫
ddxJϕ = 0, ϕ(x) = δW

δJ(x) , J(x) = δΓ
δϕ(x) , (24)

where W [J ] = lnZ[J ] is the generating functional of the so called connected Green’s functions.
In the previous section the partition function (15) of a scalar field theoric model was introduced
which is considered as a generating functional, i.e., generator of the n-point Green’s functions
G(n)(x1, ..., xn),

G(n)(x1, ..., xn) ≡
∫

Dϕ ϕ(x1) · · ·ϕ(xn) exp
[
− 1

~S[ϕ]
]∫

Dϕ exp
[
− 1

~S[ϕ]
] , G(n)(x1, ..., xn) = δnZ[J ]

δJ(x1) · · · δJ(xn) (25)

where x1, ..., xn represent d-dimensional spacetime variables. Green’s functions have great impor-
tance in QFT since scattering amplitudes of physical processes can be given by them. Moreover,
Feynman diagrams can also be related to Green’s functions. The connected Green’s functions gen-
erated by W [J ] are related to connected components of Feynman diagrams. Let me come back
to the effective action which generates one particle irreducible (1PI) correlation functions. Every
measurable physical quantity (observables) can be derived from Γ[ϕ] or can be expressed by 1PI
correlation functions and quantum effects are incorporated in the effective action. Indeed, the re-
lation between the classical and the (full quantum) effective action is given by the perturbation
series of Γ[ϕ] in terms of ~,

Γ[ϕ] = Γ0 + ~Γ1 + ~2Γ2 + O(~3), Γ0 = S[ϕ], Γ1 = 1
2Tr ln

[
δ2S[ϕ]
δϕ2

]
(26)

and the trace in Γ1 is understood as integration over the momentum space. The angular part in
the d-dimensional momentum integral can be evaluated and the remaining integral runs from zero

12



2. THE CLASSICAL AND THE QUANTUM SINE-GORDON MODEL

to infinity which could be divergent with respect to its upper (UV – ultraviolet divergent) and
lower (IR – infrared divergent) bound. In order to obtain reliable results for measurable quantities
these divergencies/infinities should be handled somehow and the renormalization is the procedure
which takes care of it. Similar divergencies appear in Feynman, and phase-space integrals. Due to
the Kinoshita-Lee-Nauenberg theorem the Standard Model is IR safe (IR divergences from phase
space and Feynman loop integrals cancel each other), but still in practice, an appropriately chosen
subtraction method is required for numerical purposes. Thus, perturbation series taken either in the
coupling constant of the model (e.g. g4 in case of the ϕ4 model) or in ~ require the renormalization
of the model. The expansion in ~ up to the n-th order corresponds to Feynman diagrams with up
to n loops. Series expansions in the coupling and in ~ are related to each other: higher order terms
in the coupling requires higher loops in the corresponding diagrams.

The first step in renormalization is to introduce a regulator in order to observe the UV and IR
divergences of momentum integrals. Various types of regulators are known: (i) momentum cutoff
Λ (finite upper bound for the integral), (ii) lattice regularization with a lattice space a (discrete
spacetime), (iii) Pauli-Villars regularization by introducing an auxiliary field with a mass (which
suppresses the path-integral), (iv) dimensional regularization by the analytic continuation of the
integrals to d = 4 − ε dimensions (where no divergences observed) etc. Of course, regulators are
unphysical parameters, thus, they should be removed from the theory but before doing that one
has to re-define (renormalize) the original parameters of the Lagrangian which are called "bare"
couplings. The bare couplings such as u and β in the sine-Gordon model, or M2 and g in the ϕ4

polynomial model have no direct physical meanings, so, they can be redefined and they could be
even infinite. For example, the physical mass (in the quantised theory) is not the one found in the
Lagrangian but defined by the pole of the propagator which is the 2-point 1PI function. Therefore,
in the second step of renormalization the bare couplings are changed by adding appropriately chosen
counter terms to the action (same type of monomials of the field found in the original model) which
keep the physical quantities finite even when the regularization parameters are removed from the
theory, e.g. Λ → ∞ or ε → 0. The new couplings are the so called renormalised ones.

Physical observables can be expressed as a function of bare couplings and the regularization
parameter, i.e., P (Λ,MB, g4,B) which have finite values in the limit Λ → ∞ and can also be
expressed by renormalized parameters MR and g4,R. However, as a consequence of the procedure
a dependence on a new, artificial energy (momentum) scale k (usually denoted by µ) appears in
the renormalized physical quantities, i.e., PR(k,MR, g4,R). Since the original bare quantities do not
depend on k, the renormalized physical quantities are invariant against the change of the k-scale,

0 = k
∂

∂k
P (Λ,MB, g4,B) = k

∂

∂k
PR(k,MR, g4,R) (27)

which results in differential equations (with the so called β-functions) for the couplings

k
∂g4,R

∂k
= βg4(g4,M), k

∂M2
R

∂k
= βM (g4,M), (28)

called renormalization group (RG) equations. It is important to note that the above scenario
of renormalization has been done in the framework of perturbation theory, so, perturbative RG
equations are obtained up to a given order of the coupling. As an example, one can mention the
perturbative renormalization around the Gaussian fixed point (M2 = g4 = 0) of the 4-dimensional
ϕ4 model where the RG flow equation for the quartic coupling in the so-called minimal subtraction
(MS) scheme, at 1-loop order reads as (see for example Eq. (10.52) of [34] or Eq. (45) of [33]),

1 − loop,MS − scheme : k∂kg4,k = 3
16π2 g

2
4,k + O(g3

4,k), → g4,k = g4,Λ

1 − 3g4,Λ
(4π)2 log k

Λ

(29)

where its solution signals the appearance of the Landau pole at very high energies while in the low
energy (k → 0) limit the quartic coupling tends to zero. The dependence of the couplings on the
energy scale predicted by RG equations was confirmed by experiments. For example, it was known
from RG arguments that the value of the fine structure constant of QED scales logarithmically
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2. THE CLASSICAL AND THE QUANTUM SINE-GORDON MODEL

as the energy scale increased which was observed at the LEP accelerator: it was measured to be
about 1/127 at 200 GeV, as opposed to its known value close to 1/137 at zero energy.

It was shown that RG equations emerge from the renormalization of the quantum field theories
where one has to handle the problems of divergences, however, it is important to note that RG
exists independently of the infinities. The physics behind RG equations is related to the requirement
of quantisation and relativistic description at the same time which results in the so called vacuum
polarisation effect which turns the parameters of the theory to be scale-dependent. A quantum
field theoric model at zero-temperature is usually equivalent to a classical (not quantised) model
of statistical physics at non-zero temperature. Quantum fluctuations in the former play the same
role as thermal fluctuations in the latter case. Thus, the argument on the scale-dependence of the
parameters is valid also in classical statistical physics. Indeed, the canonical partition function of
a statistical model (canonical ensemble)

Z = N Tr exp
(

− 1
kBT

H

)
(30)

with a Hamiltonian H, can be related to the generating functional for the Green’s function of a
QFT. The Helmholtz free-energy F [T ] = −kBT ln[Z] corresponds to W [J ] and by introducing the
Gibbs free-energy (i.e. the internal or total energy) U [S] as a function of the entropy S one finds
the Legendre transformation

U [S] − F [T ] = T S, T = dU [S]
dS

, S = −dF [T ]
dT

(31)

similar to that of written for the effective action in QFT. The RG equations found in QFT have
the same importance in statistical physics because the thermodynamical limit cannot be performed
in a reliable manner without taking into account the scale-dependence of the parameters of the
microscopic theory.

2.4 Perturbative renormalization for the sine-Gordon model
Finally, let me note that a perturbative RG treatment is possible for the sine-Gordon model but as
it was argued, not in the case when the potential is expanded in Taylor series and only finite terms
are kept. In d = 2 dimensions, either one follows the scenario of [28, 32, 34, 33] when all terms of
the Taylor expansion summed up and the perturbative renormalization can be performed, or by
using the idea of an auxiliary mass term [35, 36].

In the first case the action for the SG model in d = 2 dimensions should be written as

S =
∫
d2x

[
1
2∂µϕ∂

µϕ− M4

λ

(
1 − cos

(√
λ

M
ϕ

))]

=
∫
d2x

[
1
2∂µϕ∂

µϕ− 1
2M

2ϕ2 +M2 1
4!

λ

M2ϕ
4 −M2 1

6!
λ2

M4ϕ
6 + ...

]
. (32)

and using the rescaling of the field (
√
λ/M)ϕ → ϕ and the spacetime M xµ → xµ, it reduces to

the usual definition of the sine-Gordon model. Considering the expanded form, one can treat it as
a polynomial scalar field theory where the (UV) divergent graphs contains only a single vertex, i.e.
tadpole and its trivial generalisations, see Fig. 1. This is because the scalar field is dimensionless
in d = 2, so, canonical dimension of any vertex V is simply δ[V ] = −2, consequently the canonical
dimension of a graph δ[γ] = 2 +

∑
viδ[Vi] (where vi is the number of vertices) cannot be positive

and can be zero only if it contains a single vertex. Using a normal ordered form with respect to
the mass, no UV divergencies appear. This means that the potential term has to be modified in a
following way

V = (M2 + δM2)M
2

λ

[
1 − cos

(√
λ

M
ϕ

)]
=
(

1 + δM2

M2

)
M4

λ

[
1 − cos

(√
λ

M
ϕ

)]
(33)
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1 loop 2 loops
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Figure 1: The only UV divergent graph for scalar fields in d = 2 dimensions is the one with
a single vertex (see the boxed graph) and its trivial generalization (see the other graphs).
Both λ and M2 pick up divergent corrections but these corrections cancel in λ/M2 thus
only the mass term M2 requires the renormalization as an overall prefactor.

where the counter term δM2 is calculated at 1-loop order by the boxed graph of Fig. 1,

λ

2

∫
d2p

(2π)2
1

p2 +M2 = λ

8π

∫
dp2 1

p2 +M2 = λ

8π

∫ Λ2/k2

0
d

(
p2

k2

)
1

p2

k2 + M2

k2

= λ

8π

[
− log

(
M2

k2

)
+ log

(
Λ2 +M2

k2

)]
=⇒ 1 − loop : δM2 = − λ

8π log
(

Λ2

k2

)
where k is an arbitrary momentum scale and Λ is the momentum cutoff. (Either Λ → ∞ at fixed
k or k → 0 at fixed Λ). Substituting it into (33) one finds

V 1−loop =
[
1 − λ

M28π log
(

Λ2

k2

)]
M4

λ

[
1 − cos

(√
λ

M
ϕ

)]

=
[

1 + log
[(

k

Λ

) λ
M24π

]]
M4

λ

[
1 − cos

(√
λ

M
ϕ

)]
(34)

thus, at 1-loop one finds 1 + log(k/Λ)λ/(M24π) ≈ exp[log(k/Λ)λ/(M24π)] which becomes exact
summing up all loop corrections, so, the RG running, β2 ≡ λ

M2 , uk ≡ M4

λ

(
k
Λ
) λ

M24π , gives the
critical frequency β2

c = 8π. If β2 larger or smaller then this critical value, the dimensionless Fourier
amplitude ũk = ukk

−2 ∼ k
β2
4π −2 is either decreasing or increasing in the limit k → 0, i.e., the

model has two phases which is separated by β2
c = 8π. Thus the perturbative treatment produces

the correct phase structure for the sine-Gordon model in d = 2 dimensions. Indeed, in Ref. [33] one
finds a perturbative RG approach using the following parametrisation of the sine-Gordon theory

S[φ] =
∫
d2x

[
1
2t (∂µφ)2 − α

t
cos(φ)

]
(35)

with Eqs. (159) and (160) of [33] where α̃k = ũkβ
2
k and tk = β2

k,

k
dα̃k

dk
=α̃k

(
t

4π − 2
)
, k

dtk
dk

= α̃2
k

t

32π , (36)

→ k
dũk

dk
=ũk

(
β2

k

4π − 2
)

− ũ3
k

β4
k

32π , k
dβ2

k

dk
= ũ2

k

β6
k

32π . (37)

In this lecture note I perform the non-perturbative renormalization of the sine-Gordon model (and
its generalizations) in the framework of the Functional Renormalization Group method.
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3 Sine-Gordon type models, bosonization and conformal
properties

Sine-Gordon (SG) type models considered in this lecture note are reviewed in this section putting
emphasis on their symmetries and their phase diagrams. In addition, I show that some of the SG
models are the co-called bosonised versions of two-dimensional fermionic and gauge theories which
demonstrates their importance. Finally, I argue that SG models have received interest due to their
conformal properties which are also summarised in this section.

3.1 Sine-Gordon type models and their symmetries
Symmetry considerations are important since together with the dimensionality, they can be used
to determine the phase structure. Before going into the discussion of sine-Gordon models let me
first analyse the the φ2n polynomial scalar field theory defined by the Euclidean action

Sϕ4 [ϕ] =
∫
ddx

[
1
2 (∂µϕ)2 + M2

2 ϕ2 + g4

4!ϕ
4
]

(38)

which has the reflection (or Z2) discrete symmetry. Depending on the dimensionality (above a lower
critical dimension dc) it undergoes a phase transition. At tree-level (when no quantum corrections
are taken into account) the so called broken phase corresponds to M2 < 0 where the potential
has a double-well structure and the ground state of the system stays at one of these two minima
(not at ϕ = 0), thus, the reflection symmetry has been broken spontaneously by the ground
state of the system. It is known that the critical dimension of the Ising model is smaller than
d = 2. However, if one extends the model replacing the single component field variable by an
N -component vector, the discrete symmetry of the original Ising model is changed to a continuous
O(N) one which modifies the lower critical dimension. Indeed, in agreement to the Mermin-Wagner-
Coleman theorem [37, 38, 39], the continuous symmetry of the extended model cannot be broken
spontaneously in d = 2 dimensions, thus, the two-dimensional O(N) theory has a single phase for
N > 2 (the special case N = 2 is discussed later).

For dimensions d > dc (and below the upper critical dimension) the Ising model has two phases
and known to undergo a so called second order phase transition which means that the second
derivative of the thermodynamic potential becomes discontinuous near the transition point. In
general, phase transitions can be classified according to the behaviour of the derivatives of the
thermodynamic potential of the model, so one finds, for example, first, second and as special case
(for the O(N = 2) model), infinity order phase transitions.

3.1.1 Sine-Gordon model

The Euclidean action of the sine-Gordon (SG) model [28] contains a periodic self-interaction and
reads as

SSG[ϕ] =
∫
ddx

[
1
2 (∂µϕ)2 + u cos(βϕ)

]
. (39)

where u is the Fourier amplitude and β is the frequency. In addition to the reflection (Z2) symmetry,
the action of the SG model (39) under the transformation

ϕ(x) → ϕ(x) + 2π
β

(40)

remains unchanged, thus, it has another discrete symmetry: it is periodic in the field variable.
Due to this additional symmetry one expects changes in the phase structure compared to the
Ising model (38). Indeed, the SG model has two phases in d = 2 dimensions and it is known to
undergo an infinity order (topological), i.e., Kosterlitz-Thouless-Berezinski (KTB) [40, 41] type
phase transition which is controlled by the frequency, i.e., its critical value β2 = 8π separates
the two phases. Let me note, both the periodicity and the reflection symmetry have been broken
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spontaneously in one of the phases of the model but this is in agreement to the Mermin-Wagner-
Coleman theorem since they are discrete symmetries. Up till now the properties of the SG model
has been discussed in d = 2 dimensions, however, it is interesting to study the dependence of its
phase structure on the dimensionality which is also the goal of the present lecture note.

3.1.2 Massive Sine-Gordon model

The massive sine-Gordon (MSG) model [42] contains an explicit mass term in addition to the
periodic self-interaction and its Euclidean action reads as

SMSG[ϕ] =
∫
ddx

[
1
2(∂µϕ)2 + 1

2M
2ϕ2 + u cos(βϕ)

]
(41)

where the explicit mass term breaks the periodicity of the model. It has, however, a Z2 symmetry,
so one expects an Ising-type phase structure. This question is suitable to study in the framework
of the FRG method which is presented here.

3.1.3 Layered Sine-Gordon model

Consider the extension of the original one-component SG model to a multi-component theory
[42, 43] where the action is periodic in every field variable. In this case, an appropriately chosen
mass term (mass matrix) can be used to study the consequences of a partial break down of the
periodicity on the phase structure. I show that the number of the non-zero mass eigenvalues of the
mass matrix determine whether the model undergoes a topological phase transition or not. Thus,
the Euclidean action of the so called multi-layer or layered sine-Gordon (LSG) model in d = 2
dimensions reads as [9]

SLSG[ϕ] =
∫

d2x

[
1
2(∂µϕ)(∂µϕ)T + 1

2ϕM
2ϕT +

N∑
n=1

un cos(βϕn)
]

(42)

with the O(N) multiplet ϕ = (ϕ1, . . . , ϕN ). The mass matrix couples the components of the
field, i.e., layers and can be chosen arbitrarily. If all the mass-eigenvalues are non-zero than the
periodicity of the LSG model (in every layers) has been broken by the mass term and one expects no
infinite order phase transition. However, if one consider a mass matrix (let me call it magnetic-type
interlayer interaction) [9, 14]

1
2ϕ M2

M−LSG ϕT = 1
2G
(

N∑
n=1

anϕn

)2

,

M2
N=2 =

(
G −G

−G G

)
, M2

N=3 =

 G −G G

−G G −G
G −G G

 (43)

where the coupling strength between the layers denoted by G and an = ±1 are free parameters
of the model, one finds a single non-vanishing mass-eigenvalue M2

N = NG and an infinite order
phase transition could be expected. (Based on symmetry considerations any choice with a2

n = 1
should reproduce exactly the same phase structure, as a consequence, the Fourier amplitudes (i.e.
fugacities) un ≡ u for n = 1, 2, . . . , N .) The LSG model with magnetic type mass term interpolates
between the SG and MSG models, since for N = 1 it reduces to the MSG model (41) and for
N → ∞ it is expected to recover the original SG theory (39) since the mass matrix has infinitely
many zero and only single non-zero eigenvalue.

Another definition for the mass term of Eq.(42) (let me call it Josephson-type interlayer inter-

17



3. SINE-GORDON TYPE MODELS, BOSONIZATION AND CONFORMAL PROPERTIES

action) [9, 13]

1
2ϕ M2

J−LSG ϕT = 1
2

N−1∑
n=1

J(ϕn+1 − ϕn)2,

M2
N=2 =

(
J −J

−J J

)
, M2

N=3 =

 J −J 0
−J 2J −J
0 −J J

 (44)

has a single zero and N−1 non-zero mass-eigenvalues. Therefore, the Josephson coupled LSG model
is invariant under the particular exchange of the layers ϕn ↔ ϕN−n+1, hence, un ≡ uN−n+1.

In the latter case one finds a natural way to derive the mass matrix based on the discretised
version of the 3D SG model which has the following action [8]

S =
∫
d3r

[
1
2(∂µϕ3D)2 + u3D cos(β3Dϕ3D)

]
, (45)

where ϕ3D ≡ ϕ3D(x, y, z) is a one-component scalar field and β3D, u3D are the dimensionful
parameters of the theory. The model is constructed in d = 3 spatial dimensions with an Euclidean
metric. The anisotropic 3D-SG model reads as

S =
∫
d3r

[
1

2β2
‖

[(∂xθ)2 + (∂yθ)2] + 1
2β2

⊥
(∂zθ)2 + u3D cos(θ)

]
, (46)

where θ = ϕ3Dβ3D is introduced. In the isotropic limit β‖ = β⊥ ≡ β3D is assumed. Rescaling the
field Φ = θ/β‖, the action (46) becomes

S =
∫
d3r

[
1
2 [(∂xΦ)2 + (∂yΦ)2] +

β2
‖

2β2
⊥

(∂zΦ)2 + u3D cos(β‖Φ)
]
. (47)

In case of very strong anisotropy, the continuous derivation and the integration in the z-direction
is replaced by finite difference and summation, respectively,

∂zΦ(x, y, z) → Φ(x, y, z + s) − Φ(x, y, z)
s

,

∫
dz →

N∑
z=1

s, (48)

where s is the interlayer distance. Using this discretisation, one arrives at the LSG model with N

layers

S =
∫
d2r

[
1
2

N∑
i=1

(∂ϕi)2 + 1
2 J

N−1∑
i=1

(ϕi+1 − ϕi)2 +
N∑

i=1
ui cos(βϕi)

]
, (49)

where ϕi(x, y) ≡
√
sΦ(x, y, z = is), J ≡ β2

‖/(β2
⊥s

2), β ≡ β‖/
√
s and u ≡ su3D are introduced.

Therefore, in the continuum limit N → ∞ the LSG model can be considered as the discretized
version of the 3D-SG model and for N = 1 the LSG model reduces to the 2D-SG model.

Finally, let me perform an O(N) rotation of the layered models which diagonalises the mass
matrix, consequently, the rotated models do not have interlayer interactions. Later I show that it
enables us to perform an FRG analysis of the rotated models in the framework of the linearized
FRG equations. The action of the rotated layered sine–Gordon model reads as [9]

Srot[α] =
∫

d2r

[
1
2(∂µα)(∂µα)T + 1

2αM
2
rotα

T + Urot(α1, ..., αN )
]

(50)

with the rotated O(N) multiplet αT = OT ϕT where O represents the rotation which has the
following form for the N = 3-layers Josephson and magnetic LSG model

OT

J−rot =


1√
3

1√
3

1√
3

− 1√
2 0 1√

2
1√
6 −

√
2√
3

1√
6

 OT

M−rot =


1√
3 − 1√

3
1√
3

0 1√
2

1√
2√

2√
3

1√
6 − 1√

6

 (51)
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The general form of the rotated mass matrix for the Josephson and for the magnetically coupled
LSG model are

M2
J−rot =


0 0 0 · · · 0
0 M2

2 0 · · · 0
0 0 M2

3 · · · 0
...

...
...

. . .
...

0 0 0 · · · M2
N

 M2
M−rot =


NG 0 0 · · · 0

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 (52)

with the mass-eigenvalues M2
i for the Josephson coupled and M2 = NG for the magnetically

coupled LSG model. In the rotated models the periodic part is no longer diagonal. For N = 2
layers this reads

U rot
N=2 = 2u cos

(
β√
2
α1

)
cos
(
β√
2
α2

)
, (53)

and for N = 3 the rotated periodic parts of the Josephson and of the magnetic LSG model are
different,

UJ−rot
N=3 =u2 cos

(
β√
3
α1

)
cos
(

2β√
6
α3

)
+ 2u1 cos

(
β√
3
α1

)
cos
(
β√
2
α2

)
cos
(
β√
6
α3

)
+ 2u1 sin

(
β√
3
α1

)
cos
(
β√
2
α2

)
sin
(
β√
6
α3

)
+ 2u2 cos

(
β√
3
α1

)
sin
(
β√
2
α2

)
sin
(
β√
6
α3

)
, (54)

and

UM−rot
N=3 = 2u cos

(
β√
3
α1

)
cos
(
β√
2
α2

)
cos
(
β√
6
α3

)
+ u cos

(
β√
3
α1

)
cos
(

2β√
6
α3

)
+2u sin

(
β√
3
α1

)
cos
(
β√
2
α2

)
sin
(
β√
6
α3

)
− u sin

(
β√
3
α1

)
sin
(

2β√
6
α3

)
. (55)

3.1.4 Sinh-Gordon model

By using the analytic continuation of the frequency parameter of the original SG model to an
imaginary one β → iβ, one finds the sinh-Gordon (ShG) model

SShG[ϕ] =
∫
ddx

[
1
2 (∂µϕ)2 + u cos(iβϕ)

]
=
∫
ddx

[
1
2 (∂µϕ)2 + u cosh(βϕ)

]
. (56)

in which periodicity is lost but it has a Z2 symmetry. Therefore, on the one hand one expects an
Ising-type phase structure. However, even if the self-interaction term is Taylor expanded (which
generates an Ising-type model) the expansion terms cannot be chosen arbitrarily, otherwise the
cosh(βϕ) is not recovered and this certainly modifies the phase diagram which has also been
clarified in the present lecture note.

3.1.5 Shine- and Sn-Gordon models

Similarly to the LSG model where the mass matrix can be chosen to interpolate between the SG
and MSG models, one can define an extension of the original SG theory where the resulting model
interpolates between the previously introduced ShG and the original SG model. In the present
lecture note I introduce and study two different classes of interpolating models.

The first class is built by considering the coupling constant β as a complex quantity which is
the shine-Gordon (Shine) theory and defined by the action,

SShine[ϕ] =
∫
ddx

[
1
2(∂µϕ)2 + uRe cos[(β1 + iβ2)ϕ]

]
=
∫
ddx

[
1
2(∂µϕ)2 + u cos(β1ϕ) cosh(β2ϕ)

]
(57)
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where β1 and β2 are real value frequencies. Let me note, that the resulting theory can be treated
for each non-zero β2 as a scalar polynomial field theory.

In the second class, in order to construct an interpolating model first I introduce a periodic
function written in terms of the Jacobi function [11],

SSn[ϕ] =
∫
ddx

[
1
2(∂µϕ)2 + u sn(βϕ,m)

]
(58)

which is termed as the sn-Gordon model which has the following limiting cases: for m = 0, it
reduces to u sin(βϕ) and for m = 1, it becomes u tanh(βϕ). Using this idea, the interpolation
between the sine-Gordon and sinh-Gordon models can be performed with potentials written in
terms of Jacobi functions [11],

SSnG[ϕ] =
∫
ddx

[
1
2(∂µϕ)2 + u cd(βϕ,m) nd(βϕ,m)

]
(59)

and term as the SnG model where the limiting cases are the required ones, i.e. for m=0: u cos(βϕ)
and for m=1: u cosh(βϕ), thus m varies between zero and one. Let me note, that in this case the
interpolating function is periodic (except for m = 1). Using the properties of the Jacobi functions
cd(ϕ,m) = cn(ϕ,m)/dn(ϕ,m) and nd(ϕ,m) = 1/dn(ϕ,m) it can also be written as [11],

SSnG[ϕ] =
∫
ddx

[
1
2(∂µϕ)2 + u cn(βϕ,m) [nd(βϕ,m)]2

]
. (60)

Eqs. (59) and (60) have periodic potential terms, so, they can be expanded in Fourier (Lambert)
series

cn(ϕ,m) = 2π
K

√
m

∞∑
n=0

qn+1/2

1 + q2n+1 cos
[
(2n+ 1) πϕ2K

]
,

nd(ϕ,m) = π

2K
√

1 −m
+ 2π
K

√
1 −m

∞∑
n=1

(−1)nqn

1 + q2n
cos
[
2n πϕ2K

]
,

where q = exp[−πK(1 −m)/K(m)] and K(m) is the quarter period (complete elliptic integral of
the first kind) which can be expressed by the hypergeometric function

K =
∫ π/2

0

dθ√
1 −m sin2(θ)

= π

2 2F1

(
1
2 ,

1
2 , 1,m

)
which results in [11],

SSnG[ϕ] =
∫
ddx

[
1
2(∂µϕ)2 +

∞∑
n=1

un cos(n bϕ)
]
, b = β

2F1
( 1

2 ,
1
2 , 1,m

) (61)

thus, the second class of interpolation models are expected to possess properties and phase structure
similar to the SG model.

3.2 Bosonisation in d = 2 dimensions
It is an interesting property of sine-Gordon type models that some of them are the co-called
bosonised versions of two-dimensional fermionic and gauge theories. The mapping of quantum field
theories of interacting fermions onto an equivalent theory of interacting bosons called bosonization
is well-established in the context of d = (1 + 1) dimensional theories [47, 45, 42, 43, 44, 46, 48, 49].
The cornerstone of bosonization is the existence of a non-local transformation from local fermi
fields to local Bose fields. The Lagrangian of a free massless Dirac fermion

Lfermi = ψ̄iγµ∂µψ (62)
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is equivalent to the theory of a free massless scalar field

LBose = 1
2

1
4π (∂µφ)2, (63)

and the fermion bilinears such as ψ̄γµψ and ψ̄ψ can be expressed by bosonic degrees of freedom.
The bosonization identities, which relate the fermionic current with the topological current of a
bosonic theory is the consequence of a non-trivial current algebra.

3.2.1 Massive Thirring model

The massive Thirring (mT) model [50] is a theory of a single Dirac field defined in d = (1 + 1)
dimensions with dynamics determined by the Lagrangian density

LmT = ψ̄(iγµ∂µ −m)ψ − 1
2gj

µjµ (64)

where jµ = ψ̄γµψ and g is a free parameter. Let us use the following identifications and conventions
4π
β2 = 1 + g

π
, − 1

2π ε
µν∂νφ = jµ, u cos(φ) = −mψ̄ψ,

γ0 =
(

0 1
1 0

)
, γ1 =

(
0 1

−1 0

)
, (65)

and γ5 = γ0γ1. Then, Eq. (64) can be mapped on the scalar theory

L = 1
2

1
4π

(
1 + g

π

)
(∂µφ)2 + u cos(φ) (66)

which is identical to the SG model (39) by performing the redefinition of the field variable φ = βϕ.

3.2.2 Massive Schwinger–Thirring model

The Lagrangian of QED2 with a massive Dirac fermion is called the massive Schwinger (mS) model
[51]. Its Lagrangian reads as

LmS = ψ̄ (iγµ∂µ −m− eγµAµ)ψ − 1
4FµνF

µν (67)

where Fµν = ∂µAν −∂νAµ. Using bosonization technique the fermionic theory (67) can be mapped
onto an equivalent Bose form

L = NM

[
1
2(∂µϕ)2 + M2

2 ϕ2 − cmM cos
(√

4π ϕ− θ
)]

(68)

with M2 = e2/π, c = exp (γ)/(2π) where γ = 0.5774 is the Euler’s constant, θ is the vacuum
angle parameter, NM denotes normal-ordering with respect to the boson mass M and ϕ is a one-
component scalar field. The bosonized massive Schwinger model (68) can be considered as the
specific form of the massive sine–Gordon (MSG) model whose Lagrangian density is written as
(for β2 = 4π) [9]

LMSG = 1
2(∂µϕ)2 + 1

2M
2ϕ2 + u cos(

√
4πϕ) (69)

where the Fourier amplitude u = em exp (γ)/(2π(3/2)) and the vacuum angle parameter has to be
chosen as θ = ±π for u > 0 and θ = 0 for u < 0.

The Lagrangian of QED2 with quartic self-interaction among massive Dirac fermions is called
the massive Schwinger-Thirring (mST) model [52]. Its Lagrangian reads as

LmST = ψ̄ (iγµ∂µ −m− eγµAµ)ψ − 1
4FµνF

µν − 1
2gj

µjµ (70)

where Fµν = ∂µAν − ∂νAµ and jµ = ψ̄γµψ. Using bosonization technique the fermionic theory
(70) can be mapped onto an equivalent Bose form which is an MSG model (41) where, 4π

β2 = 1+ g
2π

and the Fourier amplitude is related to the fermion mass (u ∼ m) and M2 = e2

π+g/2 [22].
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3.2.3 Multi-flavor Massive Thirring model

The Lagrangian of massive Dirac fermions with SU(Nf ) symmetry is called theNf -flavor [or abelian
SU(N)] massive Thirring (N-mT) model. Its Lagrangian reads as

LN−mT =
Nf∑

n=1

[
ψ̄n (iγµ∂µ −m)ψn

]
− 1

2g
2JµJµ (71)

where Jµ =
∑Nf

n=1 ψ̄nγ
µψn. The bosonized version of (71) for Nf =2 has the following form

L = 1
2 (∂µϕ+)2 + 1

2 (∂µϕ−)2 + 2u cos(β+ ϕ+) cos(
√

2π ϕ−) (72)

where ϕ± = (ϕ1±ϕ2)√
2 and 2π

β2
+

= 1+ 2g
π . Let me notice that an O(2) rotation has been applied during

the construction of (72). For β2
+ = 2π the unrotated form of Eq.(72) reads

L2−SG = 1
2 (∂µϕ1)2 + 1

2 (∂µϕ2)2 + u[cos(
√

4π ϕ1) + cos(
√

4π ϕ2)] (73)

with the unrotated frequency β2 = 4π. (In this case the corresponding fermionic theory is non-
interacting, i.e., g = 0.) This can be generalized for arbitrary Nf components

LN−SG =
Nf∑

n=1

1
2 (∂µϕn)2 + u

Nf∑
n=1

cos(
√

4π ϕn). (74)

3.2.4 Multi-flavor QED2

The Lagrangian of QED2 with massive Nf -flavor fermions is called the Nf -flavor (or multi-flavor)
massive Schwinger (Nf -mS) model [44, 45, 42, 43, 46] and its Lagrangian reads as

LNf−mS =
Nf∑

n=1
ψ̄n (iγµ∂µ −m− eγµAµ)ψn − 1

4FµνF
µν (75)

where Fµν = ∂µAν −∂νAµ. Using bosonization technique the fermionic theory (75) can be mapped
onto an equivalent Bose form [44, 45, 42, 46, 43, 57, 58, 59, 60, 49, 53, 54, 55, 56, 61]

L = Nm

 Nf∑
n=1

1
2(∂µϕn)2 + M2

2

 Nf∑
n=1

ϕn

2

− cm2
Nf∑

n=1
cos
(√

4π ϕn − θ

Nf

) (76)

with M2 = e2/π, c = eγ/(2π) where γ = 0.5774 is the Euler’s constant, θ is the vacuum angle
parameter, Nm denotes normal-ordering with respect to m and ϕn n = 1, ..., Nf are one-component
scalar fields. The bosonized Nf -flavor Schwinger model (76) can be considered as the specific form
of the N -layer sine–Gordon model (42) with magnetic-type interlayer interaction (3.1.3) whose
Lagrangian density is written as (for β2 = 4π)

LN−LSG =
N∑

n=1

1
2(∂µϕn)2 + 1

2M
2

(
N∑

n=1
ϕn

)2

+ u

N∑
n=1

cos(
√

4πϕn) (77)

where the number of layers is identical to the number of flavors (N = Nf ) and the Fourier amplitude
related to the fermion mass (u ∼ m) where the exact relation can be determined by using normal-
ordering with respect to the boson mass. The vacuum angle parameter has to be chosen as θ = ±Nπ
for u > 0 and θ = 0 for u < 0. One can generalise the multi-flavor QED2 to the so-called multi-flavor
massive Schwinger-Thirring model by adding a Thirring-type term to (75). The corresponding
bosonic theory is a layered sine-Gordon model (77) but with an arbitrary frequency parameter β
of the periodic self-interaction.
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3.2.5 Multi-color QCD2

It is tempting to find a bosonised form of QCD2 in the same way I did for QED2. It is indeed
possible to arrive at a layered sine-Gordon model if one considers multi-color but single flavor
QCD2 [62, 63, 64]. The Hamiltonian of the QCD2 with a single flavor Nf = 1 is

H = g2
Nc∑

a,b=1
(Eb

a)2 +
Nc∑

a,b=1
ψ̄aγ1(iδb

a∂1 −Ab
a)ψb +mg

Nc∑
a=1

ψ̄aψa (78)

in the gauge

A0 = 0, Aa
b = 0 for a = b, Ea

b = 0 for a 6= b (79)

Using the Gauss law the bosonized Lagrangian with one flavor becomes

L =
∑

a

[
1
2(∂µφa)2 − cmgµ

π
Nµ cos(2

√
πφa)

]
+ g2

8πNc

∑
a,b

(φa − φb)2

+ 2c2µ2

π3/2

∑
a,b

sin(2
√
π(φa − φb))
φa − φb

, (80)

where the scale µ should satisfy µ = c′g, with c′ a constant, in order to take the interaction energy
proportional to g2 and Nµ denotes the normal-ordering. The last term in (80) is non-periodic,
hence, it can be expanded in Taylor series and keeping only the leading order terms one finds

L =
∑
a,b

[
1
2(∂µφa)2 − cc′mgg

π
Nµ cos(2

√
πφa) + g2cg(φa − φb)2

]
, (81)

with cg = 1/8πNc − 8c2c′2/3. Let us note, that similarly to the bosonized QED2, the scalar mass
term in (81) can be written by a mass matrix MQCD

1
2ΦM2

QCDΦ = g2cg

∑
a,b

(φa − φb)2. (82)

Φ = (φ1, φ2, ..., φNc) and the summation runs from a, b = 1 to Nc. However, based on symmetry
considerations the number of zero and non-zero eigenvalues of the mass matrix remains unchanged
if MQCD is rewritten as

1
2ΦM2

QCDΦ = g2cg

Nc−1∑
n=1

(φn+1 − φn)2, (83)

which reproduces exactly the same phase structure. Thus, one arrives at the layered sine-Gordon
model (42) with Josephson-type interlayer interaction (3.1.3) where N = Nc.

3.3 Conformal field theory and sine-Gordon models
Statistical field theory has undergone an incredible improvement in the last four decades, most
of this development has been due to two theoretical techniques: renormalization group (RG) and
conformal field theory (CFT) which permitted a full understanding of the phase transition mech-
anism.

The RG approach has been originally introduced in hydrodynamics and later used to describe
the critical phenomena of statistical systems near their phase transition point. The quantum field
as well as the critical statistical system has infinitely many relevant (important) degrees of freedom;
the quantum fluctuations and the thermal fluctuations, respectively. The D + 1 dimensional (D
space-like and 1 time-like dimensional) QFT is (usually) equivalent to a statistical system taken
in D + 1 space-like dimensions. Therefore, the understanding of the critical behavior of statistical
systems close to their phase transitions provides us with a useful method to consider the phase
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structure of the equivalent QFT models. The cornerstone of RG is scale invariance: systems near
their phase transition points are invariant under the global dilation of the observational scale (e.g.
lattice space),

a → b a. (84)

More precisely, the fixed points of RG transformations correspond to phase transition points where
the system is scale invariant. On the other hand, in d = 1 + 1 dimensions it is straightforward to
extend the global dilatation symmetry to a local one,

a → b(x) a (85)

which changes the length of vectors but leave invariant their relative angles. These are called,
the conformal transformations and they are part of a symmetry group, called conformal group.
The conformal invariance has been demonstrated for two-dimensional field theories which allowed
to obtain many, previously unknown, exact results and to complete the understanding of phase
transition in two dimensions. The conformal group in d dimensions (for d 6= 2) has a number of
independent generators equal to 1

2 (d + 1)(d + 2), while for d = 2 the conformal group is infinite
dimensional where the corresponding generators Ln, n = 0,±1,±2, ... form a Virasoro algebra

[Ln, Lm] = (n−m)Ln+m + c

12(n3 − n)δn+m,0 (86)

where the parameter c is the so-called central charge and can be used to characterise the corre-
sponding CFT.

A bridge between CFT techniques and the RG description of field theories is provided in two
dimensions by Zamolodchikov’s c-theorem [65]. In particular the theorem states that it is always
possible to construct a function of the couplings c(g), the so-called c-function, which monotonically
decreases when evaluated along the trajectory of the RG flow. Furthermore, at the fixed points
this function assumes the same value as the central charge of the corresponding CFT,

c(g?) = c. (87)

Based on the previous paragraph one can formulate the so-called sinh-Gordon puzzle which is
the following. As a first step, let me discuss the conformal properties of the Ising (38), SG (39) and
ShG (56) models. It is known that in d = 2 dimensions systems at criticality where they are scale
invariant, give rise to invariance under the group of conformal transformations. As a consequence of
conformal invariance the central charge c is well defined at any fixed points in the phase structure
of the model and its difference ∆c between the values at the trivial Gaussian and non-trivial fixed
points characterises the theory. For example, it is known that ∆c = 1/2, 1, 1 for the Ising, SG and
ShG models respectively. The question to be addressed is: why the ShG model has ∆c = 1 which
is identical to the ∆c of the SG model but differs from that of the Ising? This is unexpected since
the sinh-Gordon model is not periodic, so, its self-interaction potential can be expanded in Taylor
series which generates (φ2N ) terms and the model can be considered as an Ising type theory.

One of the goals of the present lecture note is to show how the functional RG method can
be used to resolve the above "contradiction". Furthermore, if the functional RG treatment can
clarify the issue above, there is a natural question to ask what happens if one consider models
interpolating between the SG and ShG theories, i.e. shine- and sn-Gordon models.
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4 Sine-Gordon models in condensed matter physics
Besides bosonisation which transforms two-dimensional fermionic and gauge models onto periodic
scalar field theories various types of mappings of sine-Gordon type models can be discussed. For ex-
ample, SG type generating functionals can be mapped onto partition functions of corresponding gas
of topological defects (excitations) [66, 67]. Another example is the mappings between sine-Gordon
theories and classical XY type spin models [68] which has a connection to the Ginzburg-Landau
theory of superconductivity [69]. These equivalent models are known to undergo a topological
(infinite order) i.e, Kosterlitz-Thouless-Berezinskii (KTB) type phase transition [40, 41]. In this
section a brief overview of these mappings and the KTB phase transition of various models are
given which sometimes depend on the dimensionality.

4.1 Ginzburg-Landau theory of superconductivity
In order to describe the phenomena of superconductivity one can use three different strategies. The
most fundamental one is the microscopic description; in case of conventional superconductors this is
the celebrated BCS theory. The second opportunity is the so-called Ginzburg–Landau (GL) model
which can be derived from the microscopic theory. The third scenario is the electrodynamical
description which is nothing but the equations of motion derived from the corresponding GL
model. These three stages work for high transition temperature superconductors as well (e.g. the
corresponding GL theory is the so-called Lawrence-Doniach model [70]), however, no well-accepted
(single) microscopic model is available in the literature for high-Tc materials.

Here, I focus on the GL theory [69] which has been developed by applying a variational method
to an assumed expansion of the free energy in powers of |ψ|2 and |∂µψ|2 where ψ is a complex
order parameter

ψ(r) = |ψ(r)|eiθ(r) ≡ ψ0(r) eiθ(r) (88)

(the inhomogeneous condensate of the superconducting electron pairs) and |ψ|2 represents the local
density of superconducting electron pairs (charged superfluid density). The total free energy has
the form of a field theory

F =
∫

d3r

(
α|ψ|2 + β

2 |ψ|4 + ~2

2m?

∣∣∣∣(∂µ − i e?

~ c
A

)
ψ

∣∣∣∣2 + |B|2

8π

)
(89)

where α, β and e?,m? are parameters, A is the electromagnetic vector potential and the last term
stands for the magnetic field energy which does not depend on the material (B = ∇ × A). In the
absence of electromagnetic fields (A ≡ 0), the total free energy becomes

F =
∫

d3r

(
αψ2

0 + β

2ψ
4
0 + ~2

2m?

[
(∂µψ0)2 + ψ2

0(∂µθ)2]) (90)

where the functional form of the order parameter has been substituted.

4.1.1 Layered GL theory – Josephson coupling

Let me first discuss the free energy functional in the absence of electromagnetic fields (uncharged
superfluid). Since a strong spatial anisotropy is a typical property of high Tc materials the free
energy functional should be discretised in one of the spatial direction which results in a layered
structure [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84]). Another important assumption is
the so-called London-limit which requires that the superconducting state is homogenous in every
layer, i.e., ψ0(r) ≡ ψ0 is constant (does not depend on the coordinate). Let me first use the London
limit, then Eq. (90) reads as (in natural units: ~ = c = ε0 = 1)

F = ψ2
0

2m?

∫
d3r(∂µθ)2 (91)
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and then apply the discertization of the z-coordinate which results in [81]

F = sψ2
0

∫
d2r

(
N∑

n=1

1
2mab

(∂µθn)2 +
N−1∑
n=1

1
2mc

(θn+1 − θn)2

s2

)
. (92)

Here, mab and mc represent the intralayer and interlayer effective masses, s is the interlayer dis-
tance, and N stands for the total number of layers. The gradient operator ∂µ is two-dimensional
where µ covers the spatial coordinates µ = x, y.

The layered structure has important consequences on the phase structure. The elementary
excitations are conducting electrons in the 3d bulk model but vortex-antivortex pairs (super-
current rings with normal core) in the layered system, see Fig. 2. Furthermore, the phase structure

J

J
J

J

J

J

Figure 2: Schematic representation of the Lawrence-Doniach model with N = 2, 3, 4 layers
which can describe the vortex properties of layered superconductors. The planes are coupled
by the Josephson coupling J ∼ 1/mc. The solid discs represent the topological excitations
of the model, the vortex-antivortex pairs. Two such pairs belonging to neighbouring layers
can form vortex loops and rings due to weak Josephson coupling. The critical behaviour of
the vortices is found to depend on the number of layers and is again different in the limit of
an infinite number of layers.

and the vortex dynamics depend on the number of layers. For a single layer N = 1, (92) reduces
to

F = ψ2
0

2m?

∫
d2r(∂µθ)2 (93)

which is known to undergo a topological or also known as KTB type phase transition (strictly
speaking if no spin-wave fluctuations are taken into account). In the molecular phase the vortices-
antivortices form closely bound pairs, in the ionised phase they dissociate into a neutral plasma.
Let me note, that this situation is related to an uncharged superfluid. A realistic description of
vortex dynamics in a single superconducting layer requires the incorporation of electromagnetic
field (charged superfluid) which will be discussed later. For a finite number of layers 1 < N < ∞
the Josephson coupling modifies the phase structure and for infinite number of layers N = ∞ one
expects that Eq. (92) recovers the phase structure of the bulk model.

It is constructive to show that Eq. (92) can also be obtained by the discretised version of (89)
(in the absence of external fields) which is the Lawrence–Doniach model,

F = s

∫
d2r

(
N∑

n=1

(
α|ψn|2 + β

2 |ψn|4 + |∂µψn|2

2mab

)
+

N−1∑
n=1

|ψn+1 − ψn|2

2mc s2

)
, (94)

and then taking it in the London-limit by introducing a complex layer-dependent order parameter
as ψn(r) = ψ0,n(r) exp[iθn(r)] with real ψ0,n(r), where the θn ∈ [0, 2π) are compact variables,

F = s

∫
d2r

(
N∑

n=1
αψ2

0,n + β

2ψ
4
0,n + 1

2ma,b

[
(∂µψ0,n)2 + ψ2

0,n(∂µθn)2]
+

N−1∑
n=1

1
s2 2mc

(ψ2
0,n+1 + ψ2

0,n) − 1
s2 mc

ψ0,n+1ψ0,n cos(θn+1 − θn)
)

(95)
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and in the London approximation the moduli ψ0,n are assumed to be constant and identical in
every layer (i.e. ψ0,n(r) = ψ0) which results in

F = sψ2
0

∫
d2r

(
N∑

n=1

1
2mab

(∂µθn)2 +
N−1∑
n=1

1
s2 mc

[1 − cos(θn+1 − θn)]
)

(96)

and recovers Eq. (92) after expanding the cosine in Taylor series and keeping the quadratic terms
only. This is the London-type form of the Lawrence-Doniach model [70] where the interaction
between the compact fields θn of various layers is represented by the so-called Josephson coupling.

4.1.2 Layered GL theory – Magnetic coupling

Let me now turn to the analysis of the GL free energy in the presence of electromagnetic fields
[80, 82, 84]. The London-type approximation of (90) in case of a non-vanishing vector potential A
reads as,

F = ψ2
0

2m?

∫
d3r(∂µθ − e?A)2 (97)

with a compact field θ. Strong anisotropy can be taken into account by discretising (97) in one
spatial dimension,

1
mc

∂zθ(x, y, z) → 1
mc

θ(x, y, z + s) − θ(x, y, z)
s

,

∫
dz →

N∑
z=1

s, (98)

where 1/mc is the Josephson coupling between the layers (mc is the effective mass) which vanishes
in the limit of infinite anisotropy (mc = ∞) and leads to

F = sψ2
0

∫
d2r

(
N∑

n=1

1
2mab

(∂µθn − e?A)2

)
(99)

where the coupling between the layers is mediated by the vector potential A which represents a
magnetic-type coupling between the vortices (antivortices) of each layers, see Fig. 3. The vortex

M
M

M

M
M

M

Figure 3: Schematic representation of the vortex properties of layered superconductors where
the Josephson coupling vanishes J ∼ 1/mc = 0 and the vortices (antivortices) of each layers
[77, 82] are coupled by magnetic-type coupling (99).

dynamics of the magnetically coupled model (99) depends on the number of layers (similarly to
the Josephson coupled case). For N = 1 Eq. (99) reads as

F = ψ2
0

2m?

∫
d2r(∂µθ − e?A)2 (100)

which is known to describe a real two-dimensional superconductor, i.e., charged superfluid. Due
to the presence of the electromagnetic field, no KTB type phase transition is observed. For finite
number of layers 1 < N < ∞, the screening effect of A is partial and a model undergoes a KTB
phase transition where the transition temperature depends on the number of layers. For N = ∞
the effect of the electromagnetic field can be neglected, thus (99) recovers (93).

In order to show how the layered GL theory with Josephson and magnetic couplings is related to
various sine-Gordon type scalar field theories one has to determine the so-called gases of topological
excitations which is my goal in the upcoming subsections.
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4.2 Models in d = 2 dimensions
4.2.1 Uncharged superfluid

My starting point is the partition function of the 2d–SG model which reads as (~ = 1)

Z2d−SG = N
∫

D[ϕ] exp
[
−
∫

d2r

(
1
2 (∂µϕ)2 + u cos(β ϕ)

)]
(101)

where ϕ ∈ [−∞,∞] is a one-component scalar field, u is a fundamental Fourier amplitude, and
β is a dimensionless frequency. The partition function (101) can be identically rewritten as the
partition function of the equivalent gas of topological excitations using the following steps [66].
One expands the periodic piece of the partition function (101) in a Taylor series and use the
identity, cos(βϕ) = [exp (iβϕ) + exp (−iβϕ)]/2,

exp
[∫

d2r u cos(βϕ)
]

=
∞∑

ν+,ν−=0

(u/2)ν+(u/2)ν−

(ν+)!(ν−)!

ν++ν−∏
j=1

∫
d2rj

 exp [iρjβϕ(rj)] , (102)

where we introduced the integer valued topological charges ρj = ±1 which fulfil the neutrality
condition

∑ν++ν−
j=1 ρj = 0. This leads to the intermediate result,

Z = N
∞∑

ν+,ν−=0

(u/2)ν+(u/2)ν−

(ν+)!(ν−)!

ν++ν−∏
j=1

∫
d2rj

∫ D[ϕ] exp
[
−
∫

d2r

(
1
2ϕ (−∂2)ϕ+ i β ρϕ

)]
,

(103)

where ∂2 ≡ ∂µ∂µ and ρ(r) = −ρjδ(r − rj). I have thus placed the (ν+ + ν−) vortices onto a two-
dimensional plane (single layer). The Gaussian integration in Eq. (103) can now be performed easily,
and the inversion of −∂2 can be accomplished by going to momentum space. Via a subsequent
back-transformation to coordinate space and using

∑
i,j = 2

∑
i<j I finally arrive at the result

Z2d−SG =
∞∑

ν+,ν−=0

(u/2)ν+(u/2)ν−

(ν+)!(ν−)!

ν++ν−∏
j=1

∫
d2rj

 exp

 β2

(2π)

ν++ν−∑
j<k=1

ρjρk ln
(rjk

a

) ,
which is equivalent to the two-dimensional Coulomb gas (2d-CG)

Z2d−CG =
∞∑

ν+,ν−=0

(z+)ν+(z−)ν−

(ν+)!(ν−)!

ν++ν−∏
j=1

∫
d2rj

 exp

 1
kBT

ν++ν−∑
j<k=1

ρjρk ln
(rjk

a

), (104)

where ρα = ±1 is the charge of the jth particle, and require the neutrality z+ = z− = z is
the dimensionful fugacity, kB is the Boltzmann constant, T is the temperature and a stands for
the lattice spacing which serves as a short-distance cutoff. The interaction potential between two
charges depends on their relative distance (rij = |~ri − ~rj |). The frequency parameter β2 of the
2d–SG model can be identified as the inverse of the temperature of the equivalent Coulomb gas,
β2 ≡ 2π/(kBT ) and the Fourier amplitude plays the role of the fugacity, u/2 ∼ z. The above
procedure could be repeated in any dimension, therefore the equivalency between the SG and CG
models holds for arbitrary dimensions as well.

It is generally assumed that the 2d–SG model belongs to the universality class of the two-
dimensional classical XY spin-model [85] which is given by the partition function

Z2d−XY =
∫

D[S] δ(S 2 − 1) exp
[

− 1
kBT

∑
<x,y>

(−J) Sx · Sy

]
, (105)

where the classical spin S is a unit-vector in the two-dimensional internal space;
∑

<x,y> stands
for the sum over pairs of nearest neighbour lattice sites. Representing the classical unit spin vector
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by an angle Sx ≡ (cos(θx), sin(θx)) the partition function of the 2D–XY model can be written as

Z2d−XY =
∫

D[θ] exp
[

J

kBT

∑
<x,y>

cos (θx − θy)
]

≈ N
∫

D[θ] exp
[
−
∫

d2r

(
J

2kBT
(∂µθ)2

)]
,

(106)
where the cosine is Taylor-expanded and the quadratic term generates (∂µθ)2 in the continuum
limit and the higher order derivatives are neglected. This approximation works for the symmetry
broken phase. The field-independent term has been built in the normalization constant N . Thus,
Eq.(106) is found to be the corresponding field theory of the XY spin model. Let me note, however,
that the Hubbard-Strotonovich transformation is used to map the XY spin model onto an O(2)
symmetric ϕ4 field theory exactly [86, 15], i.e, it is equivalent with a complex scalar theory where
density fluctuations are taken into account which is not discussed here.

The structure of Eq.(106) is similar to Eq.(101) but there is an important difference, namely
θ ∈ [0, 2π] is a compact variable. In case of the 2d–XY model, the compact nature of the field
generates the topological excitations of the theory, which are the point-like vortices. In case of the
2d–SG model, the periodic self-interaction is responsible for the existence of the topological defects
which are solitons.

Let me note, the partition function (106) is equivalent to the GL model (93) which describes a
2d superconducting film in the absence of electromagnetic fields taken in the London-type approx-
imation (with J ≡ ψ2

0/mab). It is used to describe the vortex dynamics of an uncharged superfluid.
Moreover, the 2d–XY model can also be mapped onto the 2d–CG. To show this the field variable
is rewritten

θ(r) = θv(r) + θsw(r) (107)

in terms of vortex (θv) and spin-wave (θsw) terms with the following properties∫
V

∂µ∂
µθv =

∫
∂V

∂µθv = 2π
∑

i

qi,

∫
V

∂µ∂
µθsw =

∫
∂V

∂µθsw = 0, (108)

where the integrals are independent of the two-dimensional volume (V ) and its surface (∂V ) which
is a closed contour in d = 2. The integer valued variable qi is the so-called vortex charge (vorticity
or winding number). Based on the analogy to electrostatic (where θv plays the role of the scalar
electric potential in d = 2) it is easy to show that

∂µ∂
µθv(r) = 2πρ, ρ =

∑
i

qiδ(r − ri) → θv(r) =
∑

i

qi ln
(
r − ri

a

)
. (109)

The action for the continuous XY model can be rewritten in three terms

S = − J

2kBT

[∫
d2r(∂µθv)2 +

∫
d2r(∂µθsw)2 + 2

∫
d2r(∂µθv)(∂µθsw)

]
(110)

in which the last term is zero. If one neglect the second term (i.e. the spin-wave fluctuation) than
the partition function of the model form a Coulomb gas.

Therefore, the continuous version of the 2d–XY (without spin-wave fluctuation) and the 2d–SG
model are dual to each other. Indeed, the two models can be mapped onto each other by a suitable
duality relation based on the Gaussian integration which inverts the coupling of the derivative
term (β2 ∼ J/T ).

4.2.2 Charged superfluid

Let me repeat the previous calculation for the two-dimensional massive sine-Gordon (2d–MSG)
model

Z2d−MSG = N
∫

D[ϕ] exp
[
−
∫

d2r

(
1
2 (∂µϕ)2 + 1

2M
2ϕ2 + u cos(β ϕ)

)]
. (111)
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The partition function (111) can be identically rewritten as the partition function of the equivalent
gas of topological excitations

Z2d−MSG =
∞∑

ν+,ν−=0

(u/2)ν+(u/2)ν−

(ν+)!(ν−)!

ν++ν−∏
j=1

∫
d2rj

 exp

−β2
ν++ν−∑
j<k=1

ρjρkAjk

 , (112)

where the interaction potential between the vortices reads as [14],

Aα γ = 1
2π

[
K0

(
rαγ

λeff

)
−K0

(
a

λeff

)]
=

 − 1
2π ln

( rαγ

a

)
(rαγ � λeff)

1
2π ln

(
λeff

a

)
(rαγ � λeff)

(113)

with rαγ = |~rα −~rγ | and K0(r) stands for the modified Bessel function of the second kind, a is the
lattice spacing which serves as an UV cutoff and an effective screening length λeff is introduced
[87, 81, 88] which is related inversely to the mass λ−1

eff = M . The relation K0(r) = − ln(r) + ln 2 −
γE + O(r) has been used in the derivation of the asymptotic short- and long-range forms and
only the leading logarithmic terms are indicated (γE = 0.577216 . . . is Euler’s constant). Thus,
the 2d-MSG model is equivalent to the 2d Yukawa gas [87] and to the so-called 2d frustrated XY
model which is identical to Eq. (100) and responsible for the description of the vortex dynamics
for a real superconducting film (charged superfluid) [71, 72].

4.3 Models in d = 3 dimensions
The partition function of the three-dimensional sine–Gordon (3d–SG) model is

Z3d−SG = N
∫

D[ϕ] exp
[
−
∫

d3r

(
1
2 (∂µϕ)2 + u cos(β ϕ)

)]
(114)

where ϕ ∈ [−∞,∞] is a one-component scalar field, (∂µϕ)2 ≡
∑3

µ=1(∂µϕ)2. The partition function
of the equivalent gas of topological excitations reads as

Z3d−SG =
∞∑

ν+,ν−=0

(u/2)ν+(u/2)ν−

(ν+)!(ν−)!

ν++ν−∏
j=1

∫
d3rj

 exp

 β2

2(Ω3)

ν++ν−∑
j<k=1

σ(rj) 1
rjk

σ(rk)

 ,
where Ω3 is the three-dimensional solid angle. Since the equivalence of the sine–Gordon field theory
and the Coulomb gas holds in arbitrary dimensions, the partition function (115) is equivalent to
the partition function of the 3d-CG

Z3d−CG =
∞∑

ν+,ν−=0

(z+)ν+(z−)ν−

(ν+)!(ν−)!

ν++ν−∏
j=1

∫
d3rj

 exp

 1
2kBT

ν++ν−∑
j<k=1

σ(rj) 1
rjk

σ(rk)

 (115)

where σα = ±1, z is the dimensionful fugacity, T is the dimensionful temperature and the interac-
tion potential between two point-like charges depends on their relative distance (rαβ = |~rα − ~rγ |).
The dimensionful frequency parameter β2 of the 3d–SG model can be identified as the inverse
of the dimensionful temperature of the equivalent 3d–CG, β2 ≡ Ω3/(kBT ) and again the Fourier
amplitude plays the role of the fugacity, u/2 ∼ z.

The 2d–SG and the 2d–XY model belong to the same universality class, however, this is not
necessary true for the 3d counterparts since the topological defects of the XY model are point-like
objects in d = 2 but d − 1 surfaces in higher dimensions, e.g. vortex lines (or loops) in three
dimensions. The partition function of the 3d–XY model taken in the continuum limit reads as

Z3d−XY =
∫

D[θ] exp
[

J

kBT

∑
<x,y>

cos (θx − θy)
]

≈ N
∫

D[θ] exp
[
−
∫

d3r

(
J

2kBT
(∂µθ)2

)]
, (116)
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where θ ∈ [0, 2π]. Let us note, Eq.(116) is equivalent to the 3d GL theory of superconductivity
[69, 81, 89, 90] taken in the London-type approximation in the absence of electromagnetic fields
(91). The partition function of the corresponding gas of topological excitations (vortex-loop gas)
is [85, 91, 92]

Z3d−VLG =
∞∑

ν+,ν−=0

1
(ν+)!(ν−)!

(
ν++ν−∏

L=1

∫
d3rL z(L)

)

exp

 Jπ

2kBT

∑
L,L′

∑
α,γ

j(L)
µ (rα) U(rαγ) j(L′)

µ (rγ)

 (117)

where the interaction potential is U(rαγ) ≈ 1/rαγ asymptotically. Here the topological excitations
are vortex lines (currents) and Eq.(117) can be considered as a Biot-Savart law for these “topological
currents” jµ(r). Although the asymptotic form of the interaction potentials are the same for the
3d–CG and for the 3d–VLG models, the topological defects are different, consequently, the 3d–SG
and 3d–XY models belong to different universality classes.

It has been argued that the field theory equivalent to the 3d–XY model is a QED-type Abelian
model which has the following partition function (see Eq.(3.11) of [85])

Z = N
∑
jµ

∫
D[Aµ,l] exp

∑
µ,ν,l

−1
2
kBT

J
Fµν,l Fµν,l + i2πjµ,lAµ,l

. (118)

with integer-valued currents jµ and Fµν,l = ∂µAν,l − ∂νAµ,l. The above QED-type quantum field
theory is not a sine–Gordon type scalar model. Therefore, one should conclude that the 3d–SG
and the 3d–XY are not the dual theory of each other.

4.4 Layered models

Let me discuss the layered sine–Gordon (LSG) model (42) with two different couplings between the
layers (i.e. different mass matrices couple the field components). The LSG model with a Josephson-
type mass matrix (3.1.3) has been constructed from the 3d–SG model by a suitable discretization
of the derivative term in one direction. The LSG model with a magnetic-type mass matrix (3.1.3)
interpolates between the massive and massless SG models (for N = 1 layer the LSG model is
equivalent to the massive SG and for N → ∞ it becomes the massless SG). Let me note that LSG
models with Josephson and magnetic couplings have the same form for N = 2 which is my starting
point. The partition function of the 2-layer LSG model reads as [13],

Z2−LSG = N
∫

D[ϕ] exp
[∫

d2r

(
1
2

2∑
n=1

(∂µϕn)2 + 1
2J(ϕ2 − ϕ1)2 +

2∑
n=1

u cos(βϕn)
)]

(119)

where ϕ ∈ [−∞,∞]. The LSG model with Josephson type coupling has been proposed as a candi-
date model for the description of the vortex properties of layered superconductors [93, 94] (in the
presence of Josephson coupling). In order to be able to decide whether this statement is correct or
not let me study he partition function of the equivalent gas of topological excitations of the 2-LSG
model which reads as [13]

Z2−LSG = N
∞∑

ν+,ν−=0

(u/2)ν+(u/2)ν−

(ν+)!(ν−)!

ν++ν−∏
j=1

∫
d2rj


exp

−β2

2

ν++ν−∑
j<k=1

σj σk

{
δnjnk

A(rjk) + (1 − δnjnk
)B(rjk)

} (120)
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where the asymptotic forms of the in-plane (A) and inter-plane (B) interaction potentials are [13]

A(rαγ � λeff) ∼ − 1
2π ln

(rαγ

a

)
, (121a)

A(rαγ � λeff) ∼ − 1
2π

(
1
2 ln

(
rαγ

λeff

)
+ ln

(
λeff

a

)
+ 1

2 ln(2) − 1
2 γE

)
, (121b)

B(rαγ � λeff) ∼ 0, (121c)

B(rαγ � λeff) ∼ − 1
2π

(
1
2 ln

(
rαγ

λeff

)
+ 1

2 ln(2) − 1
2 γE

)
, (121d)

where λeff = 1/
√

2J and a is the short-distance UV cutoff. If one extends the partition function
(120) for N > 2 then the magnetic and the Josephson type cases become different. For example,
the LSG model (42) with magnetic type mass matrix (3.1.3) (for arbitrary number of layers) is
equivalent to the layered GL theory with magnetic coupling (99), the layered Yukawa gas (extension
of (120) for arbitrary numbers of layers with magnetic interaction), and the so-called layered
frustrated XY model where the frequency β2 is related inversely to the temperature. On the
contrary, the LSG model (42) with Josephson type mass matrix (3.1.3) is equivalent to the layered
version of 3d-CG.

Let me turn to the layered version of the 3d–XY model. The partition function of the layered
XY (LXY) model in continuum limit reads as

ZLXY = N
∫

D[θ] exp
[

−
∫

d2r

( 2∑
n=1

1
2J‖ [(∂xθn)2 + (∂yθn)2] + J⊥[1 − cos(θ2 − θ1)]

)]
, (122)

where θn ∈ [0, 2π] is considered as a continuous variable in the xy-plane but discrete in the
perpendicular direction. The partition function (122) is equivalent to the layered GL model in the
absence of electromagnetic fields and in the London limit (96). After Taylor-expanding the cosine
in (122) and keeping only the quadratic term, the partition function of the LXY model reduces to

ZLXY ≈ N
∫

D[θ] exp
[

−
∫

d2r

( 2∑
n=1

1
2J‖ [(∂xθn)2 + (∂yθn)2] + 1

2J⊥(θ2 − θ1)2

)]
. (123)

The decisive question is whether the LXY and the LSG model (with Josephson type interlayer
coupling) belong to the same universality class. On the one hand, one can argue that they should
do so since the layered models consist of 2d–XY and 2d–SG structures which coupled by a similar
quadratic term and the 2d models are dual to each other. On the other hand, one can argue that
this conjecture is wrong because in the continuum limit (N → ∞), the layered models become the
discretised version of the corresponding 3d models which belong to different universality classes.
In order to answer this question one can compare the equivalent gases of topological excitations.
The partition function of the gas of topological excitation corresponds to the LXY model [92] has
been constructed and reads as (see also Eq.(1) of [95])

ZLXY =
∞∑

ν=0

z2ν

(ν!)2

2∑
n1=1

∫
d2r1 . . .

2∑
n2ν =1

∫
d2r2ν

∑
σ1,...,σν

exp

− 1
2kBT

∑
α 6=β

σα σβ V (rαβ , nαβ)

 ,

(124)
where σα = ±1 is the charge of the αth vortex, a stands for the lattice spacing and the interaction
potential V between two vortices depends on their relative distance rαβ within the two-dimensional
planes (rαβ = |~rα−~rβ |) and on the distance nαβ across the planes (nαβ = |nα−nβ |), where nα is the
layer in which the αth vortex is located. If one neglects interactions between vortices separated by
more than one layer this results in intra- and interlayer interaction potentials which have commonly
accepted short- and long-range asymptotic forms given by (see, Eqs. (2) and (3) of [95])

V (rαβ , nαβ = 0) = − ln
(rαβ

a

)
−

√
λ
rαβ − a

a
, (125a)

V (rαβ , nαβ = 1) = b
√
λ
rαβ

a
, (125b)
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with a coupling λ ∼ a2J⊥/J‖ where b is a constant of order unity. The intralayer interaction
between the vortices is logarithmic for short distances, as in the case of the usual 2d–CG, but
linear for large distances. The interlayer interaction is always linear and similar to the long-range
intralayer interaction but with an opposite sign. Within a layer, vortices of opposite charge attract,
whereas the positive prefactor of the linear term in the interlayer interaction implies the formation
of vortex stacks of same charges.

Therefore, one should conclude that the following models, the LSG with Josephson interlayer
coupling (3.1.3) and the LXY (123) model (which is equivalent to the layered GL with Joseph-
son coupling (92)) belong to different universality classes, since the asymptotic behavior of the
interaction potentials of Eq.(120) and of Eq.(124) are different, logarithmic for the LSG and linear
for the LXY model. Thus, the assumption that the LSG model (42) with Josephson type mass
matrix (3.1.3) is suitable for the description of the vortex dynamics of layered superconductors
with Josephson interlayer coupling is rather questionable. A brief summary of equivalent models
for the Josephson coupled case is shown in Table 1.

N = ∞ ⇒ 3d-CG (115) = 3d-SG (114) 6= 3d-GL (91) ≈ 3d-XY (116)

1 < N < ∞ ⇒ layered CG = Josephson-
LSG (3.1.3)

?
6=

Josephson
layered GL (92) ≈ layered XY (123)

N = 1 ⇒ 2d-CG (104) = 2d-SG (101) = 2d uncharged GL (93) ≈ 2d-XY (106)

Table 1: Equivalent models for the Josephson type interlayer coupling.

Let me turn the attention to magnetically coupled layered modes. The interaction potentials
(121) have the same asymptotic behavior as the vortices of magnetically coupled superconducting
layers [81, 75, 79, 77] [for the intralayer and interlayer interactions see Eqs. (86) and (89) of
Ref. [77], under the substitution ΛD = Λs/N ]. This observation shows that the LSG model (42)
with magnetic type mass matrix (3.1.3) is suitable to describe the vortex dynamics in magnetically
coupled layered systems where no Josephson but magnetic interlayer interaction is assumed between
vortices of neighbouring layers. A few remarks are now in order. (i) In the general N-layer case, the
prefactor (N − 1)/N appearing in the intralayer interaction (for N = 2 it is 1

2 in (121b)) indicates
the existence of vortices with fractional flux. (ii) For the case N = 1, there exists no interlayer
interaction, and the intralayer potential is logarithmic for small distances and vanishes for large
distances. Consequently, there are always free, non-interacting vortices in the model which push
the KTB transition temperature to zero. The LSG model (3.1.3) for a single layer reduces to the
2d-MSG model where the periodicity in the internal space is broken and the KTB transition is
absent. (ii) In the bulk limit N → ∞, the effective screening length and the interlayer interaction
disappear (λeff → 0, Bαγ → 0), and the intralayer potential has a logarithmic behaviour with full
flux, thus the LSG model (3.1.3) predicts the same behaviour as that of the pure 2d-SG model with
T

(∞)
KTB = T ?

KTB. A brief summary of equivalent models for the magnetically coupled case is shown in
Table 2. One of the goals of this lecture note is to show how one can determine the phase structure
of these 2d, 3d, and layered models in the framework of FRG. A typical example for such FRG study
is presented in Ref. [16] where the effect of a linear tunneling coupling between two-dimensional
systems, each separately exhibiting the topological (KTB) transition is studied. It was found that
in the uncoupled limit, there are two phases: one where the one-body correlation functions are
algebraically decaying and the other with exponential decay. When the linear coupling is turned
on, a third KTB-paired phase emerges, in which one-body correlations are exponentially decaying,
while two-body correlation functions exhibit power-law decay. In Ref. [16] numerical simulations
in the paradigmatic case of two coupled XY models at finite temperature was performed, finding
evidences that for any finite value of the interlayer coupling, the KTB-paired phase is present. The
complete picture of the phase diagram using the FRG approach was presented in Ref. [16].

33



4. SINE-GORDON MODELS IN CONDENSED MATTER PHYSICS

N = ∞ ⇒ 2d-CG (104) = 2d-SG (101) = 2d-GL (93) ≈ 2d-XY (106)

1 < N < ∞ ⇒ layered YG = magnetic-
LSG (3.1.3) = magnetic

layered GL (99) ≈ layered
frustrated XY

N = 1 ⇒ 2d-YG (112) = 2d-MSG (111) = 2d charged GL (100) ≈ 2d frustrated XY

Table 2: Equivalent models for the magnetic type interlayer coupling.

The vortex dominated properties of high transition temperature superconductors can be verified
by several experimental techniques as an example one can mention the so called electrical transport
measurement method which can be used to investigate the length-scale dependence and critical
behaviour of vortices in layered systems.

4.5 The O(2) model
In this short subsection I show the connection between the O(2) scalar theory and the previously
discussed two-dimensional models [15]. The Lagrangian of the O(2) model reads as

L = 1
2(∂µϕ)2 + 1

2g2ϕ
2 + 1

4!g4ϕ
4 + ... , ϕ = (ϕ1, ϕ2) (126)

where the two real scalar fields (ϕ1, ϕ2) can be rewritten as a single complex one

φ = ϕ1 + iϕ2, φ? = ϕ1 − iϕ2 → L = 1
2(∂µφ)(∂µφ?) + 1

2g2(φφ?) + 1
4!g4(φφ?)2 + ... (127)

and the complex field can be parametrized by an amplitude (ρ) and a phase (θ)

φ = √
ρeiθ, φ? = √

ρe−iθ → L = 1
8ρ (∂µρ)2 + 1

2ρ(∂µθ)2 + 1
2g2ρ+ 1

4!g4ρ
2 + ... (128)

which is identical to (90) using the notation ψ0 ≡ √
ρ. Important to note that the angle θ is

a compact field, so, the integration measure should be chosen properly in the path integral of
the model. The Lagrangian (128) can also be derived by using the identification ϕ1 = √

ρ cos(θ),
ϕ2 = √

ρ sin(θ) in (126). In summary, neglecting the amplitude fluctuations, the original definition
of the O(2) model reduces to

∂µρ = 0 → L = 1
2ρ(∂µθ)2. (129)

Thus, in the absence of amplitude fluctuations, the two-dimensional O(2) theory is equivalent to
the uncharged 2d-GL theory taken in the London limit, i.e., Eq. (93) which is assumed to be in
the universality class of the sine-Gordon, XY and Coulomb-gas models in d = 2 dimensions. The
effect of amplitude fluctuations on the phase structure could depend on the dimensionality.
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5 Sine-Gordon models in high energy physics
So far, the application of SG type models is considered in low dimensions (mostly in d = 2). In
this section I mention possible situations where periodic scalar fields can play a role in d = 4
dimensions. These cases can be associated to a particular energy (or length) scale such as (i) the
transplanckian physics of the early Universe above the Planck scale, (ii) physics of large extra
dimensions, (iii) axion physics, (iv) the cosmic inflation at the GUT scale, (v) the Higgs physics
at the Electroweak scale. In these cases, scalar fields naturally appear which opens the door for
possible applications of sine-Gordon type models.

5.1 Asymptotically Safe Quantum Gravity
The quantum field theory of gravity, i.e., Quantum Einstein Gravity (QEG) is perturbatively
non-renormalizable. It requires infinitely many unknown parameters to be set by experiment. A
possible solution to perform renormalization is the use of a nonperturbative treatment. Indeed,
nonperturbative renormalizability, which is also referred to as Asymptotic Safety (AS), provides us
with a nontrivial high energy, i.e., ultraviolet (UV) fixed point of the RG flow. The RG flow leads
to a finite number of UV-attractive couplings; so, it is sufficient to perform only a finite number of
measurements. In other words, it controls the UV behavior of the dimensionless couplings. They
do not need to be small or tend to zero in the UV limit but tend to finite values at the nontrivial
UV fixed point. It was shown in [96] that for the simplest truncation of QEG which is the Einstein–
Hilbert action, such a nontrivial fixed point is indeed present. Up to the present, many different
lecture notes have already confirmed that the AS scenario is possible, for a recent review, I refer
to [97]. For applications to cosmology, one consults Ref. [98, 99], and for applications to black-hole
physics and instructive explicit functional RG computations, I refer to [100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111].

Although, scalar fields play no direct role in AS gravity but the field independent term does
and this term has great importance in cosmic inflation, too, where I discuss possible application of
periodic scalar models. Therefore, it is useful to summarise the cornerstones of AS gravity which
can be done in the framework of the Einstein-Hilbert truncation of the effective average action

Γk = 1
16πGk

∫
d4x

√
−g(R− 2Λk) (130)

where g is the determinant of the metric tensor, R is the Ricci scalar and the scale-dependent
parameters are the cosmological constant Λk and the Newton coupling Gk. The scale-dependence
is analyzed in terms of dimensionless couplings, λk ≡ Λkk

−2, gk ≡ Gkk
2 with the help of the

β-functions, see for example [98]

k∂kgk = βg, k∂kλk = βλ (131)

which are calculated by the so called Litim regulator (specified later in the following sections)

βg = (2 + ηN )gk, βλ = (ηN − 2)λk + gk

12π

[
30

1 − 2λk
− 24 − 5

1 − 2λk
ηN

]
(132)

where the anomalous dimension of Newton’s constant ηN = G−1
k k∂kGk is given by

ηN = gkB1

1 − gkB2
(133)

where

B1 = 1
3π

[
5

1 − 2λk
− 9

(1 − 2λk)2 − 7
]
, B2 = − 1

12π

[
5

1 − 2λk
− 6

(1 − 2λk)2

]
. (134)

The β-functions contain the information on fixed points g? and λ? of the RG flow where the
beta functions vanish simultaneously. They give rise to two fixed points: the Gaussian (G) UV
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fixed point situated at (g?, λ?) = (0, 0) and the non-Gaussian (NG) UV fixed point located at
(g?, λ?) = (0.707, 0.193). In addition one can discuss the existence of the IR convexity fixed point.
The existence of the non-Gaussian UV fixed point can solve important problems of quantum gravity.
In order to find cosmological applications the running RG cutoff k is identified with a typical length
scale of the system [100]. There are several types of cutoff identifications [100], for example, k ∼ t−1

where t is the cosmic time or k ∼ H(t) where H(t) is the Hubble parameter or k ∼ T where T
is the temperature of the cosmic plasma. The idea is to use RG running to connect the physics
of various energy scales. For example, one should find the NG fixed point above the Planck scale
k � mp = 2.4×1027 eV, cosmic inflation takes place below the Planck scale k = kinf = 1022 eV, the
well-known value of Newton’s constant is fixed by laboratory experiments Gk = G = 6.67 × 10−57

eV−1 at low-energies k = klab = 10−5 eV and finally one should mention the accelerated expansion
of the Universe at present which requires Λk = Λ = 4 × 10−66 eV2 at the scale k = kHub = 10−33

eV. The nonperturbative RG (using various extension of the Einstein-Hilbert truncation, see for
example [101]) is capable to build up connection between these scales and cover many orders of
magnitude in change of couplings, like the Newton and the cosmological constants.

If one would like to extend the Einstein-Hilbert (130) truncation of the effective average action,
one possible way is to incorporate matter fields where the simplest choice is the scalar field. Let
me consider the following gravity-scalar model

Γk[φ] =
∫
d4x

√
−g

[
1

16πGk
R− 1

2g
µν∂µφ∂νφ− Vk(φ)

]
, (135)

where the scalar potential is usually expanded in terms of the field. If this expansion is terminated
at the quadratic order, it has the following form [27]

Vk(φ) = Vk(0) + 1
2M

2
kφ

2, Vk(0) ≡ 2Λk

16πGk
, (136)

which is one of the simplest scenarios when a single real scalar field is coupled to gravity. For a
detailed study of scalar fields coupled to asymptotically safe quantum gravity see for example [112].
The fixed points of the RG flow for a scalar field in curved space with non-minimal coupling is
discussed in [113] where the RG equation for the scalar potential in the so-called Local Potential
Approximation of the Wetterich RG equation with the Litim cutoff reads as

k∂kVk(φ) = µdk
d k2

k2 + ∂2
φVk(φ) , (137)

with µd = 1/[(4π)d/2Γ(d/2 + 1)]. The existence of the Gaussian (G) and non-Gaussian (NG) fixed
points and the RG flow of the full (dimensionless) potential is discussed, for example, in Refs. [112]
and [113] but no β function is given for the field-independent term.

Let me discuss the RG flow of of the cosmological constant in the absence of quantum gravity
effects, but take into account the RG equation (137) for the scalar potential (136). I use the relation
Ṽk(0) ≡ 2λk

16πgk
which connects dimensionless couplings and gives [27]

k∂kλk = 8π
(
gkk∂kṼk(0) + Ṽk(0)k∂kgk

)
(138)

In the absence of quantum gravity effects, i.e., assuming a scale-independent dimensionful Newton’s
constant, Gk = G, the anomalous dimension vanishes because ηN = G−1 k∂kG = 0, and one
finds k∂kgk = 2gk which results in a trivial RG scaling gk ∼ k2. The RG flow equation for the
dimensionless field-independent term obtained from (137) reads as

k∂kṼk(0) = 1
32π2

(
1

1 + M̃2
k

)
− 4Ṽk(0) (139)

which can be used to obtain the RG flow equation for the dimensionless cosmological constant [27],

k∂kλk = 1
4πgk

(
1

1 + M̃2
k

)
− 2λk. (140)
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In this approximation, gk has a trivial scaling, gk ∼ k2, it tends to infinity in the UV limit. The UV
scaling of the dimensionless mass term is M̃2

k ∼ k−2, so, it tends to zero in the UV limit. Although
the UV Gaussian fixed point formally exists, it cannot be reached because the corresponding
β-function diverges in the UV limit, gk

(
1

1+M̃2
k

)
→ ∞ if k → ∞. Thus, it is a relevant question to

ask [27] whether one can apply additional subtraction terms in order to restore the Gaussian fixed
point in (140).

5.2 Periodic Effective Branon Action
In the framework of models of large extra dimensions, in particular in the so-called Brane World
Scenario (BWS), elementary particles except for the graviton are localized on (3+1)-dimensional
branes. Although experimental tests from the Large Hadron Collider severely constrain theories of
large extra dimensions, the BWS served as one of the simplest extensions of the Standard Model.
The brane fluctuations of the BWS in a 5th dimensional bulk lead to a low energy effective four-
dimensional theory, where branons (representing quanta of the brane fluctuations) are described
by a scalar field living on a flat brane, thus, possible applications of periodic scalar models can be
discussed. For references on branon studies see e.g., [114, 115, 116, 117, 118, 119, 120].

In order to show the construction of an effective description of brane fluctuations, let me start
with a general setup where a single brane model in large extra dimensions is considered [21].
The four-dimensional space-time is embedded in the D = 4 +N dimensional bulk space. In what
follows, the brane coordinates are denoted with the indices µ, ν and the bulk coordinates with
M,N . In this general framework the coordinates parametrizing the points of the bulk are denoted
by XM = (xµ, ym) and the position of the brane in the bulk is given by XM = (xµ, Y m(x)), so
thus ym = Y m(x). Let me now switch back to the simplest case, i.e., for N = 1 and consider a
5-dimensional Universe with generic coordinates XM = (xµ, y), where x are the coordinates on the
brane, which is defined by the equation y = Y (x). Motivated by scenarios involving confinement
on the brane, let me consider the following block-diagonal bulk metric [21],

gMN =
(
e2σ(y)ηµν 0

0 −1

)
, (141)

with the Randall-Sundrum warp factor, σ(y) which is assumed to be even in y. If the brane is
centered on a Randall-Sundrum warp factor, a typical choice is the absolute value function which
is non-differentiable [21], or the differentiable quadratic one [118],

σ(y) = −a|y|, σ(y) = −M2

2 y2, (142)

where a and M2 are constants. Here I suggest SG and MSG type Randall-Sundrum warp factors,

σ(y) = −u cos(y), σ(y) = −M2

2 y2 − u cos(y). (143)

The induced metric hµν on the brane is

hµν(x) = ∂µX
M∂νX

NgMN (X) = e2σ(Y )ηµν − ∂µY ∂νY,

and, if f4 is the brane tension, the brane action is then

Sbrane = −f4
∫
d4x

√
−h = −f4

∫
d4x e4σ(Y )

(
1 − 1

2e
−2σ(Y )ηµν∂µY ∂νY + · · ·

)
,

where dots represent higher orders in derivatives of Y , which will be disregarded in the framework of
the gradient expansion. The dynamical variable is the canonically normalized branon field φ = f2Y ,
with mass dimension 1, and the classical brane ground state is Y = 0. The resulting effective action
for branons is then

Sbranon =
∫
d4x

(
e2σ(φ)

2 ∂µφ∂µφ− f4e4σ(φ)
)
. (144)
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For the details of the derivation see [118]. If one takes the choice of the absolute value function for
the Randall-Sundrum warp factor then the Liouville-type terms in the potential and in the wave
function renormalization depend on the absolute value of the scalar field, i.e., it is non-differentiable.
Thus, it is a natural question to ask whether the non-analitycal behavior of the potential conflicts
with its quantisation and renormalization [21].

The Randall-Sundrum warp factor with an SG type choice results in a periodic, and with an
MSG type one leads to a polynomial scalar field theory. However, in the latter case if the mass
term and the Fourier amplitude are small, the exponential of the Liouville term can be expanded in
Taylor series and keeping the linear term only, one finds an MSG type scalar model. This motivates
the use of SG and MSG type models in gravity-scalar systems (135), thus the field-dependent part
of the potential in (136) can be replaced by SG and MSG type models.

5.3 Periodic Axion potential
My next example for applications of sine-Gordon type scalar field theory in higher dimensions is
related to the so called axion. Constraints from symmetry and renormalizability on the standard
model QCD action allows to extend it by a CP violating term. However, experimental data do not
favour such an extension although the standard model Lagrangian is not CP symmetric, so, QCD
could be CP violating as well. Peccei and Quinn proposed a mechanism and introduced a new
hypothetical scalar field with U(1) symmetry in order to build up a CP conserving theory from a
model with massive fermions coupled to a non-Abelian gauge field [121]. The axion appears as a
phase of a Goldstone mode for a complex scalar Φ with a vacuum expectation value < Φ >= feiθ

which corresponds to the spontaneous break down of the U(1) symmetry at the scale f . Integrating
over the QCD degrees of freedom one arrives at the following effective action

S =
∫
d4x

(
f2

2 ∂µθ∂
µθ + u[1 − cos(θ)]

)
=
∫
d4x

(
1
2∂µφ∂

µφ+ u[1 − cos(βφ)]
)
,

φ = fθ, β = 1/f (145)

where a periodic potential appears naturally and the rescaling of the field has been done by using
the assumption that f is independent of the spacetime. Thus, axion physics motivates further
the use of periodic scalar models in gravity-scalar systems (135). In addition, it was shown in
Ref. [122] that the axion potential flattens out under RG transformations which were taken in the
Local Potential Approximation. It is, however, important to clarify whether the axion potential
flattens out if the RG study is performed beyond the Local Potential Approximation [18].

5.4 Periodic inflationary potential
Another possible application of the higher dimensional periodic, i.e. sine-Gordon type scalar field
theory is inflationary cosmology [18, 19, 20]. The standard model of cosmology explains the expo-
nentially fast expansion [123, 124, 125] of the early Universe, and describes the observed accelerated
expansion of the Universe at present [126, 127].

As a first step, let me discuss the latter case, i.e., the accelerated expansion of the Universe
at present. While, in ordinary particle physics, a constant, field-independent term of the potential
carries no physical meaning, it has great importance in the case of gravity as it was shown in (130).
For example, in order to describe the observed accelerated expansion of the Universe at present a
possible solution is the inclusion of a constant term into the Einstein-Hilbert action (130). In this
case Einstein’s equation reads as (in the absence of matter),

Gµν = Rµν − 1
2Rgµν = −Λgµν (146)

where R is the scalar curvature and Λ is the cosmological constant which is assumed to be related
to dark energy [128, 129, 130, 131, 132] and is expected to cause the accelerated expansion of the
universe observed today. Indeed, one can use the Friedmann–Lemaître–Robertson–Walker (FLRW,
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see Ref. [133, 134, 135, 136, 137]) metric (in our units, the speed of light is c ≡ 1 and ~ ≡ 1),

gµν = diag(−1, a2, a2, a2), a = a(t), gµν = diag(−1, a−2, a−2, a−2), (147)

where the scale factor a(t) of the expanding homogeneous and isotropic Universe can be calculated
which results in an exponentially fast expansion. Indeed, substituting the FLRW metric into the
Einstein equation (146) and assuming a flat Universe, one finds the Friedmann equation which
results in an exponentially fast expansion(

ȧ

a

)2
− Λ

3 = 0 =⇒ a(t) ∼ exp(
√

Λ/3 t). (148)

Exponential expansion of the early universe can be explained by cosmic inflation, a theory which
is developed to explain major issues such as the origin of the large-scale structure, the flatness of
the universe, the horizon problem, the absence of magnetic monopoles and in general properties
of Cosmic Microwave Background Radiation (CMBR) [123]. A very comprehensively studied work
hypothesis is that a hypothetical scalar field, i.e., the inflaton particle, is responsible for inflation
which is caused by the slow-roll motion starting from a metastable false vacuum towards the
real vacuum [125]. Indeed, the key observation is that scalar fields can mimic the equation of
state for negative pressure, thus they represent an excellent model for inflation. Various types of
scalar potentials have been proposed in inflationary cosmology. Let me consider the simplest of
these scenarios which is provided by the slow-roll single-field models with minimal kinetic terms
[137, 138, 139] which is the action (135) discussed for gravity-scalar systems,

S =
∫
d4x

√
−g
[

1
16πGR+ Lφ

]
, Lφ = −1

2g
µν∂µφ∂νφ− V (φ) , (149)

and I assume an expanding homogeneous and isotropic Universe (with flat curvature), so, one can
rely on the FLRW metric,

√
−g =

√
− det(gµν) = a3 and the time-dependence of the scalar factor

a(t) is given by the Einstein equation

Gµν = Rµν − 1
2Rgµν = 8πGTµν (150)

where the stress energy tensor is calculated from the matter (scalar) fields and reads as

Tµν = − 2√
−g

δ(
√

−gLφ)
δgµν

= ∂µφ∂νφ+ gµνLφ,

Tµ
ν = diag(−ρ, p, p, p), Tµν = gµαT

α
ν = diag(ρ, a2p, a2p, a2p) ,

T00 = ρ = 1
2 φ̇

2 + 1
2

1
a2 (∇φ)2 + V, Tii = a2p = a2

(
1
2 φ̇

2 − 1
6

1
a2 (∇φ)2 − V

)
(151)

Substituting the FLRW metric and the stress-energy tensor into the Einstein equations gives only
two independent equations, the Friedmann and the Raychaudhuri equations,

H2 =
(
ȧ

a

)2
= 8πGρ

3 (Friedman), ä

a
= −8πG

6 (ρ+ 3p) (Raychaudhuri) (152)

where the Hubble constant H is introduced. Now I turn to the discussion of the solutions of the
Friedmann equation (in case of flat curvature). Let’s assume that ρ ∼ a−n. This is equivalent
with an assumption that the equation of state is p = ωρ. Let me first discuss the case of negative
pressure, p = −ρ which results in exponential expansion

n = 0, ω = −1 =⇒ ρ ∼ a0 = const =⇒

H2 = 8πG
3 ρ = const =⇒ ȧ = Ha =⇒ a ∼ exp (Ht). (153)

Although the cosmological constant and the special equation of state (ρ = −p) both results in
the same rate of expansion but the former cannot be used for inflation since it has to end. Thus,
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one has to rely on the special equation of state (ρ = −p) which can be obtained for the scalar
field under some conditions. If these conditions are fulfilled one finds exponential inflation. If these
conditions are not fulfilled the inflation is over.

Let me discuss these requirements. The first observation is that over inflation the field can be
considered to be homogeneous (∇φ/a = 0). Than the relation between the density and pressure
reads

ω = p

ρ
=

1
2 φ̇

2 − V
1
2 φ̇

2 + V
if 1

2 φ̇
2 � V =⇒ ω = −1. (154)

There is another condition which is coming from the "slow roll" inflation which assures a prolonged
inflation

|φ̈| � |3Hφ̇|. (155)

These condition can be written as

ε ≡ 1
2

1
8πG

V ′2

V 2 � 1, η ≡ 1
8πG

V ′′

V
� 1 (156)

Thus, if ε(φf ) ≈ 1 or η(φf ) ≈ 1 then the inflation ends. Further constraints coming from experi-
mental data can be drawn by using the formal solution of the Friedman equation and the so-called
e-fold number which has to be in the range N = 50 − 60,

a(t) = exp
{∫ t

t0

dt′H(t′)
}
, N = lna(tf )

a(ti)
= −8πG

∫ φf

φi

dφ
V

V ′

which is needed in order to let the Universe to expand by a factor of at least 1026 ≈ e60 during
inflation.

At this stage it is useful to overview very briefly the inflationary mechanism. The original idea of
Alan Guth for inflation was based on the existence of a relatively stable false vacuum which can be
long-lived or metastable (see Ref. [123]). The system moves to the true vacuum through a bubble
nucleation caused by instanton effects via quantum tunneling; this induces inflation. However,
this old scenario for inflation (see Fig. 4) suffers from problems. For example, it is required to

ϕ

V

ϕ

Figure 4: Inflation from false vacuum (left) and by slow-roll (right) where oscillations of the
field produce reheating

heat up the Universe after the inflationary period and it is not clear how to define a proper
reheating mechanism. In order to produce the present observable Universe, exponential expansion
should continue long enough to eliminate magnetic monopoles, but then bubbles become very rare
and in addition, they never merge. This generates two major problems: (i) the decay process is
never complete, (ii) radiation cannot be generated by collisions between bubble walls (which was
the proposed mechanism for radiation). A possible solution for problems of bubble nucleations is
provided by a scenario proposed in Ref. [125], where the ground state starts from a metastable
position and rolls down very slowly to the true minimum (see Fig. 4). Thus, inflation is thought
to be caused by a scalar field rolling down a potential energy hill instead of tunneling out of a
false vacuum. The inflation is over when the hill becomes steeper than its height. Although this,
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in particular, solves the problem of formulating a “graceful exit” from the inflation period but
leaves the initial condition problem to be addressed. It is a natural question to ask whether the
RG evolution of the potential (which can be identified as the time evolution of the Universe) can
solve the initial value problem [20].

Various types of inflationary potentials can be considered and the goal is always to determine ε, η
and N . In order to compare them by measured data one has to study the temperature fluctuations
of the cosmic microwave background radiation (CMBR). These fluctuations are the relic of the
physical properties of the universe at the inflationary period after which the universe has to be
reheated and the quantum fluctuations (of the scalar field and of the metric) should be the seeds
for structure formation. Fluctuations can be described by the power spectrum Pg(k) which has the
following definition for a generic quantity g(x, t)

g(x, t) =
∫

d3k

(2π)3/2 e
ikxgk(t), 〈g∗

k1
, gk2〉 = δ(3)(k1 − k2)2π2

k3 Pg(k), 〈g2(x, t)〉 =
∫
dk

k
Pg(k)

(157)
which finds application to describe scalar (Ps) and tensor (PT ) fluctuations. The power spectra
(both for the scalar and the tensor cases) is expanded around a chosen pivot scale (k?),

P (k)
P0

= a0 + a1 ln
(
k

k?

)
+ a2

2 ln2
(
k

k?

)
+ ... (158)

where the coefficients can be expressed by the slow-roll parameters, e.g., for the scalar case a(s)
1 =

−2ε1 − ε2 where ε0 = Hini/H and εn+1 = d ln |εn|/dN which gives ε1 = ε, ε2 = 4ε− 2η and results
in a

(s)
1 = 2η − 6ε. The scale dependence of the power spectra Ps ∝ kns−1 and PT ∝ knT −1 can

be described by spectral indices ns and nT . Thus one can define the spectral index ns for scalar
fluctuations and in addition the ratio r of tensor and scalar fluctuations in the following way

ns − 1 = dlnPs

dlnk |k=k? = a
(s)
1 , ns − 1 ≈ 2η − 6ε , r ≡ PT

Ps
, r ≈ 16ε (159)

where Ps is the scalar and PT is the tensor power spectrum. The spectral index (ns) and the ratio
(r) can be related to each other and can be determined by experimental data.

5.4.1 Quadratic Inflation

The simplest example for inflationary potential is the so-called Chaotic (monomial) or in other
words, the quadratic, large field inflationary (LFI) scalar potential, V (φ) = 1

2m
2φ2. Its most

general form is
V = λm4−α

p φα, mp = 1√
8πG

≈ 2.4 × 1018GeV (160)

where mp is the (reduced) Planck mass. Calculating ε, η and N parameters one finds

ε =1
2m

2
p

(
V ′

V

)2
= 1

2m
2
p

(
λαm4−α

p φα−1

λm4−α
p φα

)2

=
m2

p

2
α2

φ2 (161)

η =m2
p

V ′′

V
= m2

p

(
λα(α− 1)m4−α

p φα−2

λm4−α
p φα

)
= m2

p

α(α− 1)
φ2 (162)

N = − 1
m2

p

∫ φf

φi

dφ
V

V ′ = − 1
m2

p

∫ φf

φi

dφ
φ

α
= 1

2αm2
p

(φ2
i − φ2

f ) = 50 − 60 (163)

Inflation ends when ε ≈ 1 or η ≈ 1 therefore one has to choose

φf = αmp =⇒ ε = 1
2 η = α− 1

α
, φi =

√
2αm2

pN + φ2
f ≈

√
2αNmp (164)

where at the last approximation we used that φi � φf . Let me determine the spectral index and
the ratio for the quadratic case (α = 2) where φi =

√
4Nmp,

ns − 1 ≈ 2η(φi) − 6ε(φi) =
4m2

p

φ2
i

−
12m2

p

φ2
i

= − 2
N
, r ≈

32m2
p

φ2
i

= 8
N

=⇒ (ns − 1) + r

4 = 0

(165)
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where the latter relation is independent of N, valid up to order (1/N) and can be compared to
measured data.

5.4.2 Natural Inflation

I will show that recent Planck data excludes the LFI or more general, the monomial inflationary
potentials which have a single minimum. One can add more minima through higher-order powers
of the form φ2n. In this logic, one can explore a periodic potential of a form having infinitely many
minima, which is known as the Natural Inflation (NI) or pseudo-Nambu-Goldstone boson model,
i.e., the sine-Gordon scalar theory,

VNI(φ) = u [1 − cos(βφ)] or VNI(φ) = u [cos(βφ) − 1] (166)

where u, β are dimensionful parameters. It has also been proposed and studied as a viable in-
flationary scenario [140, 141, 142] and to construct a convenient scalar sector by incorporating
the periodic scalar axion potential too [18]. I will show that the NI potential is able to produce
agreement with PLANCK results [143, 144, 145] on the thermal fluctuations of the CMBR with a
better agreement than the simplest LFI potential.

In d = 4 dimensions the scalar field carries a dimension, φ = k(d−2)/2φ̃ where φ̃ is dimensionless
and k is an arbitrarily chosen momentum scale convenient to take at the planck mass k = mp.
Thus, the corresponding dimensionless parameters are β = m−1

p β̃ and u = m4
pũ. Calculating ε, η

and N parameters one finds [18]

ε =
m2

p

2

(
V ′

V

)2
=
m2

p

2

(
uβ sin(βφ)

u [1 − cos(βφ)]

)2
=
m2

pβ
2

2
sin2(βφ)

[1 − cos(βφ)]2 = β̃2

2 cot2
(
β̃φ̃

2

)
, (167)

η =m2
p

V ′′

V
= m2

p

uβ2 cos(βφ)
u [1 − cos(βφ)] = m2

pβ
2 cos(βφ)

1 − cos(βφ) = β̃2 cos(β̃φ̃)
1 − cos(β̃φ̃)

= β̃2

2
cos(β̃φ̃)

sin2
(

β̃φ̃
2

) , (168)

N = − 1
m2

p

∫ φf

φi

dφ
V

V ′ = −
∫ φf

φi

dφ
u [1 − cos(βφ)]
m2

puβ sin(βφ) =
∫ β̃φ̃i

β̃φ̃f

d(β̃φ̃) 1
β̃2

1 − cos(β̃φ̃)
sin(β̃φ̃)

= − 2
β̃2

log cos
(
β̃φ̃

2

) ∣∣∣φ̃i

φ̃f

(169)

which imply the relations

ns − 1 ≈ β̃2
[
1 − 2 sin−2

(
β̃φ̃

2

)]
, r ≈ 8β̃2 cot2

(
β̃φ̃

2

)
=⇒ (ns − 1) + r

4 = −β̃2 (170)

where the last equation can be compared to the that of the quadratic potential (165). Precise
measurements on ns and r can be used to distinguish between the two scenarios or in other words
to put constraints on the dimensionless frequency β̃, see Fig. 5 taken from [19]. Indeed, the figure
clearly shows that the quadratic inflationary potential is excluded and there is an optimal choice
for the frequency, β̃ = 0.15, of the periodic inflationary model which gives the best agreement with
the observed Planck data.

5.4.3 Massive Natural Inflation

Let me extend the Natural Inflation, i.e., the periodic (SG type) potential in such a way that:
(i) the potential has definite lower bounds, (ii) the model has Z2 symmetry, and (iii) the model
has more than one non-degenerate minima, separated in energy by a tunable amount [19]. The
construction of the potential is based on the MSG model where a term sinusoidal in the field is
added to the standard quadratic mass term; this potential has already received significant attention
in statistical field theory [4, 9, 22]. I denote my proposal as the Massive Natural Inflation (MNI)
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Figure 5: CMBR parameters, i.e., scalar tilt ns and tensor-to-scalar ratio r derived (i) for
the Large Field Inflation (i.e., quadratic type) model (165) (black line segment) (ii) for the
Natural Inflation (i.e. SG type) model (166) for various frequencies (orange line segments)
and (iii) for the Massive Natural Inflation (i.e., MSG type) model (171) with fixed ratio
ũ/M̃2 ∼ 1/(0.22)2 and fixed frequency β̃ ∼ 0.3 (purple line segment). The starting and end
points of each line segments are calculated for N = 50 and N = 60, respectively. Predictions
(line segments) are compared to results of the Planck mission [143, 144, 145] where dark
color regions stand for 95% CL and light color regions correspond to 68% CL. The figure
clearly shows that the quadratic inflationary potential – which gives the same prediction
as the first, black line segment of the SG model – is excluded, the SG type one is almost
excluded but the predictions of the MSG type inflationary model are in perfect agreement
with the Planck data.

model and I consider the following variants of the model [19],

VMNI1(φ) = 1
2M

2φ2 + u [1 − cos(βφ)] , (171)

VMNI2(φ) = 1
2M

2φ2 + u [cos(βφ) − 1] , (172)

VMNI3(φ) = 1
2M

2φ2 + u [cos(βφ) − 1] − V0 , (173)

where the second version differs from the first only by the sign of the u. The third version has an
additional constant V0 to keep the minima of the potential at zero. In general, the three variants
of the MNI model require different slow-roll analysis. Indeed, an essential difference between the
MSG variants (171) and (172) is the position of the global minima. For the model (171), the
potential has a global minimum at zero, while for (172), it has two degenerate global minima, and
a local maximum at zero. Therefore, the position of the expectation value of the field (φf ) after
the inflation, and other results of the slow-roll analysis, are also different for the two variants.

I here focus on the first variant of the MNI model, given in Eq. (171). Using dimensionless
quantities (β̃, ũ, φ̃) where the dimension is taken off by the Planck mass, i.e., k = mp, the
parameters ε, η and N can be expressed as follows for the first version of the MNI model [19],

ε = 1
2

(
ũ

M̃2 β̃ sin(β̃φ̃) + φ̃
ũ

M̃2

[
1 − cos(β̃φ̃)

]
+ 1

2 φ̃
2

)2

,

η =
ũ

M̃2 β̃
2 cos(β̃φ̃) + 1

ũ
M̃2

[
1 − cos(β̃φ̃)

]
+ 1

2 φ̃
2
,

N = −
∫ φ̃f

φ̃i

dφ̃
ũ

M̃2

[
1 − cos(β̃φ̃)

]
+ 1

2 φ̃
2

ũ
M̃2 β̃ sin(β̃φ̃) + φ̃

. (174)
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One finds similar results for the other two variants of the MNI model. These quantities only depend
on the equally dimensionless ratio ũ/M̃2 and the dimensionless frequency β̃. If the mass term is
negligible compared to the periodic one, then one obtains back the natural inflation (i.e., sine-
Gordon) model. In the limit of a negligible periodic term (compared to the mass), one obtains the
quadratic monomial inflationary model.

Let me first compare results obtained from NI (SG type) and MNI (MSG type) models. As
shown in Fig. 5, the MNI model provides much more reliable results. Moreover, the ratio ũ/M̃2

and the frequency β̃ can be fixed by choosing the best fit to observations (see Fig. 5).
For small values of the frequency, numerical results give ũ/M̃2 ≈ 1/(0.22)2, β̃ ≈ 0.3 and

r ≈ 0.05 so, in this case, the scale of inflation, kinf = 1.5 × 1016 GeV, is around the GUT scale.
For large values of the frequency, one can find agreement with the Planck data but in this case

the tensor-to-scalar ratio r is very small, so, the scale of inflation is smaller than the GUT scale.
For example, for β̃ ∼ 30, one obtains kinf = 2.5 × 1013 GeV. In the following I do not use these
"large frequency slow-roll" results except in Section IX where the visual representation of the so
called "RG running induced inflation" is done for the MSG model with β̃ ∼ 30.

The potential is determined by the slow-roll conditions up to an overall multiplicative factor,
but this factor is fixed by the absolute normalisation. According to Eq. (23) of Ref. [139] and
Eq. (218) of Ref. [137], the normalisation condition is

V (φi) ≡ r

0.01(1016 GeV)4 . (175)

The tensor-to-scalar ratio r is given by the slow-roll parameters which are fixed at the scale of
inflation (kinf), according to remarks preceding Eq. (218) of Ref. [137]. Thus, the scale of inflation
is given by the following relation

V (φi) ≡ k4
inf , kinf =

( r

0.01

) 1
4 1016 GeV, (176)

which entirely fixes the inflationary potential including the constant term. Therefore, the field-
independent term is fixed at the scale of inflation, too. Important to note that if the tensor-to-scalar
ratio is small but not too small (r ≈ 0.01) the scale of inflation can be commensurate with the
GUT scale, i.e., kinf ∼ kGUT = 2 × 1016GeV.

The results of this subsection have several important consequences. It was shown that the
simplest possible quadratic inflationary model, i.e., the LFI potential (165) is excluded by Planck
data as a viable scenario for inflation. It was also shown that SG model, i.e., the NI potential
(166) gives a moderately good agreement with the Planck data if the frequency is chosen to be
small, i.e., β̃ = 0.15. It turned out, that the MSG model, more precisely, the MNI potential (171)
and their variants, (172) and (173) serve as excellent inflationary potentials. The slow-roll analysis
fixes the ratio ũ/M̃2 ≈ 1/(0.22)2 and the frequency β̃ ≈ 0.3. The potential is determined by the
slow-roll conditions up to an overall multiplicative factor, but this factor is fixed by the absolute
normalisation, (176). Thus, the theoretical predictions obtained from the MSG model are in an
excellent agreement with observations and one can use the results of the slow-roll study in order
to fix all parameters of the MSG model at the scale of inflation. Therefore, one can argue that the
scalar sector of the gravity-scalar system (135) has to be chosen to be equal to an SG or which is
even better, an MSG type model because then the scalar part can be used to initiate inflation. In
addition, as I argued, SG and MSG type models can also be used as effective branon potentials,
so, the hypothetical branon particle can be identified with the inflaton. Both are represented by
scalar fields. The recent detection of the Higgs boson renewed research activity where the inflaton is
identified with the Higgs field. Thus, it is a natural question to ask whether the MSG type branon-
inflaton model can serve as an UV completion of the usual quartic Higgs potential. If the answer is
affirmative, it is also important to clarify whether one can use RG methods (either perturbative or
non-perturbative ones) to connect the parameters of the same MSG type theory at various energy
scales [19]. Thus, as a final step of this section, I will briefly overview possible application of the
SG and MSG type models for Higgs physics.
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5.5 Periodic Higgs potential
There is a strong interest to find a link between the scalar fields of the Higgs and inflationary
physics [146, 147, 148, 149, 150, 151, 152, 153, 154, 156, 155]. The Standard Model (SM) Higgs
field is an SU(2) complex scalar doublet with four real components, and the underlying symmetry
of the electroweak sector is SU(2)L × U(1)Y , thus, the SM Higgs Lagrangian reads as

L = (Dµφ)?(Dµφ) − V (φ) − 1
2Tr (FµνF

µν) (177)

with
V = µ2φ?φ+ λ(φ?φ)2 (178)

and
Dµ = ∂µ + igT · Wµ + ig′yjBµ, (179)

where the vacuum expectation of the Higgs field is either at zero field for µ2 > 0 or at
√
φ?φ =√

−µ2/(2λ) = v/
√

2 for µ2 < 0 with v = 246 GeV known from low-energy experiments. The field
can be parametrized around its ground state, where the unitary phase can be dropped by choosing
an appropriate gauge. As a consequence of the Brout-Englert-Higgs mechanism [157, 158], three
degrees of freedom of the Higgs scalar field (out of the four) mix with weak gauge bosons. The
remaining degree of freedom becomes the Higgs boson discovered at CERN’s Large Hadron Collider
[159, 160]. The complete Lagrangian for the Higgs sector of the SM with the single real scalar field
h reads

L = 1
2∂µh∂

µh− 1
2M

2
hh

2 − M2
h

2v h
3 − M2

h

8v2 h
4 +

(
M2

WW+
µ W

− µ + 1
2M

2
ZZµZ

µ

)(
1 + 2h

v
+ h2

v2

)
,

(180)

where Mh =
√

−2µ2 =
√

2λv2. The measured value for the Higgs mass Mh = 125.6 GeV implies
λ = 0.13. Incidentally, I note that the latter value is close to the predicted value based on an
assumption of the absence of new physics between the Fermi and Planck scales and the asymptotic
safety of gravity [161].

Extrapolating the SM of particle physics up to very high energies leads to an interpretation
of the Higgs boson as the inflaton. Therefore, the most “economical” choice would be to use the
same scalar field for Higgs and inflationary physics. The action can be defined either in the Jordan
frame in which some function of the scalar field multiplies the Ricci scalar R, or in the Einstein
frame in which the Ricci scalar is not multiplied by a scalar field [162]. To perform the slow-roll
study, the action is usually rewritten in the Einstein frame and it takes the form for the case of
minimal coupling to gravity,

S =
∫
d4x

√
−g

[
m2

pR

2 − 1
2g

µν ∂µφ∂νφ− V (φ)
]
, V ≡ λ

4
(
φ2 − v2)2 = M2

h

8v2

(
φ2 − v2)2

, (181)

where the metric tensor being denoted by gµν ,
√

−g ≡
√

−det g while φ ≡ h and V is the quartic-
type double-well scalar potential of (180),

V (φ) = λ

4 v
4 − 1

2λv
2φ2 + λ

4φ
4 . (182)

where the field variable is shifted as h → h+ v.
Another proposal to build up the scalar sector is the Higgs inflation from false vacuum with

minimal coupling to gravity where the SM Higgs potential is extended and assumed to develop
a second (or more) minimum [146, 147, 148, 149]. The difficulty is to achieve an exit from the
inflationary phase: one may introduce new fields, but then the attractive minimality of the model
would be lost.

Another possible drawback of the Higgs-inflaton potential to its applicability is that the mea-
sured Higgs mass is close to the lower limit, 126 GeV, ensuring absolute vacuum stability within the
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SM [163]. However, it was also shown [164] that traditional Higgs inflation can be possible within a
minimalistic framework even if the SM vacuum is not completely stable. Various polynomial Higgs
potentials have been studied by functional RG [165, 166] and reported no stability problems.

Let me try to consider the previously introduced MNI (Massive Natural Inflation) model which
is an MSG type scalar theory and I used three variants, (171), (172) and (173). All versions of the
MNI model can be written in a general form

VMNI(φ) = V0 + 1
2M

2φ2 + u cos(βφ), (183)

which contains two adjustable parameters (the ratio u/M2 and the frequency β) and a normaliza-
tion (the field-independent terms has been fixed by me). The Taylor expansion of the MNI model
(183) recovers the SM Higgs potential (182) up to quartic terms and the parameters can be related
[19],

VMNI ≈ V0 + 1
2(M2 − uβ2)φ2 + 1

24uβ
4φ4 + O(φ6) , (184)

so that
λv2 ≡ (uβ2 −M2), λ ≡ 1

6uβ
4. (185)

Thus the MNI model (183) can be considered as an UV extension of the SM Higgs potential.
The measurable quantities are related to the parameters of the model according to the following
relations [19],

Mh ≡ M

√
2
(
uβ2

M2 − 1
)
, v ≡ 1

β

√
6(uβ2/M2 − 1)

uβ2/M2 . (186)

Their low-energy/IR values are given at the electroweak scale by

Mh,IR = 125 GeV, vIR = 245 GeV , (187)

at the scale kIR ∼ 250GeV.
Let me note that the Higgs mass and vacuum expectation value (VeV) defined by (186) can be

calculated also at the cosmological scales. For example, the slow-roll study produces values for the
Higgs mass which serves as a high-energy/UV scale. In the previous subsection I discussed that
for small frequencies (small β) one finds the following slow-roll results for the MNI potential, [19],

ũβ̃2

M̃2
≈ 0.32

0.222 > 1 . (188)

which, together with the normalization condition leads to the following numerical values for the
dimensionless and dimensionful parameters,

M̃ ≈ 5.92 × 10−6 ⇒ M ≈ 1.42 × 1013 GeV , (189a)
ũ ≈ 7.24 × 10−10 ⇒ u ≈ 2.4 × 1064 GeV4 , (189b)
β̃ ≈ 0.3 ⇒ β ≈ 1.25 × 10−19 GeV−1 . (189c)

which results in

Mh,UV ∼ 1015 GeV (190a)

at the scale kUV ∼ 1015GeV which needs to be scaled down (by orders of magnitude) to its measured
value at the electroweak scale (187). In this lecture note I will show how to do this in the framework
of the FRG method.
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6 Functional RG – Wegner-Houghton and Polchinski equa-
tions

To describe an arbitrary physical system at a certain observational (i.e., energy) scale one has to
find the relevant (important) interactions, and degrees of freedom of the system at this energy. If we
change the scale, new interactions could become relevant. This is a consequence of the fact, that the
description of a physical system strongly depends on the observational scale. For example, at the
macroscopic length scale we can use the Newton equation to evaluate the motion of a macroscopic
physical system. At the microscopic length scale, e.g. at the atomic one, the atoms inside the
system are the relevant degrees of freedom, and new interactions become important therefore one
has to use e.g. the Schrödinger equation in order to describe the components of that system. It is
important, that usually the relevant interactions and degrees of freedom of a system at a certain
energy scale are relatively independent of what is the behavior of the system at lower or at higher
energy scales. Therefore, instead of using a kind of theory which contains all the interactions that
could be relevant in any length scale, one can use a chain of effective theories valid in different
energy domains. Generally, during the renormalization one relates a low-energy effective theory
to a model defined at the high-energy scale. In order to obtain the low-energy effective theory, a
possible method is the usage of the renormalization group (RG) transformations, which relate the
effective theories at different energy scales.

6.1 Scale invariance and the Wilson-Kadanoff blocking
Since the cornerstone of the RG method is scale invariance, let me first discuss it in details. In the
thermodynamic limit, the statistical systems are determined by their thermodynamic potential Φ.
The absolute minima of Φ corresponds to the state of equilibrium of the system. The thermody-
namic potential is a continuous function of the parameters of the system (e.g. Φ = Φ(T, p) with
the temperature T , the pressure p). Therefore, if Φ1 and Φ2 are the thermodynamic potentials of
the two different phases of the model, the following relation holds

Φ1(T, p) = Φ2(T, p). (191)

This implies that the curve p = p(T ) on the (p – T) plane separates the two phases of the
model. Crossing this separator p(T ) the system undergoes a phase transition. Due to the theorem
of Ehrenfest, the phase transitions can be classified according to the partial derivatives of the
thermodynamic potential Φ. The phase transition is of the first, second, third etc. order if the first,
second, third etc, partial derivatives of Φ are discontinuous, respectively.

It is argued that in case of second order phase transitions various physical quantities (e.g.
heat capacity, susceptibility etc.) have an asymptotic scaling behavior near the phase transition
point Tc. They are power-law functions of the reduced temperature t = (T − Tc)/Tc and the
external field h. This is the critical behavior. The correlation function G(r), the correlation length
ξ and the order parameter ∆ have also critical scaling behavior near Tc. This asymptotic scaling
behavior can be found in physically different systems. The exponents of the power-law functions
(the critical exponents) can be different in various models but there are relations between these
exponents (scaling laws) which are found to be universal. One can classify the models into different
universality classes according to their critical exponents. Systems belonging to the same universality
class, have the same critical exponents.

What is the physical reason for the critical behavior? The answer is scale invariance. The
systems at their phase transition points are scale invariant. Changing the observational scale (e.g.
changing the lattice site a → a′), the functional form of the thermodynamic potential of the model
remains unchanged:

Φ′(t′, h′) = Φ(t′, h′), (192)

where Φ and Φ′ are the thermodynamic potentials of the original and the rescaled systems, re-
spectively. Both of them depends on the rescaled reduced temperature t′ and the rescaled external
field h′. Therefore, the functional form of the partition function of the model remains unchanged.
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One can find the analogy to QFT where the generating functional is invariant under changing the
observational scale (moving the momentum cut-off). Due to scale invariance (192), the thermo-
dynamic potential is a homogeneous function of the reduced temperature t and the external field
h,

Φ(λatt, λahh) = λΦ(t, h), (193)

where at, ah and λ are given. This relation can be understood by the Wilson-Kadanoff blocking
construction [167]. Let me consider a classical spin system on the lattice. In one blocking step, the
lattice size of the original system is rescaled a′ = b a, see Fig. 6.

S S

S S
S’ S’

S’ S’

S S

S S

S S S S

S S S S

lattice space:  a lattice space:  2a

Figure 6: Schematic picture of the Kadanoff-Wilson blocking [167]. In one blocking step, the
lattice size of the original system is rescaled a′ = b a where in the figure b = 2 has been used.

In the blocked system, one can define a block of spins with the new lattice size a′, which contains
bd lattice points of the original system. In every block the spins of the original system are replaced
by the ’average’ of the spins. Every physical quantity is rescaled according to the new lattice size.
Since the thermodynamic potential is an extensive quantity, Φ′ of one block, is equal to the original
Φ multiplied with the number of the lattice points in the block,

Φ′(t′, h′) = bd Φ(t, h). (194)

Due to scale invariance close to the scale invariant fixed point, the following relations hold for the
blocked reduced temperature and the blocked external field

t′ = batdt, h′ = bahdh. (195)

Inserting Eq. (195) into the (194), the homogenity (193) of the thermodynamic potential is obtained
(with λ = bd).

The homogenity of the thermodynamic potential (193) implies critical scaling properties. The
critical exponents can be derived from the relation (193) by derivation with respect to the external
field or the reduced temperature. For example, the critical exponent δ is obtained in a following
way. The equation (193) is differentiated with respect to the external field h

∂Φ(λatt, λahh)
∂h

= λah∆(λatt, λahh) = λ∆(t, h), (196)

where ∆(t, h) ≡ ∂Φ(t, h)/∂h is the order parameter of the phase transition. Since λ is arbitrary,
it can be defined via 1 = λahh. Introducing λ = h−1/ah into the equation (196) and setting t = 0,
the equation reduces to

∆(0, 1)h(1−ah)/ah = ∆(0, h) (197)

where ∆(0, 1) is constant. The critical exponent δ is obtained from (197) δ = ah/(1 − ah). In this
manner, other critical exponents can be derived from the relation (193) which explains the relations
between the critical exponents, since they can depend on at, and ah only. Therefore, I conclude
the discussion of phase transitions with the important statement, that the scale invariance of the
thermodynamic potential implies the critical behavior of the systems near their phase transition
point.
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6.2 RG transformation
During the application of the RG transformations, the degrees of freedom which are responsible
for the high-energy (microscopic) behavior of the system are integrated out and their impact are
taken into account by influencing the scaling of the parameters (coupling constants) of the system.

Let me first consider a schematic interpretation of the RG transformation. A system near the
phase transition point is scale invariant, thus in the framework of Kadanoff blocking construction
[167], its partition function is assumed to be invariant under a blocking step

Z ≡ Tr exp[−βJa

∑
SiSj ] = Tr′ exp[−βJ2a

∑
S′

iS
′
j ]

where β ≡ 1/(kbT ) is the inverse temperature. What happens if the system is far from the transition
point or if it does not undergo any phase transitions? In this case new interaction terms are
generated by the blocking step and the functional form of the partition function is not preserved

Ha = Ja

∑
SiSj → H2a = J2a

∑
S′

iS
′
j +G2a

∑
S′

iS
′
jS

′
k.

The solution for this problem is Wilson’s idea [168]: let us start with a general ansatz which contains
all the interaction terms generated by the blocking transformations

Ha = Ja

∑
SiSj +Ga

∑
SiSjSk, Ga = 0

then the functional form is preserved

Ha = Ja

∑
SiSj +Ga

∑
SiSjSk

H2a = J2a

∑
S′

iS
′
j +G2a

∑
S′

iS
′
jS

′
k

H3a = J3a

∑
S′′

i S
′′
j +G3a

∑
S′′

i S
′′
j S

′′
k

and one can read off RG flow equations for the couplings

d

da
J(a) = f1(J,G, a), d

da
G(a) = f2(J,G, a).

The solution of the RG flow equations provides us with the scaling of the coupling constants of
the theory [168].

Let me consider a blocking in the momentum space where the scale parameter is a running
momentum cut-off, k ∼ 1/a. The fixed-point of the RG transformation (Rk) is defined as

Rk(H∗) = H∗ (198)

where H∗ is the (strictly speaking dimensionless) fixed-point Hamiltonian of the system. Around
H∗, one can classify the coupling constants of the model in the following way. Using the assumption
that the RG transformation Rk is an analytical function of the coupling constants of the theory,
one can expand the transformation Rk around the fixed-point Hamiltonian H∗. Considering the
action of Rk on the Hamiltonian H = H∗ + εO with ε infinitesimal,

Rk(H∗ + εO) = Rk(H∗) + εLk(O) = H∗ + εLk(O) (199)

the linearized RG transformation Lk is defined around the fixed-point H∗. Then one has to find
the eigenvectors (scaling operators) Oi of the linearized RG transformation Lk,

Lk(Oi) = λi(k)Oi (200)

with the eigenvalues λi(k) depending on the parameter k of the RG transformation (e.g. in case of
differential RG transformation performed in momentum space, k is the momentum cut-off). The
Hamiltonian of the model can be written

H = H∗ +
∑

i

gi,0Oi (201)
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with the coupling constants gi. The eigenvalues λi(k) are the power-law function of the scale
parameter of the RG transformation,

λi(k) = kyi . (202)

Then performing the RG transformation on the Hamiltonian of the system,

Rk(H(gi,0)) = Rk(H∗ +
∑

i

gi,0Oi) = H∗ +
∑

i

gi,0k
yiOi, (203)

the RG equation for the coupling constants gi is obtained:

gi(k) = gi,0 k
yi . (204)

Around the fixed point, the exponents yi determine the scaling of the coupling constants. There are
relevant, irrelevant or marginal scaling operators (coupling constants) corresponding to negative,
positive or zero exponent of the eigenvalues, see Fig. 7.

g g
irrelevant

0 0 kk

relevant

Figure 7: Changing the scale parameter of the RG transformation (e.g. decreasing the mo-
mentum scale k) around the fixed point, the relevant (irrelevant) coupling constant is in-
creasing (decreasing).

It is possible to perform the renormalization group transformations in the coordinate or equiva-
lently in the momentum space. In this chapter I discuss the RG transformations in the momentum
space based on Wilson’s RG approach, where the scale parameter of the RG transformation is the
moving momentum cut-off k. During the differential RG transformation the momentum cut-off k

is decreased with infinitesimal steps from the UV cut-off Λ towards k = 0 and the high-frequency
quantum fluctuations of the field (φp, p > k) are integrated out in every infinitesimal steps. The in-
finitesimal changes of the cut-off k provide infinitesimal changes of the action, that is, infinitesimal
changes of the coupling constants.

Changing the scale parameter, which implies moving the momentum cut-off k to the IR (low-
energy) limit, the relevant coupling constants increase, the irrelevant coupling constants decrease.
Since the coupling of the irrelevant scaling operators go to zero in the IR limit, they do not play
any role in the low-energy behavior of the theory. Therefore, theories which are originally defined
at an UV scale in a different way, but differ from each other only in irrelevant interactions, should
have the same low-energy effective theory. This is called universality. The irrelevant interaction
terms do not influence the critical behavior of the system. Therefore, theories belonging to the
same universality class have the same critical exponents, they differs from each other only up to
irrelevant terms.

In the framework of the usual, perturbative renormalization the theories which contain irrele-
vant interactions cannot be considered consistently, since the irrelevant coupling constants increase
towards the high energies, and the corresponding vertices V have positive canonical dimensions
δ(V ) > 0, so that the UV momentum cut-off cannot be removed to infinity. In this classification the
irrelevant interactions corresponds to non-renormalizable theories. On the other hand, the irrele-
vant interactions are unimportant, because due to universality they do not influence the low-energy
effective theory of the model. Therefore, the view was held for a long time that renormalizable the-
ories describe the real physical world containing only relevant and marginal interactions.

Universality may be lost, however if there is more than one fixed point in the theory [169]. In
this case, around every different fixed points one may find different classifications of the coupling
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constants into relevant, irrelevant or marginal coupling constants [169]. It can happen that an
irrelevant interaction at a high energy fixed point becomes relevant at a low energy fixed-point
Fig. 8.

If there is no universality, the irrelevant interactions at the UV fixed-point may become im-
portant at low energy, so one has to use a renormalization method which can follow the scaling of
the irrelevant coupling constants, as well. The RG method has several advantages. (i) It is one of

F2

g

F1

Figure 8: Decreasing the momentum scale k it may happen that the irrelevant coupling
constants near the fixed-point F2 become relevant around another fixed-point F1.

the most important features of the RG method that it can handle models which contain irrelevant
interactions. (ii) The RG method provides a scheme for summing up all the quantum contributions
non-perturbatively. (iii) It has a differential formulation. In the next subsections, I discuss two
possible functional RG methods, the Wegner–Houghton [170] and the Polchinski [171] equations
which are based on Wilson’s RG approach [168] applied in the momentum space.

6.3 Gradient expansion

The functional RG method is applied in momentum space with sharp cut-off to the one-component
scalar field theory, in order to obtain the scale dependence of the couplings. It is generally assumed
that the blocked action Sk[φ] contains only local interactions, and that it can be expanded in the
gradient of the field [172, 173]

Sk[φ] =
∫

ddx

[
Vk(φ) + 1

2Zk(φ) (∂µφ)(∂µφ) + Yk(φ) ((∂µφ)(∂µφ))2 + ...

]
. (205)

where the leading order term of the gradient expansion is called the Local Potential Approximation
(LPA) and the wavefunction renormalization is taken into account beyond LPA. Let us note, LPA’
denotes the case when the field dependence of the wavefunction renormalization is neglected, i.e.,
Zk(φ) = z(k).

6.4 Wegner–Houghton RG equation

In the framework of Wilson’s renormalization group [168] approach the differential RG transfor-
mations are realized via a blocking construction [167], the successive elimination of the degrees of
freedom which lie above the running ultraviolet momentum cut-off k. Consequently, the effective
theory defined with the action Sk[φ] contains quantum fluctuations whose frequencies are smaller
than the momentum cut-off k. The separation of the modes of the field according to their length
scale is not a gauge invariant method, therefore the gauge symmetry is lost during the blocking.
One possible solution for this problem could be the usage of the smooth cut-off, where the higher
frequency modes of the field are suppressed partially, but not eliminated.
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6.4.1 Exact Wegner–Houghton RG equation

The generating functional Z, expressed in terms of the action Sk[φ] defined at the momentum
cut-off k, reads as follows

Z =

 ∏
|q|<k

∫
dΦq

 exp
[
− 1
~
Sk[Φq]

]
. (206)

The action Sk[Φq] depends on the field decomposed in Fourier series, contains modes φq with
momenta less than the moving momentum cut-off q < k. Applying an infinitesimal RG transfor-
mation, the field is expanded in Fourier series and separated into a slow and a fast fluctuating
part, which obey low-frequency and high-frequency Fourier modes, respectively,

Φ(x) = φ(x) + φ̃(x) =
∑

|q|<k−∆k

φqe
iqx +

∑
k−∆k<|q|<k

φ̃qe
iqx. (207)

Then the momentum cut-off k is moved to k− ∆k, and the high-frequency fluctuations of the field
are integrated out in the momentum space. On the one hand, the expression (206) can be rewritten

Z =

 ∏
|q|<k−∆k

∫
dφq

 ∏
k−∆k<|q|<k

∫
dφ̃q

 exp
[
− 1
~
Sk[Φq]

]
. (208)

On the other hand, requiring the invariance of the generating functional Z:

Z =

 ∏
|q|<k−∆k

∫
dφq

 exp
[
− 1
~
Sk−∆k[φq]

]
, (209)

one can read off the transformation for the blocked action when the cut-off is moved from the UV
cut-off k to k − ∆k,

exp
[
− 1
~
Sk−∆k[φ]

]
=
∫

D[φ̃] exp
[
− 1
~
Sk[φ+ φ̃]

]
, (210)

where the field variables φ and φ̃ contain Fourier components with momenta |p| < k − ∆k, and
k − ∆k < |p| < k, respectively. In every infinitesimal step, the path integration in Eq. (210)
is evaluated with the help of the saddle point approximation. There are two cases. The action
has a saddle point either at φ̃ = 0 (any constant saddle point can be transformed to zero by a
constant shift of the field variable), or at φ̃ = φ̃cl 6= 0. In both cases, I keep only the linear and
the quadratic terms, in the Taylor expansion at the saddle point therefore one can perform the
Gaussian integration. The expansion around a general saddle point φ̃cl reads:

Sk[φ+ φ̃cl + φ̃′] = Sk[φ+ φ̃cl] +
∑

k−∆k<|p|<k

Fp φ̃
′
p + 1

2
∑

k−∆k<|p|<k

φ̃′
p Kp,−p φ̃

′
−p + O(φ̃′3) (211)

with the saddle point equations

Fp = δSk[φ+ φ̃cl]
δφp

= 0, Kp,−p = δ2Sk[φ+ φ̃cl]
δφpδφ−p

. (212)

Then one can evaluate the Gaussian integral in (210) and the result is

exp
[
− 1
~
Sk−∆k[φ+ φ̃cl]

]
=
(
detKp,−p[φ+ φ̃cl]

)−1/2 exp
[
− 1
~
Sk[φ+ φ̃cl]

]
. (213)

After taking the logarithm of both sides of (213) and using the identity ln det(K) = Tr ln(K), it
becomes

− 1
~
Sk−∆k[φ+ φ̃cl] = − 1

~
Sk[φ+ φ̃cl] − 1

2Tr ln(Kp,−p[φ+ φ̃cl]) + O(~2). (214)
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If ∆k is infinitesimal, the trace in Eq. (214) can be written as Tr = kd−1∆k(2π)−d
∫

dω where∫
dω is the integral over the solid angle in dimension d. Thus, the second term on the r.h.s. of

(214) is O(∆k) and one can see that the higher-loop contributions neglected in (214) can give
only O(∆k2) contributions for the blocked action. Therefore taking the limit ∆k → 0 the equation
(214) becomes an exact, integro-differential equation for the blocked action, which contains all the
loop contributions. This is called the Wegner–Houghton renormalization group equation [170]

k∂kSk[φ+ φ̃cl] = −kd

2

∫ dω
(2π)d

~ ln(Kp,−p[φ+ φ̃cl]), (215)

where φ̃cl = φ̃cl[φ] as the functional of the background field φ is given by δSk[φ+ φ̃cl]/δφp = 0. If
the saddle point is trivial φ̃cl = 0, then the Wegner–Houghton RG equation [170] reduces to

k∂kSk[φ] = −kd

2 ~
∫ dω

(2π)d
ln
(
δ2Sk[φ]
δφδφ

)
. ⇔ ∂kSk[φ] = −~

2 Tr ln
(
δ2Sk[φ]
δφδφ

)
. (216)

When the saddle point is non-trivial φ̃cl 6= 0, then the inverse propagator Kp,p′ =
δ2Sk[φ+ φ̃cl]/δφpδφ−p has at least one negative eigenvalue. The system becomes unstable against
developing an inhomogeneous classical field configuration φ̃cl, and the equation (216) loses its va-
lidity. In this case, one should expand the action Sk[φ + φ̃] around its true saddle point φ̃cl, and
one arrives at the system of equations (212) and (215). This is, however, of small practical use.
Instead, the non-trivial saddle point can be determined by minimizing the action in Eq. (210)
directly [169, 174]

Sk−∆k[φ] = min
φ̃cl

[
Sk[φ+ φ̃cl]

]
. (217)

For this one has to restrict the search of the minimum to a subspace of functions, e. g. to plane-wave
like saddle points. In order to follow the evaluation of the action one can use the RG equation (216)
until the eigenvalues of Kp,p′ are positive, kc[φ] < k. If k < kc[φ] then one should use the tree-level
blocking relation (217), see [169]. When the saddle point becomes non-trivial, the argument of
the logarithm in equation (216) becomes zero, which determines the critical scale kc implicitly.
The computation of the higher-order quantum corrections is difficult since the propagator is non-
diagonal in momentum space when the saddle point differs from zero.

6.4.2 Wegner–Houghton RG equation and the loop expansion

The solution of equation (216) is the scale dependent blocked action Sk[φ], which tends to the full
quantum effective action Γeff [φ] in the limit k → 0, i.e. Sk→0[φ] = Γeff [φ]. One can read off the
1-loop contribution from (216) using the independent mode approximation where the k-dependence
of the action is ignored [175]

δ2Sk[φ]
δφδφ

⇒ δ2SΛ[φ]
δφδφ

(218)

inside the argument of the logarithm

∂kSk[φ] = −kd−1

2 ~
∫ dω

(2π)d
ln
(
δ2SΛ[φ]
δφδφ

)
(219)

where the action SΛ[φ] is scale-independent. One can compare equation (219) with the perturbative
form of the effective action up to one-loop order, which reads as follows

Γeff = Γ0 + ~Γ1 + ~2Γ2 + O(~3), (220)

with the tree-level action Γ0 = SΛ[φ] and with the 1-loop correction

Γ1 = 1
2

∫
ddp

(2π)d
ln
(
δ2SΛ[φ]
δφδφ

)
(221)
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Integrating out both sides of equation (219) with respect to k between zero and Λ, one finds
Eqs. (220) and (221). In this sense, the Wegner-Houghton RG equation (216) can be understood
as a 1-loop improved RG equation [175].

It is interesting to consider the case when one integrates both sides of equation (219) with
respect to k between k − ∆k and Λ. In this case the result is a one-loop expression at the scale
k − ∆k which can be substituted back into the logarithm of (219) and the momentum integration
can be performed again between k − 2∆k and k − ∆k. The new result is O(~2). Repeating this
procedure and keeping ∆k/k to be a small number it is obvious that infinitely many RG steps
are required to reach k → 0 [169]. Therefore, the exactness of the Wegner-Houghton RG equation
(216) is just the consequence of these infinitely many RG steps required for the IR limit, see [169].

6.4.3 Wegner–Houghton RG equation and the gradient expansion

In the LPA one uses the leading order expression for the action in the gradient expansion (205),

Sk =
∫

ddx

[
1
2 (∂µφ)(∂µφ) + Vk(φ)

]
, (222)

and the Wegner–Houghton equation (216) reduces to a differential equation for the scale dependent
potential Vk(φ0) and (φ(x) = φ0 with φ0 = constant).

k∂kVk(φ0) = −kd~αd ln
(
k2 + ∂2

φ0
Vk(φ0)

k2

)
, (223)

with αd = 1
2 Ωd(2π)−d, and the solid angle Ωd in dimension d. Let us note that the equation (223)

is exact in that sense that it contains all the quantum corrections.
There are dimensionful quantities in equation (223). In order to look for fixed-point solutions

of (223) or to follow the scaling of an arbitrary potential one should remove the trivial scaling of
the dimensionful coupling constants and rewrite equation (223). Therefore, one has to introduce
dimensionless quantities via the following reparametrization

φ̃ = k− d−2
2 φ, x̃µ = kxµ, (224)

with the changes in the derivate of the potential with respect to the field

Vk(φ) = kdṼk(φ̃), ∂2
φVk(φ) = kdk−(d−2)∂2

φ̃
Ṽk(φ̃). (225)

One can rewrite equation (223) for dimensionless quantities(
d− d− 2

2 φ̃0∂φ̃0
+ k∂k

)
Ṽk(φ̃0) = −~αd ln

(
1 + ∂2

φ̃0
Ṽk(φ̃0)

)
. (226)

Notice that in dimension d = 2 the field has no trivial scale dependence, therefore the second term
on the left-hand side of (226) does not appear in the dimensionless equation. it is useful to reduce
the dimensionless equation (226) for dimension d = 2

(2 + k∂k)Ṽk(φ̃0) = −~α2 ln
(

1 + ∂2
φ̃0
Ṽk(φ̃0)

)
(227)

with α2 = (4π)−1. Notice that the argument of the logarithm in (223) or in (226) must be non-
negative for the expansion made around a stable saddle point. If the argument changes sign at a
critical value kc > 0, given by k2

c = −∂2
φVkc(φ0) then the Wegner–Houghton equation (223) loses its

validity for k < kc. The saddle point becomes non-zero and the tree-level blocking relation (217)
has to be used. Restricting the search for the minimum to plane waves propagating in a given
direction nµ we find from Eq. (217)

Vk−∆k(φ0) = min
ρ

[
k2ρ2 + 1

2

∫ 1

−1
du Vk(φ0 + 2ρ cos(πu))

]
, (228)
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where ρ is the amplitude of the plane wave.
In order to clarify the supposed role of the wavefunction renormalization (Zk(φ)) I let the next-

to-leading term in the gradient expansion to evolve, but neglect its field dependence (that is using
the ansatz Zk(φ) = z(k))

Sk =
∫

ddx

[
z(k) 1

2 (∂µφ)(∂µφ) + Vk(φ)
]
. (229)

Inserting φ(x) = φ0 + ε(x) with φ0 = const. and ε(x) infinitesimal inhomogeneous (therefore, ε(x)
depends on the space-time) into both sides of Eq. (215), expanding them in powers of ε(x), and
keeping the terms up to the second order, the Wegner–Houghton equation can be reduced to [2]

k∂kVk(φ0) = −kd~α ln
(
z(k)k2 + ∂2

φ0
Vk(φ0)

k2

)
,

k∂kz(k) = kd~α [∂3
φ0
Vk(φ0)]2

[
4 [z(k)]2 k2

d A4 − z(k)
A3

]
, (230)

with A = (z(k)k2 + ∂2
φ0
Vk(φ0)). The last equation should hold only up to O(φ0

0) since the ansatz
for the action contains only the field independent wavefunction renormalization. Equation (230)
can be rewritten for dimensionless coupling constants [2](

d− d− 2
2 φ̃0∂φ̃0

+ k∂k

)
Ṽk(φ̃0) = −~α ln

(
z(k) + ∂2

φ̃0
Ṽk(φ̃0)

)
,

k∂kz(k) = ~α [∂3
φ̃0
Ṽk(φ̃0)]2

[
4 [z(k)]2

d Ã4
− z(k)

Ã3

]
, (231)

with Ã = (z(k) + ∂2
φ̃0
Ṽk(φ̃0)).

Unfortunately the gradient expansion contradicts the usage of the sharp momentum cut-off.
The higher order terms in the gradient expansion which correspond to the higher derivatives of the
field, cannot be considered consistently due to the sharp momentum cut-off used in the Wegner–
Houghton RG method [169]. Therefore it is not possible to obtain reliable RG equations for the field
dependent wavefunction renormalization in the framework of the Wegner–Houghton method. One
possibility to avoid the problems with the gradient expansion is the usage of a smooth cut-off. In
order to consider the renormalization of Zk(φ), in the next subsection, I discuss Polchinski’s renor-
malization group method [171] which realizes the RG transformations in successive infinitesimal
steps in momentum space using a smooth cut-off function.

6.5 Polchinski RG equation
In Polchinski’s renormalization group method [171] the realization of the differential RG trans-
formations is based on a non-linear generalization of the blocking procedure using a smooth mo-
mentum cut-off. In the infinitesimal blocking step, the field variable Φ(x) is split into an IR (slow
oscillating) and an UV (fast oscillating) part, but both fields contain low- and high-frequency
modes due to the smoothness of the cut-off. The propagator for the IR component is suppressed
by a properly chosen regulator function K(p2/k2) at high frequency above the moving momentum
scale k. The introduction of the regulator function generates infinitely many vertices with higher
derivatives of the field. But these vertices are considered irrelevant and their flow is completely
neglected (because the regulator function is not evolved under the RG transformations). One of
the most important advantages of Polchinski’s RG method is the usage of the smooth momentum
cut-off which does not contradict with the gradient expansion. Therefore it is possible to consider
the evolution of the field dependent wavefunction renormalization (Zk(φ)). In order to determine
Polchinski’s RG equation for the one-component scalar field theory, one can follow the method
explained in Ref. [169]. Here, I do not discuss the details.

Let me write the partition function for the scalar field Φ at the scale k in the following form

Z =
∫

D[Φ] exp [−~Sk[Φ]] =
∫

D[Φ] exp
[
− 1

2~ ΦG−1
k Φ − ~SI

k [Φ]
]
, (232)
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where the blocked action is split into an interaction part: SI
k [φ] and a quadratic part:

1
2 ΦG−1

k Φ = (2π)−d
∫

ddp 1
2 Φ−p G

−1
k (p2) Φp containing the regularized inverse propagator

G−1
k (p2) = p2K−1(p2/k2). The regulator function K(z) suppresses the high-frequency modes

(|p| � k) and keeps the low-frequency ones (|p| � k) unchanged due to the limiting behav-
iors K(z) → 0 for z � 1 and K(z) → 1 for z � 1, respectively. Using the above definition, one
can derive the Polchinski RG equation for the complete action [171, 169, 3]

∂kSk[φ] = 1
2

∫ ddp

(2π)d
∂kGk(p2)

[
δSk[φ]
δφ−p

δSk[φ]
δφp

− ~
δ2Sk[φ]
δφ−pδφp

− 2φp G
−1
k (p2) δSk[φ]

δφp

]
(233)

which is valid for arbitrary one-component scalar field theory.
In LPA one uses the leading order expression for the action in the gradient expansion, that

means the wavefunction renormalization is set to one Zk(φ) = 1 and the field is set to a constant
field: φ(x) = φ0. Then the Polchinski equation reduces to a differential equation for the scale-
dependent potential Vk(φ0) [169, 3]

k∂kVk(φ0) = ~V (2)
k (φ0)

(∫ ddp

(2π)d
K ′(p2/k2)

)
− [V (1)

k (φ0)]2K ′
0 (234)

with K ′ = ∂p2K(p2/k2) and the derivatives of the potential V (n)
k (φ0) = ∂n

φ0
Vk(φ0). Equation (234)

can be rewritten in terms of dimensionless quantities [176, 177](
d− d− 2

2 φ̃0∂φ̃0
+ k∂k

)
Ṽk(φ̃0) = ~Ṽ (2)

k (φ̃0)
(∫ ddp̃

(2π)d
K ′(p̃2)

)
− [Ṽ (1)

k (φ̃0)]2K ′
0, (235)

with the dimensionless potential Ṽk(φ̃0), dimensionless smooth regulator function K ′(p̃2) =
∂p̃2K(p̃2) and the dimensionless momentum p̃2 = p2/k2.

The Polchinski RG equation in LPA can be rewritten by the redefinition of the field and the
potential in such a way that the smooth regulator function does not appear explicitly in the
equation. However, beyond LPA it is not possible and one has to specify the specific form for the
regulator in order to obtain quantitative predictions. Moreover, beyond LPA the Polchinski RG
equation has difficulties in producing reliable results for a periodic scalar field theory [3], thus, I
do not discuss it beyond LPA.
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7 Functional RG – Wetterich equation
Scale-invariance is the key issue behind Wilson’s RG approach [168] where the successive elimina-
tion of degrees of freedom is realised by a Kadanoff blocking construction [167] in the momentum
space. The Wegner-Houghton [170] and the Polchinski [171] RG equations were the first direct
implementations of Wilson’s RG idea which are exact equations, i.e., they provide us a frame-
work to perform the renormalization non-perturbatively but valid for functionals thus systematic
approximations are required to find their solutions. The gradient (derivative) expansion is one
of the commonly used approximation schemes and LPA stands for the leading order term. The
Wegner-Houghton (216) and the Polchinski (233) equations are realised by a sharp and a smooth
momentum cutoff, respectively. Both has advantages and disadvantages: the sharp momentum cut-
off is well defined but confronts to the gradient expansion (beyond LPA); the smooth cutoff can
be used at any order of the gradient expansion but the flow equations depend on the particular
choice of the cutoff function and (in some cases) it produces unphysical results beyond LPA. In this
section I derive the modern form of RG equations, i.e, the Wetterich [178, 179] RG equation and
show that it can be considered as a kind of unified RG equation in a sense that by an appropriate
choice of the so called regulator function it recovers the Wegner-Houghton [170] and the Polcinski
[171] RG equations (at least in LPA).

7.1 The Wetterich RG equation
Instead of going through the standard derivation of the Wetterich RG equation [178, 179] discussed
in the literature in details, here I choose a different rout based on the idea of the improved 1-loop
expression. (In the previous section it was shown that the Wegner-Houghton equation can be
considered as a 1-loop improved equation.) In other words, it is illustrative to discuss its connection
to the effective action, which has the following form at the one-loop level, [175]

Γeff [ϕ] = SΛ[ϕ] + ~
2

∫
ddp

(2π)d
ln
[
S

(2)
Λ [ϕ]

]
+ O(~2), (236)

where SΛ is the classical (bare) action. A Pauli-Villars approach is used to regularise the momentum
integral which can be divergent at its upper (UV) and lower (IR) bounds. This can be achieved
by adding a momentum dependent mass term 1

2
∫
Rk(p)ϕ2 to the bare action, and introduce a

scale-dependent action

Γk[ϕ] ≡ SΛ[ϕ] + ~
2

∫
ddp

(2π)d
ln
[
Rk(p) + S

(2)
Λ [ϕ]

]
, (237)

which recovers the effective action (at one-loop) in the IR limit if the regulator function Rk(p)
fulfils the requirements, Rk→0(p) = 0, Rk(p → 0) > 0 [see Eqs. (13)—(15) of Ref. [180]]. The
latter condition is important to avoid IR divergences. However, one canonically also imposes the
condition

Rk→Λ(p) = ∞ (238)

(see Ref. [180]), and thus, in the UV limit, the scale-dependent action reproduces the classical
(bare) action only up to a field-independent, constant term. If one can differentiate Eq. (237) with
respect to the running scale k (and multiplies both sides by k), then one finds

k∂kΓk[ϕ] = ~
2

∫
ddp

(2π)d

k∂kRk(p)
Rk(p) + S

(2)
Λ [ϕ]

, (239)

which recovers the “exact” Wetterich RG equation [178] up to the replacement S(2)
Λ → Γ(2)

k ,

k ∂kΓk[ϕ] = ~
2

∫
ddp

(2π)d

k ∂kRk(p)
Rk(p) + Γ(2)

k [ϕ]
, → k ∂kΓk[ϕ] = ~

2 Tr
(

k ∂kRk(p)
Rk(p) + Γ(2)

k [ϕ]

)
, (240)
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which is called the Wetterich RG equation [178, 179] derived for the one component scalar field
theory where k is the RG scale, Γk[ϕ] is the running effective action with its Hessian Γ(2)

k [ϕ], and
Rk(p) is the regulator function.

Let me come back to various limits of the scale-dependent action Eq. (237). It recovers the
effective action in the limit k → 0 and the bare action for k → Λ, up to a field-independent but
k-dependent term, which I will denote as Vk(0) for reasons which will become obvious immediately,

Γk→Λ[ϕ] = ΓΛ[ϕ] = SΛ[ϕ] + const. = SΛ[ϕ] +
∫
ddxVk→Λ(0) . (241)

This clearly signals that the formulation of the RG evolution of the constant, field-independent
term Vk(0) requires special care within the nonperturbative approach implied by the Wetterich
equation (see also Sec. 2.3 of Ref. [180]). Moreover, if one implements the condition Rk→Λ(p) = ∞
on the regulator, then it turns out that in many cases, the “constant term” Vk(0) in Eq. (241),
actually is given by a divergent integral.

Therefore, the constant term Vk(0) needs a special treatment in the framework of the nonper-
turbative RG method. In the following sections, I will consider cases where Vk(0) can naturally be
identified with the zeroth-order term (in ϕ) obtained from the scale-dependent potential Vk(ϕ).
One might argue that, for many purposes, the precise form of the function Vk(0) is physically
irrelevant as it constitutes a field-independent constant. However, there are special cases where the
RG evolution of a constant (field-independent) part of the potential has physical meaning. For ex-
ample, if one aims at a determination of the free energy in a flat background or of the cosmological
constant in a general non-flat background, then the problem of unambiguously determining Vk(0)
has to be seriously considered.

7.2 Optimization and regulator functions
The physical results obtained by the exact RG equation are independent of the particular choice of
the regulator [175, 182, 183] which means that the UV and IR limits of the scale-dependent effective
action is well-defined, i.e., Γk→0 = Γeff and Γk→Λ = SΛ. This is guaranteed by the properties of
the regulator function. The RG flow in the parameter space depends on the actual choice of the
regulator but the initial and final value does not, see Fig. 9.

Figure 9: Exact RG flow in the parameter space for the effective action which depends on
the particular choice of the regulator. The initial and final values of the running effective
action are regulator independent [175, 182, 183].

The RG equation constitutes a functional partial differential equation and it is therefore not
possible to indicate general solutions. Hence, approximations are required. One of the commonly
used systematic approximations is the truncated gradient expansion,

Γk[ϕ] =
∫
ddx

[
Vk(ϕ) + Zk(ϕ)1

2(∂µϕ)2 + ...

]
. (242)

The solution of the RG equations sometimes requires further approximations, e.g., the Taylor or
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Fourier series of the potential Vk(ϕ) in terms of the field variable (with a truncation Ncut)

Vk(ϕ) =
Ncut∑
n=1

g2n(k)
(2n)! ϕ

2n, Vk(ϕ) =
Ncut∑
n=1

un(k) cos(nβϕ), (243)

where the scale-dependence is encoded in the coupling constants g2n(k) or un(k).
The necessity of approximations implies that the RG flow depends on the choice of the regulator

function, i.e., on the renormalization scheme. In principle, therefore, physical results could become
scheme-dependent. Therefore, a general issue is the comparison of results obtained by various RG
schemes [184, 185, 181, 188, 186, 187, 22, 4, 23, 182, 183, 189, 190].

7.2.1 Optimization

In order to increase the predicting power of the RG method, an optimization of the scheme-
dependence is required. A rather general optimization procedure (Litim–Pawlowski method) [184,
181] leads to Litim’s regulator [184] which is a function of class C0 with compact support thus
it is a continuous function and it has a finite range but it is not differentiable. In typical cases,
it agrees well with experimental data, and furthermore, the corresponding RG equation can be
mapped onto the Polchinski RG at least in the leading order of the gradient expansion [186]. Its
disadvantage is that it is non-differentiable and thus incompatible with the gradient expansion,
thus, beyond LPA a solution to the general criterion for optimization has to meet the necessary
condition of differentiability to the given order [188, 186, 184, 181].

When using the Litim–Pawlowski optimization, the optimal choice for the parameters of the
regulator functions can be determined in such a way to provides us the most favorable conver-
gence of the amplitude expansion. Among the regulators, Litim’s optimized one is seen to lead
to the fastest convergence of the amplitude expansion. Here and in the following sections of this
lecture note, the “optimum” parameters are always to be understood in terms of the additional
approximations employed in the optimization process, e.g., the LPA. The caveat is that param-
eters which are determined as optimal within a specific, leading-order approximation to the RG
flow, are implicitly assumed to approximate the optimum parameters within different and more
detailed approximation schemes. Without this assumption, or a variation of this assumption, the
determination of “optimum” parameters within any approximation to the RG flow would not be
meaningful. I adopt the implicit assumption and proceed accordingly. The most general defini-
tion of an “optimized RG flow” would otherwise encompass the “shortest” RG trajectory in theory
space, where “short” trajectories are quantified in terms of criteria for the gap in the flow equation.
This sense of optimization is independent of any approximation scheme.

Another optimization scenario is based on the principle of minimal sensitivity (PMS) and
discussed in [187], where the optimal parameters of a given regulator are chosen such as to make
the physical quantities as insensitive as possible to any conceivable changes of the parameters
entering the regulator. Its advantage is that it can be used at any order of the gradient expansion,
its disadvantage is that regulators of different functional form cannot easily be compared to each
other based on the PMS alone.

Solution for the above problems of differentiability (in case of the Litim–Pawlowski optimiza-
tion) and comparability (in case of the PMS method) could be the so called compactly supported
smooth (CSS) regulator [23]. This is a function of class C∞ with compact support which encom-
passes all major types of regulator functions discussed so far in the literature, in appropriate limits.
Thus, it can be used to compare various regulator functions to each other in the framework of the
PMS optimization method. Moreover, it is a smooth, infinitely differentiable function, and it has
a compact support (it is non-zero only in a finite range). Therefore, it can be applied to consider
the "Litim limit" at any order of the gradient expansion.
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7.2.2 Regulator functions

A large variety of regulator functions has already been discussed in the literature by introducing
its dimensionless form

Rk(p) = p2r(y), y = p2/k2 (244)

where r(y) is dimensionless. For example, one of the simplest regulator function is the sharp-cutoff
regulator

rsharp(y) = 1
θ(y − 1) − 1 (245)

where θ(y) is the Heaviside step function. The sharp-cutoff regulator has the advantage that the
momentum integral in (240) can be performed analytically in the LPA. The corresponding RG
equation is the Wegner-Houghton [170] RG. Its disadvantage is that it confronts to the derivative
expansion, i.e. higher order terms (beyond LPA) cannot be evaluated unambiguously.

The compatibility with the derivative expansion can be fulfilled by e.g. using an exponential
type regulator function [178]

rexp(y) = a

exp (c2yb) − 1 (246)

Within the LPA, a favorable choice for the parameters has been determined as a = 1, c2 = ln(2)
and b = 1.44, based on the Litim–Pawlowski method. Their disadvantage is that no analytic form
can be derived for RG equations neither in LPA nor beyond. Thus, the momentum integral in (240)
has to be performed numerically, and consequently, the dependence of the results on the upper
bound of the numerical integration has to be considered.

The momentum integral of Eq. (240) can be performed analytically using the power-law type
regulator [179]

rpow(y) = a

yb
, (247)

at least for b = 1 and b = 2 in LPA. Again a = 1 and b = 2 are the optimal choices. The power-
law regulator is compatible with the derivative expansion (for any b ≥ 1) but its disadvantage is
that it is not ultraviolet (UV) safe for b = 1 (at least not in all dimensions). One has to note
that analyticity is lost beyond LPA. Therefore, similarly to the exponential type regulators, the
dependence of the results on the upper bound of the numerical integration has to be considered.

Problems related to UV safety and the upper bound of the momentum integral can be handled
by the (general) optimized regulator function [184]

rgen
opt (y) = a

(
1
yb

− 1
)

Θ(1 − yb) (248)

which is a continuous (but not differentiable) function with compact support [the Heaviside step
function is denoted as Θ(y)]. The parameters b = 1 and a = 1 are obtained as a result of the Litim–
Pawlowski optimization method in LPA. Furthermore, the momentum integral can be performed
analytically in all dimensions in LPA and also if the wave function renormalization is included.
Moreover, it was also shown that in LPA, the optimized regulator and the Polchinski RG equation
provides us the best results (closest to the exact ones) for the critical exponents of the O(N)
symmetric scalar field theory in d = 3 dimensions [185]. This equivalence between the optimized
and the Polchinski flows in LPA is the consequence of the fact that the optimized functional
RG can be mapped by a suitable Legendre transformation to the Polchinski one in LPA [186]
but this mapping does not hold beyond LPA. It was also shown that the regulator (248) is a
simple solution of the general criterion for optimization in LPA. Although, the regulator (248) is
a continuous function but it is not differentiable and it was shown that it does not support the
derivative expansion beyond second order. Indeed, it was argued that optimization has to meet the
necessary condition of differentiability.
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The so called CSS (Compactly Supported Smooth) regulator [23] with exponential norm is
defined as

rnorm
css (y) = exp[ln(2)c] − 1

exp
[

ln(2)cyb

1−hyb

]
− 1

Θ(1 − hyb) = 2c − 1

2
c yb

1−hyb − 1
Θ(1 − hyb), (249)

which has the following limits

lim
c→0,h→1

rnorm
css =

(
1
yb

− 1
)

Θ(1 − yb), (250a)

lim
c→0,h→0

rnorm
css = 1

yb
, (250b)

lim
c→1,h→0

rnorm
css = 1

exp[ln(2)yb] − 1 . (250c)

Its advantage is that the form (249) reproduces all the major types of regulators with optimal
parameters thus various regulators can be compared to each other in the PMS optimiziation method
and the CSS regulator is a smooth, infinitely differentiable function (with a compact support), thus,
it can be applied to consider the "Litim limit" at any order of the gradient expansion.

7.3 Wetterich RG Equation and the gradient expansion
7.3.1 Leading order (LPA)

In the following I set ~ = 1 and take the leading order expression for the action in the gradient
expansion (242),

Γk[ϕ] =
∫

ddx

[
1
2 (∂µϕ)2 + Vk(ϕ)

]
. (251)

Than, the Wetterich equation (240) reduces to a differential equation for the scale dependent
potential Vk(ϕ) (for a constant field configuration ϕ(x) = ϕ)

k∂kVk(ϕ) = 1
2

∫ ∞

−∞

ddp

(2π)d

k∂kRk

Rk + p2 + V ′′
k

, (252)

with V ′′
k = ∂2

ϕVk which can be further simplified as

k∂kVk(ϕ) = −αdk
d

∫ ∞

0
dy

r′ y
d
2 +1

[1 + r] y + V ′′
k

k2

, (253)

with αd = Ωd/(2(2π)d) where Ωd = 2πd/2/Γ(d/2) and r(y) is the dimensionless regulator with
y = p2/k2 while r′ = dr/dy. The corresponding dimensionless form reads

(
d− d− 2

2 ϕ̃∂ϕ̃ + k∂k

)
Ṽk(ϕ̃) = −αd

∫ ∞

0
dy

r′ y
d
2 +1

[1 + r] y + Ṽ ′′
k

. (254)

which is valid for the scale-dependent dimensionless potential with arbitrary regulator functions.
The integral in Eq. (254) is usually performed numerically, however, analytic forms are available
for a few types of regulators in arbitrary dimensions,

rsharp(y) :
(
d− d− 2

2 ϕ̃∂ϕ̃ + k∂k

)
Ṽk(ϕ̃) = −αd ln

(
1 + Ṽ ′′

k (ϕ̃)
)
, (255)

rgen
opt (y), a = 1, b = 1 :

(
d− d− 2

2 ϕ̃∂ϕ̃ + k∂k

)
Ṽk(ϕ̃) = αd

2
d

1
1 + Ṽ ′′

k (ϕ̃)
. (256)
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Further examples are for dimensions d = 2 (since the field is dimensionless one can write ϕ̃ = ϕ)

d = 2, rpow(y),
a = 1, b = 1 : (2 + k∂k) Ṽk(ϕ) = −α2 ln

(
1 + Ṽ ′′

k (ϕ)
)
, (257)

d = 2, rpow(y),
a = 1, b = 2 : (2 + k∂k) Ṽk(ϕ) = − 2α2√

[Ṽ ′′
k (ϕ)]2 − 4

ln

 |Ṽ ′′
k (ϕ) −

√
[Ṽ ′′

k (ϕ)]2 − 4|

|Ṽ ′′
k (ϕ) +

√
[Ṽ ′′

k (ϕ)]2 − 4|

 , (258)

d = 2, rgen
opt (y),

a 6= 1, b = 1 : (2 + k∂k) Ṽk(ϕ) = −α2
a

a− 1 ln
(

1 + Ṽ ′′
k (ϕ)

a+ Ṽ ′′
k (ϕ)

)
(259)

where the latter stands for the generalised optimised regulator (248) which tends to the sharp one
(245), thus, Eq. (259) recovers Eq. (255) for d = 2 in the limit a → ∞ (after neglecting a field
independent term on the right hand side). This property of the sharp cutoff limit holds in arbitrary
dimensions. The RG equation (257) obtained by the power-law regulator with b = 1 (with the so-
called mass cutoff) is derived by introducing an upper limit Λ2/k2 in the integration which sent
to infinity after performing the integral while dropping a field independent term. Notice, that the
RG equation (255) is identical to the Wegner-Houghton equation (226), and for d = 2 they are
equivalent to Eq. (257). Let us note that Eq. (256) can be mapped onto the Polchinski equation
(235) via an appropriate Legendre transformation [186], thus, it is expected to produce the same
results in LPA.

In order to be able to perform the FRG study of layered sine-Gordon models introduced in
previous sections, one has to generalise the RG equation for multi-component scalar fields. Let
me chose the sharp cutoff form of the Wetterich equation (255) which is identical to the Wegner-
Houghton equation (226) and to the mass cutoff RG equation (257) (for d = 2) and reads as(

d− d− 2
2 ϕ̃∂ϕ̃ + k∂k

)
Ṽk(ϕ̃) = −αd ln

[
det
(
δij + Ṽ ij

k (ϕ̃)
)]
, (260)

where Ṽ ij
k (ϕ̃) denotes the second derivatives of the potential with respect to ϕ̃i, ϕ̃j . For dimensions

d = 2 it has the form

(2 + k∂k) Ṽk(ϕ) = − 1
4π ln

[
det
(
δij + Ṽ ij

k (ϕ)
)]
, (261)

where the multi-component field ϕ has no dimensions, thus, the tilde superscript is omitted. Simi-
larly the RG equation for the multi-component field in d = 2 dimensions by means of the optimised
cutoff reads as

(2 + k∂k) Ṽk(ϕ) = 1
4πTr 1(

δij + Ṽ ij
k (ϕ)

) . (262)

7.3.2 Next-to-leading order (LPA’)

In order to include the field independent wavefunction renormalization I let the next-to-leading
term in the gradient expansion evolve which is know as the LPA’,

Γk[ϕ] =
∫
ddx

[
1
2zk(∂µϕ)2 + Vk(ϕ)

]
, (263)

where the local potential stands for SG type models. For example, if this is the pure SG model
one can use the approximation where the potential contains a single Fourier mode only Vk(ϕ) =
uk cos(βϕ) where the Fourier amplitude uk and the field independent wavefunction renormalization
zk depend on the RG scale k.

If one considers periodic interactions, the Wetterich equation (240) reduces to the following cou-
pled differential equations for the scale dependent (periodic) potential Vk and the field-independent
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wavefunction renormalization zk,

k∂kVk = 1
2

∫
ddp

(2π)d
Dk k∂kRk, (264)

k∂kzk =
(
β

2π

∫ 2π/β

0
dϕ

)
(V ′′′

k )2
∫

ddp

(2π)d
D2

k k∂kRk

(
2
d

∂2Dk

∂p2∂p2 p
2 + ∂Dk

∂p2

)
, (265)

with Dk = (zkp
2 + Rk + V ′′

k )−1 where V ′′
k ≡ ∂2

ϕVk and V ′′′
k ≡ ∂3

ϕVk. Since the l.h.s of (265) is
independent of the field, a projection onto the field-independent subspace has been introduced on
the r.h.s of (265). The scale k covers the momentum interval from the high-energy/ultraviolet (UV)
cutoff Λ to zero.

In this lecture note I am interested in the FRG study of SG type models with periodic self-
interactions where the ansatz for the effective action in LPA and in LPA’ reads as,

LPA : Γk =
∫
ddx

[
1
2(∂µϕ)2 +

∞∑
n

un(k) cos(nβϕ)
]
.

LPA′ : Γk =
∫
ddx

[
1
2zk(∂µϕx)2 +

∞∑
n

un(k) cos(nβϕ)
]
. (266)

The dimensionful frequency β, is scale independent, i.e., it remains constant over the RG flow
because the RG transformation retains the periodicity of the dimensionful model with an unchanged
period length. Thus, β is a free parameter of the model which can be chosen arbitrarily. Since the
dimensionful frequency is scale-independent, it is convenient to merge it with the scale-dependent
wave function renormalization zk which can be done by rescaling the field as θ = βϕ where θ is
dimensionless. Thus, it can be shown that actually, one finds only two independent couplings at
LPA’ level, too. In the very last section of the lecture note, RG equations corresponding to this
rescaling and the appropriate choice for the regulator function beyond LPA are discussed.

Indeed, the regulator function beyond LPA should be given by the inclusion (multiplicative
approach) or the exclusion (additive approach) of the field independent wavefunction renormaliza-
tion zk. Important to note, that the additive approach requires the use of the power-law regulator
function. Of course, the phase structure should be independent whether one uses the multiplicative
or additive approaches.

7.4 Periodicity and the FRG equation
The challenge in developing an RG method for the periodic scalar field theory is that the essential
symmetry of the theory, namely the periodicity, should not be violated during the RG transfor-
mations. Indeed, one of the important general properties of the renormalization group methods is
that they retain the symmetries of the action. Therefore, if the bare action SΛ(φ) defined at the
UV cut-off Λ has the symmetry under the transformation

SΛ → SΛ, for ϕ(x) → ϕ(x) + ∆ (267)

then, the blocked (effective) action Γk(ϕ) which is the solution of the RG equations must be
periodic with the same length of period ∆. In the local-potential approximation the blocked action
reduces to the blocked potential Vk(ϕ) which is tending to the effective potential Veff(ϕ) in the
limit k → 0. If the bare action is invariant under the symmetry transformation (267), then the
effective potential should be periodic with the same length of period ∆.

Let me show that FRG equations preserve periodicity [1]. The demonstration is for the Wegner-
Houghton case but can be generalised for any RG equations. It is actually obvious that the blocking,
the transformation [1]

kVk−∆k(ϕ) = kVk(ϕ) +
[
kdαd ln

(
z(k)k2 + ∂2

ϕVk(ϕ)
)]

∆k (268)

preserves the periodicity of the potential if the wavefunction renormalization z(k) is independent
of the field. Therefore, one can look for solutions of the Wegner–Houghton equation obtained in
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the LPA among periodic functions, if the initial condition for the action contains a periodic self-
interaction at the UV cut-off Λ. The inclusion of the field independent wavefunction renormalization
does not change the situation, since it is independent of the field.

7.5 Differentiability and the FRG equation
Previously, the various forms of the Branon effective potential has been discussed where the simplest
case was a non-differentiable function, i.e., V (ϕ) ≡ V (|ϕ|). It is illustrative to show that the FRG
equations are not sensitive to the case when the potential is non-differentiable in a single point
[21]. To demonstrate this, let me consider the Wetterich FRG equation in LPA which reduces to a
differential equation for the scale dependent potential Vk(φ)

k∂kVk(φ) = 1
2

∫ ∞

−∞

ddp

(2π)d

k∂kRk

Rk + p2 + V ′′
k

, (269)

where V ′′
k = ∂2

φVk. An important comment is the following: the latter equation depends only on
the second field derivative of the running potential, which allows to consider the singularity |φ|.
Indeed,

∂

∂φ

(
Vk(|φ|)

)
= sign(φ)V ′

k(|φ|) (270)

∂2

∂φ2

(
Vk(|φ|)

)
= V ′′

k (|φ|) ,

and the equation (252) is not sensitive to the absolute value of the field [21]. An alternative
argument is based on the regularisation

Vreg,k(φ) ≡ Vk

(√
r2 + φ2

)
, (271)

from which one can note that
lim
r→0

V ′′
reg,k(φ) = V ′′

k (|φ|) . (272)

Let me demonstrate this general feature on a specific example. I consider the second derivative of
the regularised and original dimensionful exponential potentials

VEXP(φ) = −uk exp(−a|φ|)
VEXP,reg(φ) = −uk exp(−a

√
r2 + φ2) (273)

where the scale dependence is encoded in the amplitude uk. Important to note that the dimensionful
parameter a is scale-independent in LPA since in this case the wavefunction renormalization z is
kept constant and by an appropriate rescaling of the field φ′ → aφ these two couplings can be
related to each other z = 1/a2. The second derivative of the regularised potential can be taken in
the limit r → 0

V ′′
EXP,reg(φ) = −uk

a2φ2
√
r2 + φ2 − r2

(r2 + φ2)3/2 exp(−a
√
r2 + φ2)

lim
r→0

V ′′
EXP,reg(φ) = −uka

2 exp(−a|φ|), (274)

which is equivalent to the second derivative of the original non-analytic potential. This indicates
that the functional RG equation (253) is not sensitive to the non-analytic nature of the potential
[21].
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8 Linearised FRG equation in the single Fourier mode ap-
proximation in LPA

Before going into the details of the solution of the exact FRG equation, in this section I take the
linearised form (around the Gaussian fixed point) of RG equations obtained in the LPA level which
is the most "drastic" approximation and reads as [21](

d− d− 2
2 ϕ̃∂ϕ̃ + k∂k

)
Ṽk(ϕ̃) = −αd C Ṽ ′′

k (ϕ̃) + O(Ṽ ′′2
k ), (275)

where the constant C is usually regulator-dependent except for d = 2 where C = 1 for any choice
of the regulator function r(y). For example, the Litim regulator gives C = 2/d, so it depends on
the dimension d but the sharp-cutoff gives C = 1 in arbitrary dimension. Since I would like to
apply it to sine-Gordon type models (SG, MSG, LSG, ShG and to the two interpolation cases, the
Shine-Gordon and the SnG models) which have important physical realization in d = 2 dimensions,
it is convenient to write out the two-dimensional linearised RG equation [1]

(2 + k∂k)Ṽk(ϕ) = − 1
4π Ṽ

′′
k (ϕ) + O(Ṽ ′′2

k ) (276)

where the field carries no dimension thus ϕ̃ = ϕ. Similarly, the linearised RG equation for the
multi-component field can be written [9]

(2 + k∂k) Ṽk(ϕ) = − 1
4π

N∑
n=1

Ṽ nn
k (ϕ) + O([Ṽ nn

k ]2). (277)

However, if apart from the periodic self-interaction, a non-periodic term is present in the action, i.e.
an explicit mass or mass-matrix appears then it is more reliable if one linearises the RG equation
(261) in the periodic piece of the blocked potential. This is the so-called, mass-corrected linearised
RG equation which depends on the choice of the regulator function. In order to demonstrate this,
an explicit form is given for the simplest case, the MSG model (41), where the dimensionless
potential Ṽk = 1

2M̃
2
kϕ

2 + Ũk(ϕ) contains a periodic piece Ũk(ϕ) and the RG equation is written
for the mass-cutoff regulator in d = 2 dimensions [9, 8, 7, 12]

(2 + k∂k)Ṽk(ϕ) = − 1
4π log(1 + Ṽ ′′

k (ϕ)) = − 1
4π log(1 + M̃2

k + Ũ ′′
k (ϕ))

≈ − 1
4π

[
log(1 + M̃2

k ) + Ũ ′′
k (ϕ)

1 + M̃2
k

]
+ O([Ũ ′′

k )]2

=⇒ (2 + k∂k)Ũk(ϕ) ≈ − 1
4π

Ũ ′′
k (ϕ)

1 + M̃2
k

, (2 + k∂k)M̃2
k = 0 (278)

where the field independent term log(1 + M̃2
k ) is dropped and the original FRG equation is split

into two separate equations where latter gives a trivial scaling for the dimensionless mass (thus the
dimensionful mass remains unchanged over the flow). Please observe that the right hand side of
the RG equation (both the original and the approximated) is periodic, so, the non-periodic term of
the left hand side must vanish which results in a trivial scaling for the mass. It can be generalised
for the N-component case [13, 14, 7, 12, 9, 8]

(2 + k ∂k)Ũk(ϕ) = − 1
4π

F1(Ũk)
C

+ O([Ũnn
k ]2), (2 + k∂k)M̃2(k) = 0 (279)

where the periodic piece is Ũk(ϕ) =
∑N

n=1 ũn(k) cos(β ϕn), so the full potential reads Ṽk =
1
2ϕ M̃

2(k)ϕT + Ũk(ϕ) and C and F1(Ũk) stand for the constant and linear pieces of the de-
terminant det[δij + Ṽ ij

k ] ≈ C + F1(Ũk). The mass-corrected linearised RG equation (279) depends
on the choice of the regulator function.
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8.1 The Ising model
Let us first consider the linearised RG flow for the Ising model by substituting

ṼIsing(ϕ) =
NCUT∑
n=1

g̃2n(k)
(2n)! ϕ

2n, (280)

into Eq. (276). Then one can read off the RG flow equations for the scale dependent dimensionless
couplings g̃2n(k). For any finite NCUT, the linearised FRG equation does not preserve the functional
form of the bare theory (280), i.e., the l.h.s of (276) contains polynomial terms φ2n of order
n = NCUT but the r.h.s of (276) has terms of order n < NCUT. Thus, I conclude that the linearised
RG is not sufficient to signal a second (finite) order phase transition.

8.2 The SG model
The situation is different for the SG model where the potential is defined by (for the sake of
simplicity keeping only the fundamental Fourier mode)

ṼSG(ϕ) = ũk cos(βϕ) (281)

where the dimensionless Fourier amplitude carries the scale-dependence since in LPA the frequency
β does not depend on the running momentum cutoff k. The linearised FRG equations (276) and
(275) preserve the functional form of the bare potential (no higher harmonics are generated).
Considering the d = 2 case one finds [1]

(2 + k∂k)ũk cos(βϕ) = 1
4πβ

2ũk cos(βϕ) (282)

and the RG flow equation for the Fourier amplitude reads [1]

k∂kũk = ũk

(
−2 + 1

4πβ
2
)

(283)

exhibiting the solution [1]

ũk = ũΛ

(
k

Λ

)−2+ β2
4π

→ β2
c = 8π (284)

where ũΛ is the initial (bare) value of the Fourier amplitude at the high energy ultra-violet (UV)
cutoff Λ. Eq. (284) determines the critical frequency β2

c = 8π where the model undergoes a KTB-
type phase transition, see Fig. 10. The coupling ũ is irrelevant (decreasing) for β2 > β2

c and relevant
(increasing) for β2 < β2

c . It is important to note that even if the bare theory of the SG model
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Figure 10: Linearised RG flow obtained in LPA for the SG model in d = 2 dimensions.
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contains higher harmonics, the linearised FRG equation (276) reduces to decoupled flow equations
for the Fourier amplitudes of various modes.

Let me consider now the d 6= 2 case where the linearised RG equation (for the sharp cutoff with
C = 1) reads as [17](

d− d− 2
2 ϕ̃∂ϕ̃ + k∂k

)
ũk cos(β̃kϕ̃) = αdβ̃

2
kũk cos(β̃kϕ̃) (285)

where a scale-dependent (dimensionless) frequency β̃k should be introduced in order to keep the
argument in the cos term dimensionless for the dimensionful potential. Thus, one expects a trivial
scaling for the frequency, i.e., β̃k ∼ k(d−2)/2. The RG flow equations for the periodic part and the
non-periodic part are separated and read as [17]

k∂kũk = ũk

(
−d+ αdβ̃

2
k

)
, k∂kβ̃k = d− 2

2 β̃k → β̃2
k = β̃2

Λ

(
k

Λ

)d−2
(286)

where the second RG flow equation gives back exactly the trivial scaling for the dimensionless
frequency. It is illustrative to show the solution of the flow equation (286), see Eq.(27) of [17],

ũk = ũΛ

(
k

Λ

)−d

exp
{
αdβ̃

2
Λ

d− 2

[(
k

Λ

)d−2
− 1
]}

(287)

where β̃Λ and ũΛ are the bare values of the couplings. Since the dimensionless frequency becomes
scale-dependent, the solution of the flow equation for the Fourier amplitude changes compared to
the d = 2 case. If d > 2, then in the IR limit, when k → 0, the coupling constant ũ(k) always
becomes a relevant parameter (ũ → ∞) independently of β̃2, see Fig. 11. Therefore, the 3D-SG
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Figure 11: Linearised RG flow obtained in LPA for the SG model in d = 3 dimensions.

model has only a single phase within the LPA, no KTB transition is observed.

8.3 The MSG and LSG models
The dimensionless potential of the LSG model (considered as a generalised form of the MSG model
with magnetic type interlayer coupling) is defined by the following potential [14]

ṼLSG(ϕ) = 1
2ϕ M̃

2(k)ϕT + Ũk(ϕ), Ũk(ϕ) =
N∑

n=1
ũn(k) cos(β ϕn) (288)

Regarding the LSG model one has two options. The ansatz (288) can be inserted (i) either into
the linearised RG equation (277), (ii) or into the mass-corrected linearised RG equation (279).
The scaling laws obtained by (277) valid at the asymptotically large UV scales (k ∼ Λ), and being
independent of the interlayer coupling (i.e. mass terms) predicting exactly the same phase structure

67



8. LINEARISED FRG EQUATION IN THE SINGLE FOURIER MODE APPROXIMATION IN LPA

as that of the massless 2D-SG model with β2
c = 8π. The simplest way to go beyond the linearized

approximation and to improve the extrapolating power of the UV scaling laws towards the IR
regime, is to take corrections into account of the order O(J/k2) or O(G/k2), which results in the
mass-corrected linearised RG scaling laws derived for the M-LSG (3.1.3) and J-LSG (3.1.3) models.
This is achieved by using the equation (279) for the multi-component case which provides the trivial
scaling for the mass matrix, i.e., for dimensionless interlayer couplings [13, 14, 6, 7, 12, 9, 8]

J̃k = k−2J, G̃k = k−2G, (289)

where the corresponding dimensionful parameters J , G remain constant during the blocking.

8.3.1 The J-LSG model

Let me first determine the mass-corrected linearised RG scaling laws for the J-LSG model (3.1.3)
for N = 2. In this case the two layers are assumed to be equivalent, so, the Fourier amplitudes are
the same (ũ1 ≡ ũ2) and the solution of Eq. (279) reads [9, 13, 7]

ũk = ũΛ

(
k

Λ

) β2
8π −2(

k2 + 2J
Λ2 + 2J

) β2
16π

→ β2
c = 16π (290)

with the initial value ũΛ at the UV cutoff k = Λ. From the extrapolation of the scaling law
Eq. (290) to the IR limit, one can read off the critical values β2

c = 16π, for N = 2 (because when
k → 0 the second term becomes constant and the critical value is determined by the first term of
(290)). The coupling ũ is irrelevant for β2 > β2

c and relevant for β2 < β2
c , see the schematic flow

diagram Fig. 12. The general expressions for the critical frequency and the corresponding critical

I.

II.

III.

u

J~

~

2ß

Figure 12: Schematic RG trajectories of the J-LSG model with N = 2 layers [7]. The critical
frequency β2

c = 16π is denoted by the dotted line which separates the two phases. The
coupling ũ is irrelevant for β2 > 16π and relevant for β2 < 16π in the IR limit. The dashes
line stands for β2 = 8π which is the critical frequency of the massless 2D-SG model. The
coupling ũ is irrelevant for β2 > 8π and relevant for β2 < 8π in the UV limit.

temperature read [9, 13]

β2
c (N) = 8πN, → T

(N)
J−LSG = 2π

β2
c (N) = T ?

KTB
1
N
. (291)

The presence of the coupling J between the layers modifies the critical parameter β2
c of the J-LSG

model as compared to the massless 2D-SG model, see Fig. 13. This important modification can
only be deduced if one goes beyond the linearized (i.e. dilute gas) approximation, e.g. by the usage
of the mass-corrected linearised RG scaling laws.
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Figure 13: Schematic RG trajectories of the J-LSG model with N = 2, 3, 4 layers in the plane
(B2 ≡ β2, u ≡ ũk) and the shift of the critical value B2

c (N) ≡ β2
c (N) = 8Nπ [8]. Each layer

corresponds to an SG model which are coupled by the coupling J . The solid discs represent
the topological excitation of the layered system.

8.3.2 The M-LSG model

Similar consideration can be done for the M-LSG model (3.1.3) which has real application for the
vortex dynamics of magnetically coupled layered superconductors. Since the layers are assumed
to be equivalent for the M-LSG model, the RG flow equations for the Fourier amplitudes (i.e.
fugacities) of different layers should be the same (ũn(k) ≡ ũk) and the solution can be obtained
analytically [9, 14]

ũk = ũΛ

(
k

Λ

) (N−1)β2
N4π −2(

k2 +NG

Λ2 +NG

) β2
N8π

→ β2
c = 8πN

N − 1 (292)

where ũΛ is the initial value for the fugacity at the UV cutoff Λ and G, β2 are scale-independent
parameters. The critical frequency and the corresponding critical temperature which separates the
two phases of the model can be read directly [9, 14]

β2
c (N) = 8πN

N − 1 , → T
(N)
M−LSG = 2π

β2
c (N) = T ?

KTB
N − 1
N

. (293)

In Fig. 14, I show the UV (linearised RG) and the IR (mass-corrected linearised RG) scaling of
the coupling ũk where the panels to the left contains RG running of ũk for various initial values of
β2

c . The mass-corrected scaling appears below the mass scale k < MN =
√
NG. For N → ∞ the

M-LSG behaves like a massless 2D-SG model with the critical frequency β2
c = 8π. For N = 1 the

M-LSG models reduces to the MSG model which is known to have no KTB phase transitions, see
Fig. 15. This is signalled by the layer-dependence of the critical frequency of the KTB transition of
the M-LSG model since β2

c (N = 1) = ∞. The layer number dependence of the critical frequencies
of the J-LSG and M-LSG models are summarised in Fig. 16.

Finally let me consider the co-called rotated LSG model (50) where O(N) rotations are per-
formed which diagonalise the mass matrices (52) both for the J-LSG and M-LSG cases [8, 9, 12].
The rotated models do not have interlayer interactions via the mass matrix (since it is diagonal)
but they do have in the periodic parts, see Eq. (53) for N = 2, and Eqs. (54), (55) for N = 3. De-
pending on the number of the non-trivial mass eigenvalues, some of the rotated fields have explicit
mass terms (massive modes) and the other ones are massless, SG-type fields. At low energies, be-
low the mass-scale the quantum fluctuations are suppressed by the mass terms producing a trivial
scaling for the massive modes, so, the massive modes can be considered perturbatively and they
do not influence the phase structure of the rotated models. At the lowest order of the perturbation
theory, all the massive modes are set to be equal to zero. In this case the effective potential for the
rotated J-LSG model reads as [8, 9, 12],

ṼJ−rot(α1) =
∑
σ1

w̃σ1 exp [i σ1 b1 α1], b2
1 = β2

N
, (294)
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Figure 14: RG trajectories of the M-LSG model with N = 1, 2 layers [14]. The shift of the
critical value is given by β2

c (N) = 8πN
N−1 . Each layer corresponds to an SG model which are

coupled by the coupling G. The solid discs represent the topological excitation of the layered
system. The UV and IR scaling are separated by the mass term MN = λ−1

eff which serves
as an effective length scale for the corresponding layered superconductor where the vortices
of different layers are coupled magnetically. The critical temperature TKTB depends on the
number of layers (N) if the system size (R) is larger than this effective screening length.

Figure 15: RG trajectories of the M-LSG model with N = 1 layer, i.e. the MSG model which
has an explicit mass term (J̃ ≡ M̃2) in addition to the periodic part [7]. Due to the presence
of the explicit mass, the Fourier amplitude ũk always increases in the IR limit independently
of the choice of the initial value for the frequency β. This results in no KTB phase transition
(i.e. β2

c = ∞).

and for the M-LSG model the effective potential is [8, 9, 12]

ṼM−rot(α2, ..., αN ) =
∑

σ2,...,σN

w̃σ2,...,σN

N∏
n=2

exp [i σn bn αn], b2
n>1 = β2

(n(n− 1)) . (295)

One can consider the remaining massless SG fields in order to determine the phases of the layered
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Figure 16: The critical frequency β2
c (N) versus the layer-number N is shown for the J-LSG

(solid line) and the M-LSG (dashed line) models, respectively. The critical frequencies lie
outside of the shaded area, irrespectively of N .

system (with σn = ±1) which can be done by using the simple linearised form of the FRG equation

(2 + k∂k) Ṽk(α1, ..., αN ) ≈ − 1
4π

N∑
n=1

Ṽ nn
k (α1, ..., αN ), (296)

with Ṽ nn
k = ∂2

αn
Ṽk which leads to the linearized flow equations [8, 9, 12]

(2 + k∂k)w̃J(k) = b2
1

4π w̃J(k), (2 + k∂k)w̃M(k) = 1
4π

(
N∑

n=2
b2

n

)
w̃M(k), (297)

exhibiting the solutions [8, 9, 12]

w̃J(k) = w̃J(Λ)
(
k

Λ

)−2+ β2
N(4π)

, w̃M (k) = w̃M (Λ)
(
k

Λ

)−2+ (N−1)β2
N(4π)

(298)

where w̃J(Λ) and w̃M (Λ) are the initial values for the Fourier amplitudes at the high energy UV
cutoff Λ. The solutions determine the critical value of the frequency parameter which separates
the two phases of the LSG-type models and the corresponding critical temperatures are [8, 9, 12]

T
(N)
J−LSG = T ?

KTB
1
N
, T

(N)
M−LSG = T ?

KTB
N − 1
N

. (299)

which results in the same layer-dependent critical frequency as obtained for the above analysis.

8.4 The ShG model
By using the replacement β → iβ in Eq. (281) one finds the potential for the ShG model

ṼShG(φ) = ũk cos(iβϕ) = ũk cosh(βφ) (300)

which is inserted into (276) preserving again the functional form of the bare potential [11],

(2 + k∂k)ũk cosh(βϕ) = − 1
4πβ

2ũk cosh(βϕ) (301)

and the RG flow equation and the solution for the Fourier amplitude reads [11]

k∂kũk = ũk

(
−2 − 1

4πβ
2
)

→ ũk = ũΛ

(
k

Λ

)−2− β2
4π

(302)

which shows that in case of β2 = 8π the exponent does not change sign, hence, the ShG model
has no KTB-type phase transition. In other words, the linearised FRG of the ShG model can be
derived from the the SG model by using the replacement β → iβ which results in a sign change of
β2 and no KTB-type phase transition.
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8.5 The Shine-Gordon model
Let me now study the first class of interpolating models, i.e. the dimensionless Shine-Gordon
potential

ṼShine(φ) = ũk

2 (cos[(β1 + iβ2)φ] + cos[(β1 − iβ2)φ]) = ũk cos(β1φ) cosh(β2φ), (303)

where β1 and β2 are real value frequencies. Inserting (303) into (276) one finds [11]

(2 + k∂k)ũk cos(β1φ) cosh(β2φ) = 1
4π ũk

[
(β2

1 − β2
2) cos(β1φ) cosh(β2φ)

+2β1β2 sin(β1φ) sinh(β2φ)] (304)

which indicates that the functional form of the bare potential is not preserved similarly to the
Ising model. One may try adding a sin(β1φ) sinh(β2φ) to to bare action (303) and then the second
derivative of the potential has the same form [11],

ṼShine = ũk [cos(β1φ) cosh(β2φ) + sin(β1φ) sinh(β2φ)]
Ṽ ′′

Shine = −ũk

[
(β2

1 − β2
2 − 2β1β2) cos(β1φ) cosh(β2φ) + (β2

1 − β2
2 + 2β1β2) sin(β1φ) sinh(β2φ)

]
however, the pre-factors of the cos(β1φ) cosh(β2φ) and sin(β1φ) sinh(β2φ) are different which re-
quires the introduction of different amplitudes ũ1(k), ũ2(k) for each of these terms. Thus, the
functional form of the bare model has not been preserved by the linearised FRG equation (oppo-
site to the SG and ShG models) and one cannot read off a single flow equation for the coupling ũk

unless one of the frequency is set to be zero, i.e. in the two limiting cases. This signals no KTB-type
phase transition for the Shine-Gordon model if β2 6= 0 [11].

8.6 The SnG model
The second class of interpolating theories are represented by the SnG model which is written in
terms of Jacobi functions and its dimensionless bare potential reads [11],

ṼSnG(φ) = Ãk cd(βφ,m) nd(βφ,m), (305)

where the amplitude Ãk is scale-dependent and by using the properties of the Jacobi functions
cd(u,m) = cn(u,m)/dn(u,m) and nd(u,m) = 1/dn(u,m) it can also be written as [11]

ṼSnG(φ) = Ãk cn(βφ,m) [nd(βφ,m)]2. (306)

Inserting Eq. (305) or Eq. (306) into the linearised FRG equation (276) one observes that the
functional form is not preserved since the second derivatives of the potential has the following
form [11]

Ṽ ′′
SnG(φ) = β2Ãk

cn(βφ,m)
dn(βφ,m)4

(
6(m− 1) + (5 − 4m) dn(βφ,m)2) .

However, it is important to note that (305) is a periodic function, so, it can be expanded in Fourier
(Lambert) series (see the corresponding section) which results in [11]

ṼSnG(φ) =
∞∑

n=1
ũn(k) cos(n b φ), b = β

2F1
( 1

2 ,
1
2 , 1,m

) . (307)

Inserting (307) into the linearised FRG equation (276) one can derive a set of uncoupled differential
equations for the Fourier modes [11],

k∂kũn(k) = ũn(k)
(

−2 + 1
4πn

2b2
)
. (308)
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Similarly to the SG model the critical frequency corresponds to the fundamental mode, i.e., for
n = 1 where one finds b2

c = 8π and the higher harmonics do not modify it. Thus, one can read the
m-dependence of the original frequency

β2
c (m) = 8π

[
2F1

(
1
2 ,

1
2 , 1,m

)]2
(309)

which clearly signals the existence of a KTB-type phase transition if m 6= 1. In the limit m → 1
the original frequency blows up thus the system is always in the, so called massive (ionised) phase,
see Fig. 17, where the fundamental Fourier amplitude is increasing in the IR limit. Thus, in the
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Figure 17: Phase structure of the SnG model in the m,β2 plane based on Eq. (309) indicates
a KTB-type phase transition where the grey area stands for the massive (ionised) phase [11].

m = 1 case the SnG model reduces to the ShG model which has no KTB-type phase transition.

8.7 Non-differentiable potentials
As a final step, I give here a simple illustration of how quantum fluctuations smoothen a non-
differentiable microscopic (bare) potential and leads to a differentiable Wilsonian effective potential
[21]. I start with the bare non-differentiable potential

V∞(φ) = µd/2+1|φ| , (310)

where µ > 0 is the only bare parameter of the model. Let me use the following ansatz for the
running (blocked) potential [21]

Vk(φ) = µd/2+1|φ| + uk exp(−|φ|/µ(d−2)/2) , (311)

where uk is to be determined and ck corresponds to a redefinition of the origin of energies, for each
value of k. Plugging the ansatz in the dimensionful form of the linearised FRG equation (275) with
C = 2/d one finds,

k∂kVk = −2αd

d
kd−2V ′′

k → k∂kuk = −2αd

d

(
k

µ

)d−2
uk . (312)

In d > 2 dimensions the solution of the latter equation reads

uk = A exp
(

−2αd(k/µ)d−2

d(d− 2)

)
, (313)

and the constant A can be determined by imposing the IR potential Vk=0(φ) to be differentiable
and minimum at φ = 0,

V ′
k=0(0) = ±

(
µd/2+1 − A

µd/2−1

)
= 0 , (314)
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Figure 18: Quantum corrections turn the singularity into a smooth IR potential (d = 4):
the V-shaped bare potential corresponds to k = ∞ and the smooth Wilsonian effective
potential to k = 0. The intermediate running potentials correspond to finite values of k.
Note that the latter potentials are not differentiable, and only the deep IR effective potential
is differentiable.

where the sign ± depends on which side of 0 the derivative is taken from. Hence the running
average effective potential is

Vk(φ) = µd/2+1|φ| + µd exp
(

−2αd(k/µ)d−2

d(d− 2) − |φ|
µd/2−1

)
, (315)

and indeed corresponds to what is expected - see Fig.(18) for the case d = 4: (i) the ultraviolet
limit k → ∞ reproduces the bare potential; (ii) the IR limit k → 0 leads to a differentiable effective
potential [21]. The summary of the results of this section is the following. It was shown that FRG
equations taken at the level of the most "drastic" approximation, (i.e., linearised flow equations in
LPA) are able to determine the KTB-type phase transitions of SG-type models providing also the
exact value of the critical frequency but they are unable to determine whether the model undergoes
an Ising-type phase transition or not.
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9 Exact FRG equation in the single Fourier mode approxi-
mation in LPA

In this section I discuss the FRG equations obtained in LPA for SG and MSG models which
contains a single Fourier mode only. Thus, I use the ansatz for the running dimensionful (and
dimensionless) potential for the SG model

SG : Vk(ϕ) = uk cos(βϕ), Ṽk(ϕ̃) = ũk cos(β̃kϕ̃), (316)

where the dimensionful frequency β is scale-independent. Similarly, the running dimensionful (and
dimensionless) potential of the MSG model reads as

MSG : Vk(ϕ) = 1
2M

2ϕ2 + uk cos(βϕ), , Ṽk(ϕ̃) = 1
2M̃

2
k ϕ̃

2 + ũk cos(β̃kϕ̃), (317)

where the dimensionful frequency β and the dimensionful mass M2 are scale-independent. In LPA
the wave-function renormalization is set equal to constant, i.e. Zk ≡ 1 and the Wetterich FRG
equation reduces to the partial differential equation for the dimensionful (252) and the dimension-
less (254) potentials. By inserting the ansatz for the SG (316) and MSG (317) models into the
FRG equation which splits into two parts, one finds the non-periodic part which results in a trivial
scaling for the mass and the frequency [20],

(d− (d− 2) + k∂k) M̃2
k = 0 → (2 + k∂k)M̃2

k = 0 → M̃2
k = M̃2

Λ

(
k

Λ

)−2
→ M2 = const,

(
−d− 2

2 + k∂k

)
β̃k = 0 →

(
2 − d

2 + k∂k

)
β̃k = 0 → β̃k = β̃Λ

(
k

Λ

)(d−2)/2
→ β = const,

(318)

and the (dimensionful) periodic part has been expanded in Fourier series and only the fundamental
mode is kept,

k∂kuk =
∫

p

k∂kRk

β2uk

(
P −

√
P 2 − (β2uk)2√

P 2 − (β2uk)2

)
, (319)

where for the SG model one finds P = p2 +Rk [4, 17] and for the MSG model P = p2 +M2 +Rk

[20, 9] and
∫

p
=
∫
dp pd−1Ωd/(2π)d with the d-dimensional solid angle Ωd.

9.1 The Ising model
Before the detailed study of the SG and MSG models let me first discuss very briefly the Ising model
where apart from the trivial mass term M2ϕ2/2, a quartic g4ϕ

4/4! self-interaction is taken into
account. The FRG equations are taken in the LPA level for the sharp cutoff (which gives identical
results in d = 2 with the power-law regulator with b = 1), for the dimensionless couplings, M̃2

k and
g̃4,k, reading in d = 2 and d = 4 dimensions as [194],

d = 2 : k∂kM̃
2
k = −2M̃2

k − 1
4π

g̃4,k

(1 + M̃2
k )
,

k∂kg̃4,k = −2g̃4,k + 3
4π

g̃2
4,k

(1 + M̃2
k )2

. (320)

d = 4 : k∂kM̃
2
k = −2M̃2

k − 1
16π2

g̃4,k

(1 + M̃2
k )
,

k∂kg4,k = 6
32π2

g2
4,k

(1 + M̃2
k )2

≈ 3
16π2 g

2
4,k + O(M̃2

k , g
3
4,k) (321)
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The above equations have a trivial Gaussian and in d = 2 a non-trivial (cutoff-dependent) Wilson-
Fisher (WF) fixed point, where the latter indicates the existence of two phases [194].

Please observe that g4,k is dimensionless in d = 4 and the leading order term of its FRG flow
equation reproduces the perturbative result (29). Moreover, it is known that this leading order
result is the same for all types of regulators. In general, the scheme-dependence of perturbative RG
is connected to the regulator-dependence of FRG method, see [191, 192, 193]. The universality of
the FRG method is discussed in [192] and it was proven in [193] that the FRG flow equation admits
a perturbative solution and a scheme transformation was given which was used to obtain the β
function of the FRG method with a special choice of the regulator function from the perturbative
β function obtained in the modified minimal subtraction scheme. The β functions of the FRG
approach are not universal because the FRG method is a mass-dependent scheme which manifests
through the nontrivial coupling of mass. In other words, the explicit mass makes the relation
between the FRG and perturbative RG β functions nontrivial, i.e., if the quantum field theory
has no explicit mass, this scheme transformation is simple and trivial. Thus, one expect identical
results for the perturbative RG and FRG β functions in d = 4 dimensions for vanishing mass. In
[193] it is argued that a similar relation exists for all regulator types.

It is illustrative to recap known conformal properties of the Ising model in d = 2, see e.g.,
[10]. On Fig. 19 I plot the RG flow diagram of the Ising model with central charges at its fixed
points. The c-function along the trajectory starting at the Gaussian and terminating at the WF
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Figure 19: Representation of the RG flow diagram of the Ising model in the g̃2 ≡ M̃2, g̃4
plane [10]. The shaded area stands for initial conditions where M̃2 > 0 is positive which has
important consequences on the FRG study of the ShG model.

fixed points is known to decrease by ∆c = 1/2. However, if one considers the massive deformation
of the Gaussian fixed point which is the case in the shaded area of Fig. 19 then one finds ∆c = 1
[65, 195].

It is also useful to consider what happens with the RG flow diagram and its fixed points if one
include the constant, i.e., field-independent term into the FRG study of the Ising model [27]. As
it was shown in Section IV, the inclusion of the constant term could be problematic. Although it
does not modify the scaling of M̃2

k and g̃4,k but its RG flow equation suffers from the absence of
the Gaussian fixed point. Indeed, in d = 4 dimensions, for the optimised (i.e., Litim) cutoff the RG
flow equation for the constant term Ṽk(0) of the potential reads as [27],

k∂kṼk(0) = 1
32π2

(
1

1 + M̃2
k

)
− 4Ṽk(0) (322)

where the dimensionless coupling (i.e„ mass term) M̃2
k has a trivial scaling M̃2

k ∼ k−2 if one neglects
the quartic coupling. Thus, the β-function 1/(1 + M̃2

k ) tends to a non-vanishing constant in the
UV limit, i.e., for k → ∞.

It has already been mentioned that, within the nonperturbative RG equations extra care is
needed in the analysis of the field-independent terms. The essence of the problem of the RG

76



9. EXACT FRG EQUATION IN THE SINGLE FOURIER MODE APPROXIMATION IN LPA

scaling of the constant term is the (possible) absence of the Gaussian fixed point which, otherwise,
is present, if the constant term is not considered. In other words, the β-function of the constant
term should vanish if all couplings are set to zero. So, if the Gaussian fixed point is missing once the
field-independent coupling is included, then one finds problematic UV divergences which requires
a subtraction method. It was shown that such divergences occur for the quantum anharmonic
oscillator [180] for d = 1 dimensions and if one considers it in higher dimensions one has to
generalise the subtraction method for d = 4 dimensions [27].

As suggested by the above general considerations, I observe that a single subtraction, based on
the replacement

k∂kVk(0) = k4

32π2
k2

k2 + ∂2
φVk(0) → k4

32π2

[
k2

k2 + ∂2
φVk(0) − 1

]
→ − k2

32π2 ∂
2
φVk(0) , k → ∞ ,

(323)
leaves a quadratic term (in k) in the UV limit [27]. This subtraction term modifies the RG evolution
of the cosmological constant. Thus, Eq. (140) is changed as [27],

k∂kλk = 1
4πgk

(
1

1 + M̃2
k

− 1
)

− 2λk, (324)

from which one observes that the corresponding β-function does not diverge in the UV limit but
tends to a non-vanishing finite value, i.e., the expression gk

(
1

1+M̃2
k

− 1
)

approaches a negative
constant, where one keeps in mind that gk ∼ k2 and M̃2

k ∼ k−2 in the UV limit. Let me therefore
investigate the doubly-subtracted RG evolution [27],

k∂kVk(0) = k4

32π2

(
k2

k2 + ∂2
φVk(0) − 1 +

∂2
φVk(0)
k2

)
, k → ∞ , (325)

which leads to modification of the RG flow equation (140) of the dimensionless cosmological con-
stant [27],

k∂kλk = 1
4πgk

(
1

1 + M̃2
k

− 1 + M̃2
k

)
− 2λk, (326)

from which one observes that the β-function tends to zero in the UV limit, since we have the
asymptotic behavior that gk

(
1

1+M̃2
k

− 1 + M̃2
k

)
→ 0 if k → ∞, where one keeps in mind that

gk ∼ k2 and M̃2
k ∼ k−2 in the UV limit. Thus, it was shown that the rampant divergent terms k2

and k4 which naturally appear in the FRG equation for d = 4 dimensions for the scalar (matter)
field (in the absence of the Gaussian fixed point) can be removed by a suitable subtraction method.
These divergent terms are the consequence of the construction of FRG method and considered as
unphysical.

9.2 The SG model in d = 2
In order to obtain the RG flow equation for the (dimensionless) Fourier amplitude ũk of the SG
model (316) one has to perform the momentum integral in (319) which can be done analytically
for d = 2 dimensions with a specific choice of the regulator. Indeed, in the mass cutoff case, i.e. for
the power law regulator with b = 1, one can derive the RG flow equation from (319) which reads
as,

(2 + k∂k)ũk = 1
2πβ2ũk

[
1 −

√
1 − β4ũ2

k

]
(327)

see [10] or Eq. (21) of [22] for vanishing mass. Similarly, using the optimized (Litim) regulator one
finds

(2 + k∂k)ũk = 1
2πβ2ũk

[
1√

1 − β4ũ2
k

− 1
]
, (328)
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see [10] or Eq. (19) of [22] for vanishing mass. Equations (327) and (328) have the same qualitative
solution and both of them indicate the critical frequency, β2

c = 8π which is identical to that of
obtained from the linearised RG flow. Thus, I can confirm that the linearised RG is sufficient to
determine the exact value for the critical frequency of SG type models. In Fig. 20 I show the phase
structure obtained by solving (328). The RG trajectories of the exact RG flow are straight lines
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Figure 20: The figure shows the phase structure of the SG model obtained by the FRG
equation using Litim’s regulator in the scale-independent frequency case [10]. The two phases
are separated by β2

c = 8π. The dashed line shows the line of IR fixed points of the broken
phase.

(similarly to the linearised RG flow) because in LPA the frequency parameter is scale independent.
However, there is an important difference between the linearised and the exact RG flows. The exact
RG equations, (327) and (328) predict a line of IR fixed points below the critical frequency. Indeed,
above (below) the critical frequency β2

c = 8π, the line of IR fixed points is at ũIR = 0 (ũIR 6= 0).
For β2 < 8π the IR value for the Fourier amplitude depends on the particular value of β2. The line
of IR fixed points can be obtained by setting the derivative of the Fourier amplitude to zero in the
differential equations (327) and (328) which then reduce to simple algebraic equations which can
be solved analytically.

9.3 The MSG model in d = 2
As I argued, the MSG model has a Z2 symmetry (just like the Ising model), therefore one expects
two phases. Indeed, it was shown in [54] that the Ising-type phase transition is controlled by
the dimensionless quantity u/M2 related to the critical ratio (m/e)c of QED2 which separates
the confining and the half-asymptotic phases of the fermionic model. The critical ratio (m/e)c =
0.31 − 0.33 has been calculated by the density matrix RG method for the fermionic model which
implies [54] ( u

M2

)
c

=
(m
e

)
c

exp (γ)
2
√
π

= 0.156 − 0.168. (329)

One of my goals is to reproduce this critical ratio in the framework of the FRG method [22]. Let
me first consider the RG flow obtained by the optimized (Litim) regulator function (248) with
a = 1 in the LPA (i.e. z = 1/β2 =constant) which reads as [22]

(2 + k∂k)ũk = − 1
2πβ2ũk

[
1 −

√
(1 + M̃2

k )2

(1 + M̃2
k )2 + β4ũ2

k

]
, (2 + k∂k)M̃2

k = 0. (330)

In the broken symmetric phase, the RG trajectories merge into a single trajectory in the deep IR
region which is characterized by the critical ratio [ũ/M̃2]c ≈ 0.07957 (for β2 = 4π) and serves
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Figure 21: Phase diagram of the MSG model for β2 = 4π [22]. RG trajectories are obtained
by the integration of Eq. (330). Since the so called, spinodal instability (SI) does not occur
in the RG flow, the critical ratio of the MSG model can be determined, [ũ/M̃2]c ≈ 0.07957.
The arrows indicate the direction of the flow.

as an upper bound (see Fig. 21). The critical value obtained by Eq. (330) is less than the exact
result (329), therefore it requires further improvement. Let me try to improve it by the optimized
regulator (248) with a 6= 1 which has the following form in LPA [22]

(2 + k∂k)ũk = a

(a− 1)2πũkβ2

[
(1 + M̃2

k ) − (a+ M̃2
k )

+
√

(a+ M̃2
k )2 − ũ2

kβ
4 −

√
(1 + M̃2

k )2 − ũ2
kβ

4
]
,

(2 + k∂k)M̃2
k =0. (331)

However, for a 6= 1, the so called, spinodal instability (SI) appears in the RG flow in the broken
symmetric phase, i.e. RG equations become singular in the IR limit and the RG flow stops at some
finite scale (see the dashed lines in Fig. 22). Although RG trajectories start to converge into a single
one in the broken phase the critical value of the single-frequency MSG model cannot be determined
unambiguously. In other words, the convergence properties of the optimized RG is weakened for
a 6= 1. Let me try to use other types of RG equations, for example the power-law type RG with
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Figure 22: Phase diagram of the MSG model for β2 = 4π [22]. RG trajectories are obtained
by the integration of Eq. (331) with a = 100. The dashed lines correspond to RG trajectories
where SI occurs in the RG flow, thus the critical ratio of the MSG model cannot be obtained.

b = 1 in LPA which reads as [22]

(2 + k∂k)ũk =
(1 + M̃2

k ) −
√

(1 + M̃2
k )2 − ũ2

kβ
4

2πũkβ2 , (2 + k∂k)M̃2
k = 0. (332)
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It is known that in the sharp limit, the optimized RG becomes identical to the power-law type RG
with b = 1, i.e. Eq. (331) reduces to Eq. (332) for a → ∞. Thus, SI is expected in case of Eq. (332).
Indeed, the numerical solution of (332) indicates the appearance of SI in the broken symmetric
phase (see the dashed lines in Fig. 23).
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Figure 23: Phase diagram of the MSG model for β2 = 4π [22]. RG trajectories are obtained
by the integration of Eq. (332). The dashed lines correspond to RG trajectories where SI
occurs in the RG flow, thus the critical ratio of the single-frequency MSG model cannot be
obtained.

It is also illustrative to compare the IR values of the ratio ũ/M̃2 at the scale of SI given
by the integration of optimized RG with various values for the parameter a using the same UV
initial condition (see Fig. 24). This demonstrates that the best estimate for the critical ratio of the
single-frequency MSG model, in the framework of the optimized RG can be achieved for a = 1.
My findings [22] are consistent to the feature of the optimized RG namely that it increases the
convergence properties of the truncated flow. For example, similar result is shown in Fig. 12 of
[185] in the framework of the O(N) symmetric scalar theory in d = 3 dimensions.
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Figure 24: This figure shows how the IR value of the ratio ũ/M̃2 obtained by the integration
of RG Eqs. (330) and (331) depends on the parameter a of the regulator function [22]. The
same initial condition has been used for the numerical integration, (ũ(Λ) = 10−5, M̃2(Λ) =
10−9). SI has occurred for a 6= 1, thus the RG flow stops at some finite scale where the ratio
has been read off and plotted. It is possible to avoid SI but only for a = 1. For a → ∞ (i.e.
x → 1) the RG Eq. (331) becomes identical to that was obtained by the power-law type
regulator with b = 1 (332); consequently in this case the IR values of the ratio coincide.

Since Eq. (330) has no singular behavior, the appearance of SI is expected to be the consequence
of an inappropriate approximation, e.g. too drastic simplification of the functional subspace. Con-
sequently, in order to obtain reliable results and to avoid SI in case of the MSG model one has to
incorporate higher harmonics generated by RG equations which is discussed later.
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9.4 Optimisation of the regulator-dependence based on the MSG model
The fact that the critical value of the MSG model which separates the two phases cannot be
obtained for all type of regulators can be used to optimise the regulator-dependence of the FRG
equations [23, 24]. For example, in Ref. [24] the optimization of the regulator-dependence of func-
tional RG equations in LPA has been done in the framework of the PMS method by using the CSS
regulator (249). The CSS regulator (249), has a very general functional form and it reduces to all
major type of regulator functions in appropriate limits [23]. Due to its versatile functional form, the
CSS regulator represents an excellent playground for the PMS method and allows to systematically
investigate the optimization of the regulator within a rather wide class of regulators.

The RG trajectories corresponding to the broken phase of the single-frequency MSG model
where the reflection symmetry (Z2) is broken spontaneously, merge into a single one in the IR
limit, see Fig. 21 and its slope defines the critical ratio. Thus, in the broken phase ũk is a linear
function of M̃2

k in the IR limit [24],

ũk = a M̃2
k + b. (333)

Both the ratio of the dimensionful coupling to the mass term, as well as the dimensionless equivalent
tend to the constant [ũk→0/M̃

2
k→0] = [uk→0/M

2
k→0] = a (since ũk and M̃2

k are increasing in the IR
limit, their ratio tends to a and the constant b term can be neglected), and the slope is independent
of the initial conditions (in the symmetric phase, the linear functional form (333) holds but the
slope depends on the initial values).

There is strong numerical evidence [24] for a scheme-independent slope a = 1/(4π), within the
single Fourier-mode approximation. This means, the critical value in this approximation is

χc =
[ u

M2

]
c

= 1
(4π) ≈ 0.07957. (334)

In this case,the optimized regulator (248) with b = 1 and c = 0.01 leads to a ratio [u/M2]c =
0.07964 closer to the analytic one but other regulators such as the power-law type regulator with
b = 1 run into a singularity and stop at some finite momentum scale, rendering the determination of
the critical ratio impossible. Therefore, the use of the single Fourier mode approximation provides
us with a tool to consider the convergence properties of the RG equations and to optimise the
regulator functions [24].

Indeed, the convergence properties of the RG equation depend on the regulator chosen. The RG
evolution stops at some finite scale kf 6= 0 and the ratio [uk→kf/M

2
k→kf

] becomes scheme-dependent,
where the optimization can be performed. This strategy is used to select the optimized regulator
according to its convergence properties. The goal is to find the optimal set of parameters b, h, c of
the CSS regulator (249). In Fig. 25, the critical ratio obtained by the CSS with exponential norm
(249) is shown as a function of b, h and c. The one closest to the analytic formula (334), is obtained
for b = 1, c = 0.001 and h = 1. This is the Litim limit of the CSS regulator. In Fig. 26, I plot the
minimum values for the critical ratio obtained at every subgraph of Fig. 25 i.e., keeping b fixed,
and thus the dependence of each minimum on the parameter b can be read off, confirming once
more the nature of the optimized regulator. Again, this demonstrates that Litim’s limit (b → 1,
c → 0 and h = 1) leads to the optimum result [24].

9.5 The MSG model in d > 2
Finally, let me discuss the FRG study of the MSG model in d = 4 dimensions (or in general in
higher dimensions) [19, 20]. Similarly to the d = 2 case, one finds two phases in higher dimensions
[19, 20], controlled by the dimensionless quantity ũkβ̃

2
k/M̃

2
k , which tends to a constant in the IR

limit. In the (Z2) symmetric phase the magnitude of this constant is arbitrary (and depends on
the initial conditions), but always smaller than one, i.e., limk→0 |ũkβ̃

2
k/M̃

2
k | < 1 (see the blue lines

of Fig. 27).
In the spontaneously broken (SSB) phase, the IR value of the magnitude of the ratio is exactly

one [19] (independently of the initial values) which serves as an upper bound, see green lines of
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χc 

χc χc 
χc 

χc 

Critical ratio χc for bosonized QED2 (regulator in exponential normalization, b parameter fixed) !

Figure 25: I plot the critical ratio χc of bosonized QED2, obtained by various parameters of
the CSS regulator with exponential norm [24]. The critical ratio χc is on the ordinate axis.
Lower critical ratios indicate better regulators, with the optimum results being obtained for
b = 1, c = 0.001 and h = 1 (Litim limit of the CSS).

Figure 26: Minimum values (with respect to c and h for fixed b) of the critical ratio obtained
by the CSS regulator with exponential norm are plotted for various values of the parameter
b [24]. The most favorable results are obtained in the limit b → 1, c → 0 and h → 1. Notably,
the optimum critical ratio [u/M2]c obtained for b → 1 is lower than the “optimum” value
(with respect to a variation of c and h) obtained for b = 1.44.

Fig. 27. The black line separates the two phases. In other words, trajectories in the SSB phase
(green lines) merge into a master trajectory (green line parallel to the black one) of Fig. 27 which
implies [19],

ūkβ̃
2
k = 1 + M̃2

k , → ūkβ̃
2
k

M̃2
k

− 1 = 1
M̃2

k

= k2

M2
UV

. (335)

This scaling relation is valid when the running is determined by the master trajectory which,
apart from the very beginning of the running, is always the case in the SSB phase. Under these
assumptions, Eq. (335) can be used to determine the IR value of the Higgs mass and VeV from the
UV initial conditions (190a) and compared to the known results of (187). Indeed by substituting
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Figure 27: Flow of the MNI (i.e. MSG) model showing two phases separated by a black line
with a unit slope [19]. The blue lines corresponds to the symmetric phase, while the green
lines correspond to the SSB phase.

(335) into (186) and assuming running parameters ũkβ̃
2
k/M̃

2
k = ukβ

2/M2, one gets [19]

Mh(k) = MUV

√√√√2
(
ũkβ̃2

k

M̃2
k

− 1
)

and from Eq.(335) : Mh(k) = MUV
√

2

√
k2

M2
UV

=
√

2���MUV
k

���MUV
=

√
2k, (336)

where the cancellation of the UV mass has been made evident. Since kIR = 250 GeV, it provides
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Figure 28: Flow of the Higgs mass from the cosmological (UV) scale to the electroweak (IR)
scale obtained from the study of the MNI model [19]. The trajectories merge into a single
line showing UV insensitivity.

the required IR value for the Higgs mass (187), at least the same order, in accordance with mea-
surements. Furthermore, the IR values for the Higgs mass becomes independent of the UV initial
parameter (see Fig. 28).

I showed that the Massive Natural Inflation (MNI) model which is an MSG type scalar theory
serves as a viable model for cosmic inflation [19, 20]. By using PLANCK data, one can fix the
parameters of the model at the scale of inflation which is around the GUT scale. It was shown
that the value for the parameters chosen at the cosmological scale does not influence the results at
the electroweak scale. By using the MNI model one can complete the theory towards low energies
producing the correct order-of-magnitude for the Higgs mass [19].
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10 Exact FRG equation with higher harmonics in LPA

In this section I discuss the FRG equations obtained in LPA for a general periodic (SG type) model
where the running dimensionful (and dimensionless) potential contains higher harmonics [1, 4, 5]

SG : Vk(ϕ) =
∞∑

n=1
un(k) cos(nβϕ), Ṽk(ϕ̃) =

∞∑
n=1

ũn(k) cos(nβ̃kϕ̃), (337)

and the dimensionful frequency β is scale-independent. Similarly, I consider a general periodic
model with a mass term, i.e., the general MSG type model where the running dimensionful (and
dimensionless) potential contains higher harmonics [4, 5]

MSG : Vk(ϕ) = 1
2M

2ϕ2 + Uk(ϕ), Uk(ϕ) =
∞∑

n=1
un(k) cos(nβϕ),

Ṽk(ϕ̃) = 1
2M̃

2
k ϕ̃

2 + Ũk(ϕ̃), Ũk(ϕ̃) =
∞∑

n=1
ũn(k) cos(nβ̃kϕ̃), (338)

and again the dimensionful frequency β and the dimensionful mass M2 are scale-independent.

10.1 Dimensionful potential and the convexity

Let me first show why the (dimensionful) effective potential should be convex [196]. The effective
action is the Legendre transformation of W [J ], which is the generating functional for the connected
Green-functions

Γeff [φ] = −W [J ] +
∫
Jφ . (339)

If one fixes the field and the source to constant values (φ(x) = φ0, J(x) = J0) in the space-time
volume Ω, then the effective action reduces to the effective potential as follows

Γeff [φ] = ΩVeff(φ0) , W [J ] = Ωw(J0) . (340)

Using the relations of the Legendre transformation for the reduced functions

φ0 = δw[J0]
δJ0

, J0 = δVeff [φ0]
δφ0

, (341)

one obtains the following equation by differentiating the effective potential with respect to the field
and the source by using the chain rule,(

δ2Veff

δφ0δφ0

)(
δ2w

δJ0δJ0

)
= 1. (342)

The second derivative of the generating functional of the connected Green functions with respect to
the source term is the connected correlation function which should be positive. Thus, the convexity
of the effective action comes from Eq. (342)(

δ2Veff

δφ0δφ0

)
≥ 0 . (343)

On one hand, the non-perturbative RG equation (240) should recover the full quantum effective
action in the IR (k → 0) limit. On the other hand, I have just shown that the effective action or
more precisely the (dimensionful) effective potential should be convex. In the following I discuss
the consequences for the SG and MSG models [1, 4, 5].
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10.1.1 Convexity of the SG model – flattening of the dimensionful periodic potential

As it was shown previously, an important property of the effective potential is the convexity.
The effective potential Veff(ϕ) is convex even if the classical potential is non-convex. It was also
argued that the effective potential should be periodic as well, if the bare theory is periodic. This
conflict between convexity and periodicity can be resolved only in a trivial manner, namely if Veff
is a constant function, which is periodic and convex at the same time. Thus, I conclude, that for
the periodic field theory, the convexity and periodicity are so strong constraints on the effective
potential that it should be constant [1]. Indeed, the FRG study of the SG model confirms the
flattening of the dimensionful potential, see Fig. 29 in d = 2 [1] and in d > 2 [17], too. Let me

-2 -1 0 1 2

f

-0.0004

-0.0002

0

0.0002

0.0004

VHfL

Figure 29: Flattening of the blocked dimensionful periodic potential under RG transforma-
tions in d = 2 dimensions [1].

note that this general statement (flattening of the SG potential in both phases) holds for the
dimensionful potential, however, the dimensionless one can be used to distinguished between the
phases of the periodic scalar field theory (which is known to have a non-trivial phase structure in
d = 2).

10.1.2 Convexity of the MSG model – RG running induced cosmic inflation

Let me now study the convexity of the (dimensionful) MSG model in d = 4 dimensions which has
relevance for cosmic inflation [20]. As it was discussed previously, the simple mass term has no RG
evolution at all, i.e., the dimensionful mass remains unchanged, so that the dimensionless mass has
a trivial RG scaling. The MSG model has a non-trivial RG scaling because of the periodic term
which evolves under RG transformation and in the low-energy, i.e., IR limit the MSG potential
should tend to a convex one even if the potential in the high-energy, i.e., UV limit is non-convex.
This result can be used to a possible mechanism for inflation which combines the "old" (inflation
form false vacuum) and the "new" (slow-roll) scenarios for inflation [20].

The main idea behind the proposed method for RG running induced inflation [20] is the fact
that any scalar potential should tend to a convex one during the RG flow. The RG evolution of the
potential starts from a concave potential at high energies, (i.e., at the Planck scale) which ensures
that the VeV can be trapped; it tends to a less concave one at lower energies (i.e. at the GUT scale)
and releases the VeV to initiate inflation. RG running is expected to provide a sufficient change
in the shape of the potential between the two scales. Indeed, in the RG-inspired model, the VeV
is assumed to be trapped in a false vacuum in the pre-inflationary period at very high energies,
and then, due to quantum fluctuations, as described by the RG, the effective potential is modified
releasing the VeV and leading to the classical inflationary evolution at the scale of inflation, see
Fig. 30.

RG evolution forces the potential to tend a convex one which is valid for any potential, and so
the MSG potential becomes shallow at the scale of inflation. At this stage, the VeV starts to roll
down towards the real minimum, inducing inflation. A 3D visual representation of the change is
given in Fig. 31, where the change in the shape of the potential against the running RG scale k is
plotted for the MSG model [20].
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Figure 30: Potential of the MSG model (171) at various RG scales [20]. The solid line stands
for the potential at the scale of inflation. The values of the potential parameters have been
calculated by the slow-roll study of the MSG model which yield the solid line that represents
the potential over the whole inflationary period, where the VeV (full black circle) rolls down
inducing inflation. The dashed lines correspond to UV values (pre-inflation), obtained by
RG considerations.

Figure 31: The RG scaling of the MSG potential is shown from the Planck scale towards the
scale of inflation for the MSG potential [20]. The red ball denotes the VeV which is trapped
in a false vacuum at the Planck scale and due to RG running it is released at the scale of
inflation to roll down to the real ground state.

Here, I discussed the consequences of convexity on the dimensionful SG and MSG potentials.
In the following I turn to the discussion of the dimensionless potentials and their RG running.

10.2 Dimensionless potential and the symmetry broken phase
As I argued, convexity puts strong constraints on the dimensionful effective potential. Let me
consider the FRG equation (with various regulators) in LPA for d = 2 dimensions and draw some
general conclusions on the shape of the dimensionless potential in the symmetry broken phase
[1, 4, 5]. Let me first discuss the Wetterich RG equation with sharp cutoff (255) which is identical
to the Wegner–Houghton RG equation in LPA. If one differentiates it with respect to the field
variable and multiply it with 1 + Ṽ ′′

k one finds the following flow and fixed point equations [4, 5],

(2 + k∂k)Ṽ ′
k = −Ṽ ′′

k (2 + k∂k)Ṽ ′
k − 1

4π Ṽ
′′′

k , → 2Ṽ? + [Ṽ ′
? ]2 + 1

4π Ṽ
′′

? = c1 (344)

with the arbitrary constant c1. The fixed point equation is exhibiting the trivial solution Ṽ∗ = c1/2
(Gaussian fixed point) and [4, 5],

Ṽ? = −1
2φ

2 + cφ+ const. (345)
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which can also be obtained as the solution of 1 + Ṽ ′′
k . The sharp cutoff scheme, i.e., the Wegner–

Houghton RG equation can account for the spinodal instability (SI), which appears when the
restoring force acting on the field fluctuations to be eliminated vanishes, 1 + Ṽ ′′

k (φ) = 0 at some
finite scale kSI and the resulting condensate generates tree-level contributions to the evolution
equation. It was shown that the tree-level RG equation (228) leads to the local potential (345),
too. The appearance of the spinodal instability or more general, the IR fixed point solution (345)
are signatures of the symmetry breaking, thus, one refers to (345) as the IR convexity fixed point
[1, 4, 5].

As a next step, let me study the Wetterich RG equation (254) with the power-law cutoff which
reads as

(2 + k∂k)Ṽk = − 1
4π

∫ ∞

0
dy (−b)y−b y

y(1 + y−b) + Ṽ ′′
k

(346)

with y = p2/k2. For arbitrary parameter value b, the propagator on the right hand side of Eq. (346)
may develop a pole at some scale kSI and at some value of the field φ for which Ṽ ′′

k (φ) = −C(b) =
−b/(b−1)(b−1)/b holds, which signals the occurring of SI. The infrared singularity of the functional
RG equation is supposed to be related to the convexity of the effective action for theories within
a phase of spontaneous symmetry breaking. It was shown that in such a case one has to seek the
local potential for k < kSI by minimizing Γk in the subspace of inhomogeneous (soliton like) field
configurations and ends up with the result [4, 5],

Ṽ? = −1
2C(b)φ2 + cφ+ const. (347)

which is again a parabolic shape fixed point solution.
As a final step, let me study the Wetterich RG equation (254) with the Litim (optimised) cutoff

(256) which leads to the following fixed point equation and solution (after derivation with respect
to the field and multiplication by (1 + Ṽ ′′

k )2), see [4, 5],

(1 + Ṽ ′′
? )22Ṽ ′

? + 1
4π Ṽ

′′′
? = 0, → Ṽ? = −1

2φ
2 + cφ+ const. (348)

where the fixed point solution is identical to that of obtained for the sharp cutoff case (345). Let
me also note, that the IR convexity fixed point can be found for the symmetry broken phase of
the φ4 model, see Fig. 19, where g̃4 = 0 and g̃2 = −1.

10.2.1 Dimensionless SG potential with higher harminics

For the sake of completeness let me derive the RG flow equations for the Fourier amplitudes of the
SG model with higher harmonics (337). The insertion of the ansatz (337) into the mass cutoff RG
Eq. (344) yields the RG flow equations [1, 4, 5]

(2 + k∂k)nũn = β2

4πn
3ũn + β2

2

∞∑
s=1

sAn,s(2 + k∂k)ũs, (349)

for the couplings ũn where An,s(k) = (n − s)2ũ|n−s| − (n + s)2ũn+s. Eq. (344) is valid unless SI
arises. In the strong-coupling phase β2 > 8π no SI occurs, Eq. (349) holds at any scale and every
Fourier amplitude is irrelevant. The dimensionless blocked potential becomes flat, i.e. all couplings
ũn vanish in the IR limit k → 0. For β2 < 8π the SI occurs in the RG flow when the propagator
diverges, k2

SI +V ′′
kSI

(φ) = 0 and one has to use the tree-level RG to obtain the IR effective potential
[1, 4, 5].

As a final step, let me turn now to the discussion of the Wetterich RG flow using the optimized
(Litim) regulator. The insertion of the ansatz (337) into the mass cutoff RG Eq. (348) yields the
RG flow equations [4, 5]

(2 + k∂k)nũn = β2

4πn
3ũn + β2

∞∑
p=1

pAn,p(2 + k∂k)ũp − 1
4β

4
∞∑

q=1

∞∑
p=1

pAn,qAq,p(2 + k∂k)ũp (350)
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for the Fourier amplitudes ũn where Ai,j = (i− j)2ũ|i−j| + (i+ j)2ũi+j . For β2 < 8π the numerical
solution of the system (350) of the coupled flow equations exhibits the following features. Values
for β2 taken in the vicinity of the critical value 8π and restricting oneself to the first few Fourier
amplitudes, one finds no SI in the IR region and the dimensionless Fourier amplitudes tend to a
constant value.

Thus, it is important to consider the connection between the non-trivial dimensionless effective
potential obtained by the direct integration of various RG flow equations and the general properties
of the dimensionless effective potential found in the broken phase. In case of a Z2 symmetry, the
linear term vanishes in (345), in (347) and in (348). I drop the field-independent terms, too. For
the sake of simplicity let me consider the case of the Litim cutoff (348). In this case, in the so
called weak coupling phase of the periodic (SG type) model (β2 < 8π) the dimensionless effective
potential remains a non-vanishing periodic one (the line of non-trivial IR fixed points in Fig. 32),
graphically obtained by setting forth along the φ axis the section of the parabola [1, 4]
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Figure 32: The phase structure of the periodic model obtained in LPA (β2 is scale-
independent) [4]. The non-trivial IR fixed points for β2 < 8π are obtained by the Litim
cutoff. The line of IR fixed points is given by the analytic expression ũ1(0) = 2/β2.

Ṽk→0(φ) = 2
β2

∞∑
n=1

(−1)n+1

n2 cos(nβφ) = −1
2φ

2, → ũ1(0) = 2
β2 (351)

with φ ∈ [−π/β, π/β] periodically [1, 4]. Each parabola section is the same parabola that one would
find as the non-trivial fixed point of the polynomial theory. The periodic dimensionless effective
potential is continuous, sectionally differentiable.

10.2.2 Dimensionless MSG potential with higher harmonics

It was shown that the FRG equation results in an inverse parabolic dimensionless potential in the
symmetry broken phase. Let us use this to calculate the critical value of the MSG model. In the
broken phase, in the IR limit, the dimensionless potential of the MSG model (338) can be written
as [4],

Ṽk→0 = 1
2M̃

2
k→0φ

2 + Ũk→0(φ) ≡ −1
2φ

2 → Ũk→0(φ) = −1
2(1 + M̃2

k→0)φ2 (352)

where Ũk→0 is periodic and contains higher harmonics, thus, one finds [4]

Ũk→0(φ) = (1 + M̃2
k→0) 2

β2

∞∑
n=1

(−1)n+1

n2 cos(nβφ) → ũ1(k → 0) = (1 + M̃2
k→0) 2

β2 (353)
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which results in the following critical value [4][
ũ1(k → 0)
M̃2

k→0

]
c

= 1 + M̃2
k→0

M̃2
k→0

2
β2 = 2

β2 →
[ u1

M2

]
c

= 2
4π ≈ 0.159155 (354)

where we used the scaling relation of the explicit mass M̃2
k ∼ k−2. This critical value is twice as

large as the one obtained for the single-frequency approximation and closer to the known value of
the critical ratio of the corresponding fermionic model. Important to note that the Wetterich RG
equation with the Litim cutoff and with the mass cutoff (the power-law regulator with b = 1 which
is identical to the Wegner-Houghton RG in d = 2) gives the same critical value (354). The Litim
regulator has the best convergence properties, so it can be used to avoid the appearance of SI in
the RG flow which happens when the propagator diverges, k2

SI + V ′′
kSI

(φ) = 0 [4].

10.3 Periodicity and the reflection symmetry
Up to now I considered the SG model (either with or without higher harmonics) which has two
discrete symmetries, the periodicity (φ → φ + 2π/β) and the reflection (φ → −φ) symmetry. In
order to study the interplay of these two symmetries in the framework the FRG method let me
start to consider the following very general periodic theory, i.e., the multi-frequency sine-Gordon
(MFSG) model [197, 198, 199, 200, 201, 202, 203], see [5]

SMFSG =
∫

d2x

[
1
2∂µφ∂

µφ−
n∑
i

µi cos(βiφ+ δi)
]

(355)

which contains n cosine terms where φ is a real scalar field, βi ∈ R are the frequencies, βi 6= βj if
i 6= j, µi are the coupling constants (of dimension mass2 at the classical level) and δi ∈ R are the
phases in the terms of the potential. Two cases can be distinguished according to the periodicity
properties of the model. The first one is the rational case, when the potential is a trigonometric
function: the ratios of the frequencies βi are rational and consequently, the potential is periodic.
Let the period of the potential be 2π/β in this case. The other case is the irrational one, when the
potential is not periodic [5].

If the target space of the field φ is compactified: φ ≡ φ + 2kβπ, where k ∈ N is arbitrary,
the MFSG model is called the k-folded multi-frequency SG model [199]. It was shown by semi-
classical (mean-field/Landau-Ginzburg) analysis [197] and by means of form factor perturbation
and truncated conformal space approaches [197, 200, 202, 203] that (first and second order) phase
transitions occur in the compact MFSG model as the coupling constants are tuned appropriately
(assuming that n > 1). Consequently, it represents an excellent toy model to study the influence of
the compactness on the phase structure and the low-energy behavior of the model. Here, I restrict
the attention to the rational, non-compact case [5].

As a rule, the solution of the RG equations is sought for in a restricted functional subspace.
Since the RG equations retain the symmetries of the bare action, the functional subspace should
be chosen keeping the symmetries of the bare action unbroken. Furthermore, even this – generally
infinite dimensional – subspace is reduced to a finite dimensional one by the truncation of the
appropriate series expansion of the blocked potential. The truncated Fourier expanded form can
be a straightforward approximation for scalar models with periodicity in internal space [5].

Let me now turn to the symmetries of MFSG models if the ratios of the frequencies are rational.
Then the bare potential is periodic in the internal space, let its period be 2π/β, and one has to
look for the solution of the RG equations among the periodic functions with such a period. The
bare potential may have however further symmetries as well. For example, the MFSG models can
exhibit a reflection symmetry besides periodicity. Three cases can be distinguished [5].

• Let us suppose that the bare potential of the MFSG model contains a single cosine mode
with δ1 = 0

ṼΛ(φ) = µ̃1 cos (β φ) . (356)
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In this case the model has a discrete reflection symmetry (φ → −φ), which is preserved by
the FRG equations. Since the RG transformations generate higher harmonics, one is inclined
to look for the solution in its Fourier decomposed form

Ṽk(φ) =
N∑

n=0
ũn(k) cos (nβ φ) , (357)

exhibiting periodicity in the internal space. The dimensionless couplings are represented
by the Fourier amplitudes ũn(k) (with ũ1(k = Λ) = µ̃1) and the ‘frequency’ β is a scale-
independent, dimensionless parameter in the LPA.

• If the bare potential of the MFSG model contains a single sine mode (i.e. δ1 = 3π/2)

ṼΛ(φ) = µ̃1 sin (β φ) , (358)

the model has another discrete Z2 symmetry (φ → −π/β − φ) which is preserved by the RG
equations. The potential is antisymmetric but the RG equations are not, consequently, one
has to look for the solution of the RG equations as

Ṽk(φ) =
N∑

n=0
[ũ2n(k) cos (2nβφ) + ṽ2n+1(k) sin ((2n+ 1)βφ)] (359)

with the dimensionless Fourier amplitudes ũ2n(k) and ṽ2n+1(k) (and ṽ1(k = Λ) = µ̃1).

• Finally, if the bare potential of the MFSG model contains both cosine and sine modes (i.e.
δ1 = 0 and δ2 = 3π/2)

ṼΛ(φ) = µ̃1 cos (β φ) + µ̃2 sin (β φ) , (360)

the model has no Z2 symmetry, consequently, all the Fourier modes are generated during the
RG flow and the solution has the general form

Ṽk(φ) =
N∑

n=0
[ũn(k) cos (nβφ) + ṽn(k) sin (nβφ)] , (361)

with the dimensionless Fourier amplitudes ũn(k) and ṽn(k) (and ũ1(k = Λ) = µ̃1, ṽ1(k =
Λ) = µ̃2).

Since Eq.(361) represents the blocked potential for the most general MFSG model with rational
frequency ratios, let me further discuss that case. Inserting the ansatz (361) into the derivative
form of the Wetterich RG equation with mass cutoff (344) (which is identical to the sharp cutoff,
i.e, the Wegner–Houghton RG equation in d = 2 dimensions) one can read off flow equations for
the Fourier amplitudes, i.e. for the scale-dependent dimensionless couplings ũn(k), ṽn(k) which
read as [5]

(2 + k∂k)nũn = β2

4πn
3ũn + β2

2
∑N

s=1

(
sA

(1)
n,s(2 + k∂k)ũs + sA

(4)
n,s(2 + k∂k)ṽs

)
, (362)

(2 + k∂k)nṽn = β2

4πn
3ṽn − β2

2
∑N

s=1

(
sA

(2)
n,s(2 + k∂k)ũs + sA

(3)
n,s(2 + k∂k)ṽs

)
, (363)

where

A(1)
n,s(k) = (n− s)2ũ|n−s| − (n+ s)2ũn+sΘ(n+ s ≤ N),

A(2)
n,s(k) = sgn(s− n) (n− s)2ṽ|n−s| + (n+ s)2ṽn+sΘ(n+ s ≤ N),

A(3)
n,s(k) = −(n− s)2ṽ|n−s| − (n+ s)2ṽn+sΘ(n+ s ≤ N),

A(4)
n,s(k) = sgn(s− n) (n− s)2ṽ|n−s| − (n+ s)2ṽn+sΘ(n+ s ≤ N),
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10. EXACT FRG EQUATION WITH HIGHER HARMONICS IN LPA

with sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0, and Θ(n ≤ N) = 1 if n ≤ N and Θ(n ≤ N) = 0
if n > N . Let me note that Eq. (344) and, consequently, Eq. (362), Eq. (363) are valid unless SI
arises [5].

Let me consider the IR effective theory of the MFSG model in the framework of the Wetterich
RG equation with mass cutoff, i.e., by solving Eqs. (362), (363) numerically. For β2 > 8π, the
Fourier amplitudes are irrelevant in the limit k → 0, independently of the initial conditions, see
Fig. 33 [5]. The numerical solution provides the IR scaling of the model which is determined by
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Figure 33: The scaling of the first few Fourier amplitudes of the MFSG model is obtained by
the Wetterich RG equation with mass cutoff, i.e., by solving Eqs. (362), (363) numerically
for β2 = 12π with various initial conditions for the higher harmonics [5]. The peaks in the
scaling of ũ2(k) and ṽ2(k) indicate the change of their sign during the RG flow.

two independent parameters (ũ1(Λ), ṽ1(Λ)), if the bare action has no Z2 symmetry and depends
on a single parameter (either ũ1(Λ) or ṽ1(Λ)) in case of a Z2 symmetric bare action, and it is
independent of the initial conditions of the higher harmonics, see Fig. 33.

For β2 < 8π, the IR scaling behavior turns all the Fourier amplitudes into relevant coupling
constants, consequently, an SI could appear in the RG flow. Indeed, in Fig. 34 the scaling of the
coupling constants of the MFSG model is presented for β2 = 4π and the vertical line shows the
appearance of SI.

Beyond the momentum scale kSI, the RG equation loses its validity and one has to use the tree-
level RG equation (228) which leads to the IR effective potential (345) in the deep IR limit (k → 0).
In order to preserve periodicity, the IR effective potential of the MFSG model has a parabola-shape
for φ ∈ [−π/β, π/β] and such parabola sections are repeated along the φ axis [5]. Let me analyze the
sensitivity of the IR effective theory on the UV initial conditions. In case of a reflection symmetry
φ → −φ, the linear term vanishes in (345), i.e. c = 0, and the potential is superuniversal, i.e.
independent of any initial conditions. If the bare action has another type of reflection symmetry
φ → −φ−π/β, then the constant in (345) is non-zero but fixed, i.e. c = −π/(2β), consequently, the
IR potential is again superuniversal. If the bare action of the MFSG model has no Z2 symmetry
then the deep IR behavior depends on a single parameter c [5].

Let me consider the IR scaling of the MFSG model by solving the Wetterich RG equation with
mass cutoff (344) (which is identical to the sharp cutoff, i.e., the Wegner–Houghton RG equation in
d = 2 dimensions) by a computer algebraic code. The solution found is expanded in Fourier series
in order to compare the results to those obtained by Eqs. (362), (363). For β2 = 4π the scalings of
the first few Fourier amplitudes are plotted in Fig. 34. There is a quantitative agreement between
the results obtained by Eq.(344) and Eqs. (362), (363) in the UV and IR scaling regimes. However,
the important difference is that no SI is found in the RG flow when Eq.(344) is solved directly. This
indicates that SI occurs in the RG approach as an artifact due to the truncated Fourier-expansion
applied to the almost degenerate blocked action of the MFSG model, at least for β2 = 4π [5].
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Figure 34: The scaling of the first few Fourier amplitudes of the MFSG model is obtained
for β2 = 4π [5] by solving numerically either Eqs. (362), (363) or Eq. (344). In the latter
case, the partial differential equation (344) is solved by a computer algebraic code and then
the solution is expanded in Fourier series. The vertical line indicates the momentum scale
of SI (kSI) where Eqs. (362), (363) lose their validity. Above this scale, kSI < k, the results
obtained by Eqs. (362), (363) and by Eq. (344) coincide. Below the scale of SI, k < kSI, the
scaling of the Fourier amplitudes is determined by the direct integration of Eq. (344).

The IR effective potential of the MFSG model was found to be different above and below
β2

c = 8π. For β2 > 8π, the deep IR behavior of the MFSG model with Z2 symmetry (i.e. φ → −φ
or φ → −π/β − φ) depends on the UV initial condition for either the fundamental cosine or the
fundamental sine mode, respectively, and for β2 < 8π it is superuniversal, i.e. independent of any
initial conditions. If the MFSG model has no Z2 symmetry, for β2 > 8π the IR effective potential
depends on the UV initial conditions both for the fundamental cosine and sine modes (i.e. it
depends on two independent parameters) and for β2 < 8π it is universal [5], i.e. depends on only
a single parameter, namely the ratio ũ1(Λ)/ṽ1(Λ) [5].
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11 Exact FRG equation in the single Fourier mode approx-
imation beyond LPA

In this section I apply the FRG method for SG type models beyond LPA [18, 2, 3, 22, 10, 11,
25, 194]. It was shown in [3] that the Polchinski RG equation in LPA’ is not suitable to recover
the known dilute gas RG equations obtained for the 2D Coulomb-gas (CG) which is equivalent to
the 2D-SG model. Similarly, the Wegner-Houghton RG equation is also problematic beyond LPA:
although flow equations can be obtained at LPA’ [2] but it confronts with the gradient expansion,
so, it is not a good choice beyond LPA. Thus, I use the Wetterich RG equation in this section.

11.1 The SG model in arbitrary dimension
Let me first discuss the SG model. In order to solve the FRG equation in LPA’, I consider the
following ansatz for the SG model [18]

Γk[ϕ] =
∫
ddx

[
1
2zk(∂µϕ)2 + Vk(ϕ)

]
, Vk(ϕ) = uk cos(βϕ) (364)

where the local potential contains a single Fourier mode. The FRG equations at LPA’ level have
been discussed previously and they are given by Eq. (263). Inserting the ansatz (364) into Eqs.
(264), (265), flow equations for the dimensionful couplings can be derived [18]

k∂kuk =
∫

p

k∂kRk

β2uk

(
P −

√
P 2 − (β2uk)2√

P 2 − (β2uk)2

)
, (365)

k∂kzk =
∫

p

β2 k∂kRk

2

[−(β2uk)2P (∂p2P + 2
dp

2∂2
p2P )

[P 2 − (β2uk)2]5/2 +
(β2uk)2p2(∂p2P )2(4P 2 + (β2uk)2)

d [P 2 − (β2uk)2]7/2

]
,(366)

where P = zkp
2 +Rk and

∫
p

=
∫
dp pd−1Ωd/(2π)d with the d-dimensional solid angle Ωd. Since the

dimensionful frequency is scale-independent, it is convenient to merge it with the scale-dependent
wave function renormalization zk. Thus, I introduce ẑk = zk/β

2, R̂k = Rk/β
2 and P̂ = P/β2 =

ẑkp
2 + R̂k and the RG flow equations (365) and (366) can be written as [18],

k∂kuk =
∫

p

k∂kR̂k

uk

 P̂ −
√
P̂ 2 − u2

k√
P̂ 2 − u2

k

 , (367)

k∂kẑk =
∫

p

k∂kR̂k

2

[−u2
kP̂ (∂p2 P̂ + 2

dp
2∂2

p2 P̂ )
[P̂ 2 − u2

k]5/2
+
u2

kp
2(∂p2 P̂ )2(4P̂ 2 + u2

k)
d [P̂ 2 − u2

k]7/2

]
, (368)

Before I further study the RG flow equations, I show that they can be derived by using the rescaled
version of the original action for the SG model [18],

Γk[θ] =
∫
ddx

[
1
2 ẑk(∂µθx)2 + uk cos(θx)

]
, (369)

where the rescaled (dimensionless) field θ = βϕ is introduced. Let me note, that the field carries a
dimension for d 6= 2 thus the frequency of the SG model (39) becomes a dimensionful parameter for
d 6= 2, i.e., β2 = k2−dβ̃2

k where β̃k is dimensionless, so the rescaled wavefunction renormalization
has a dimension of kd−2, i.e., ẑk = z̃kk

d−2. The corresponding FRG equation reads as [18]

k∂kΓk[θ] = 1
2Tr

[
k∂kRk

Rk + β2δ2
θΓk[θ]

]
= 1

2Tr
[

k∂kR̂k

R̂k + δ2
θΓk[θ]

]
(370)

where the rescaled regulator function R̂k = Rk/β
2 has been used. Inserting the ansatz (369) into

Eqs. (370), the RG flow equations (367) and (368) can be obtained Thus, equations (367) and
(368) are derived in two different ways.
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11. EXACT FRG EQUATION IN THE SINGLE FOURIER MODE APPROXIMATION BEYOND LPA

Momentum integrals have to be performed numerically, except the linearized form of Eqs. (367),
(368) around the Gaussian fixed point where analytical results are available. This requires a special
choice for the regulator function Rk such as the power-law [179] or the Litim-type [184] ones. In
general, the regulator function beyond LPA should be given by the inclusion (multiplicative ap-
proach) or the exclusion (additive approach) of the field independent wavefunction renormalization
zk,

multiplicative : Rk(p) = zk p
2 r(p2/k2), additive : Rk(p) = p2 r(p2/k2), (371)

In the multiplicative approach, the rescaled regulator R̂k contains the rescaled wavefunction renor-
malization ẑk. In the additive approach, the frequency can be absorbed by the overall multiplicative
constant of the rescaled regulator or can be chosen arbitrarily since it is a scale-independent free
parameter of the model. Important to note, that the additive approach requires the use of the
power-law regulator function.

The phase structure should be independent whether one uses the multiplicative or additive
approaches for the definition of the regulator and of its parameters such as b. Regarding the
regulator-dependence I note that the linearised RG flow equations can always be obtained an-
alytically for the power-law type regulator. The full RG flow (with higher harmonics) requires
a numerical treatment anyway (even for the Litim-type regulator) and produces us a complete
picture of the phase diagram.

Analytic solutions are always available for the power-law type regulator if one considers the
approximated flow equation where the exact RG equation (367) and (368) are expanded in Taylor
series with respect to uk around zero where the dimensionless couplings ũk = k−duk, and z̃k =
k2−dẑk are introduced. In the additive approach the leading order flow equations have the following
forms for d = 1 dimension [18]

(1 + k∂k)ũk = 1
4b sin( π

2b ) z̃
1

2b −1
k ũk + O(ũ2

k), (372)

(−1 + k∂k)z̃k = −c1(b)
4π z̃

5
2b −2
k ũ2

k + O(ũ3
k), (373)

with c1(b) = 5π(55+4b(5b−18))
48b2 sin[5π/(2b)] . Eqs. (372), (373) have a non-trivial fixed point at z̃? =

[4b sin(π/(2b)]2b/(1−2b), ũ2
? = (4π/c1)z̃3−5/(2b)

? . For d = 2, leading order RG flow equations are
[18]

(2 + k∂k)ũk = 1
4π z̃

−1
k ũk + O(ũ2

k) (374)

k∂kz̃k = −c2(b)
8π z̃

2
b −2
k ũ2

k + O(ũ3
k) (375)

with c2(b) = 2π(b−2)(b−1)
3b2 sin[2π/b] and result in a KTB type (i.e. infinite order) phase transition with

z̃? = 1/(8π). Important to note that c2(b) > 0 for b > 1. Finally, for d = 3, the leading order RG
flow equations are [18]

(3 + k∂k)ũk = 1
8πb sin( π

2b ) z̃
− 1

2b −1
k ũk + O(ũ2

k) (376)

(1 + k∂k)z̃k = −c3(b)
8π2 z̃

3
2b −2
k ũ2

k + O(ũ3
k) (377)

with c3(b) = π(3+4b(b−2))
16b2 sin[3π/(2b)] . Due to the tree-level scaling of z̃k, the non-trivial fixed point appears

for d < 2 and disappears for d > 2 in the RG flow. However, a "turning point" can be identified
for d > 2 where the irrelevant coupling ũk turns to a relevant one. For d = 3 the turning point is
at z̃? = [24πb sin(π/(2b)]−2b/(1+2b).

In the multiplicative approach where the definition of the regulator Rk includes zk beyond LPA,
the linearized RG flow equations obtained for the dimensionless couplings are almost identical to
those obtained by the additive case. The prefactors of the r.h.s of the flow equations and the power
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Figure 35: The exact phase diagram of the SG and the equivalent CG models for d = 1
dimensions (similar RG flow can be drawn for d < 2). Arrows indicate the direction of the
flow [26].

of the Fourier amplitude ũ are identical in the multiplicative and additive cases. The difference
is due to the power of the dimensionless wavefunction renormalization z̃k. In the multiplicative
case, the r.h.s of the flow equations of the Fourier amplitude contain z̃−1

k and the flow equations
of the wavefunction renormalization have z̃−2

k independently of choice of the dimension d and the
parameter b. Since the flow equations of the multiplicative and additive approaches should give
the same phase structure, here I focus on the more complex additive case [18].

In general, RG equations (365) and (366) (exact for a single Fourier mode) have to be solved nu-
merically. An important feature of the exact RG flow is the emergence of a new low-energy/infrared
(IR) fixed point related to the degeneracy of the blocked action. Namely, Eqs. (365), (366) become
singular at the momentum scale where k̄ − k2−duk = 0 with k̄ = minp2 P = bk2[z̃k/(b − 1)]1−1/b.
Therefore, it is convenient to redefine the dimensionless coupling constant as ūk ≡ k2−duk/k̄ =
k2ũ/k̄ which tends to one in case of degeneracy. Exact RG equations (365), (366) were solved for
b = 2 and flow diagrams are plotted in Fig. 35 for d = 1, in Fig. 36 for d = 2, and in Fig. 37 for d = 3
dimensions. The IR (symmetry breaking) fixed point (ūIR = 1, 1/z̃IR = 0) which corresponds to
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Figure 36: The exact phase diagram of the SG and the equivalent CG models for d = 2
dimensions which shows the Kosterlitz-Thouless-Berezinski type phase transition [18].

degeneracy was found in any dimensions. Let me emphasize that only the exact RG flow with the
inclusion of the wave function renormalization is suitable for the determination of the IR (symme-
try breaking) fixed point since the perturbative (truncated) RG equations are non-singular. For
d = 2 dimensions the critical value 1/z̃c = β2

c = 8π which separates the phases of the model (see
Fig. 36) is found to be scheme-independent [18].

The d = 1 case needs further improvement because in quantum mechanics spontaneous symme-
try breaking is not allowed [26]. Indeed, for the d = 1 dimension, based on the RG flow equations
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Figure 37: The exact phase diagram of the SG and the equivalent CG models for d = 3
dimensions which indicates a single phase for d > 2 [18].

(367) and (368), a saddle point ū?, 1/z̄? appears in the RG flow, see Fig. 35 and thus the SG model
seems to have two phases [26]. In fractal dimensions, 1 < d < 2 the nontrivial saddle point appears
in the RG flow, too [26]. However, there is an important difference between the cases of fractal
dimensions and of the d = 1 dimension; namely, the spontaneously broken phase should vanish for
d = 1 which indicates that the saddle point and the nontrivial IR fixed point (1/z̄IR ≡ 0, ūIR ≡ 1)
should coincide. Thus, the distance between the nontrivial IR fixed point and the saddle point (see
Fig. 35) [26],

D ≡
√

(ūIR − ū?)2 + (1/z̄IR − 1/z̄?)2 =
√

(1 − ū?)2 + 1/z̄2
? (378)

can be used to optimize the scheme dependence of RG equations; i.e., the better the RG scheme
the smaller the distance D is. This strategy is used in Ref. [26] for the very general form of the CSS
regulator and its Litim limit was found to be the optimal choice in LPA’. The other attractive IR
fixed point (ūk→0 = 0, 1/z̄k→0 = ∞) corresponds to the symmetric phase. Let me note, connection
between spontaneous symmetry breaking and truncation of the FRG equation has been studied
for O(N) models in Ref.[26].

11.1.1 Phase structure of the neutral CG in arbitrary dimension

The CG model has been the subject of an intense study in last decades [204, 67, 205, 206, 207] and
there is a continuous interest in the use of the SG representation of CG systems [205, 206, 207].
Indeed, since the mapping between the CG and SG models holds in arbitrary dimension [207]
(and it is exact in case of point-like charges) the RG study of the d-dimensional SG model can be
directly used to map out the phase structure of the CG model [18]. In the framework of the real
(or coordinate) space RG approach one can use the dilute gas approximation for the CG model
which is equivalent to the low fugacity, i.e., small Fourier amplitude limit of the SG model. In
this RG approach the charges (vortices) are considered as rigid discs with finite diameter, so, this
can be seen as sharp cutoff version performed in the coordinate space which corresponds to a
smooth cutoff version in the momentum space. The approximated RG equations of the CG model
in arbitrary dimension is given in [67] and reads as

dx

dl
= −x(xy2 + d− 2), dy

dl
= −y(x− d) (379)

with ∂l = −k∂k, y ∼ ũk and x ∼ 1/T̃ ∼ 1/z̃k where T̃ is the temperature and y is the fugacity.
Using these identities Eq. (379) can be rewritten as

((d− 2) + k∂k)z̃k = −czũ
2
k, (d+ k∂k)ũk = cu

1
z̃k
ũk, (380)

with constants cu, cz and they are found to be similar to the leading order RG flow equations
obtained for the SG model, see Eqs. (372),(373), Eqs. (374),(375) and Eqs. (376),(375). For example,
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the non-trivial fixed point of the 1-dimensional SG model can be identified in the flow generated
by (380), too.

It is clear that in d = 2 dimensions, the SG flow equations of the additive case (374) and (375)
in the limit b → 1 have identical functional form to (380). Since the critical value 1/ẑc = 8π is
independent of the actual choice of the regulator, one has to find cu = 1/(4π). By the rescaling
of the Fourier amplitude, the value of the other constant cz can be chosen to be identical to
c(b = 1)/(8π) = 1/(24π) which results in exactly identical flow equations to the additive power-
law case with b = 1. Indeed, the power-law regulator is a smooth cutoff in the momentum scape
RG and this is found to be identical to the sharp-cutoff of the real space RG approach as expected
[18, 194].

In arbitrary dimension one has to take multiplicative case or the sharp cutoff limit (b → ∞) of
the additive case in order to find agreement with the second equation of (380) where the leading
order flow equation for the Fourier amplitude is (d + k∂k)ũk = Ωdũk/(z̃k2(2π)d). However, to
recover the first equation of (380), one has to choose a finite value for the parameter b and this is
possible only for the additive case [18, 194].

The exact RG flow signals the existence of the high temperature (ū? = 1, 1/z̃? = 0) and the
show the absence of new further non-trivial fixed points. Since the mapping between the SG and
CG models is exact for point-like charges the exact RG flow indicates a single phase for the CG
for d > 2.

11.1.2 Checking the results

RG equations can be obtained either directly to the SG model or indirectly to its equivalent CG
and XY spin model representations. As I argued, the mapping between the CG and SG models
holds in arbitrary dimension [207] (and it is exact in case of point-like charges). Thus, the RG
study of the SG model can be directly used to map out the phase structure of the CG model and
vice versa.

Let me first rewrite the leading order RG flow equations (372), (373), (374), (375) and (376),
(377) in a single form valid in arbitrary dimensions (for the additive definition of the power-law
regulator) [18]

(d+ k∂k)ũk = Ab,d z̃
(2−d)−2b

2b

k ũk + O(ũ2
k) (381)

((d− 2) + k∂k)z̃k = −Bb,d z̃
(6−d)−4b

2b

k ũ2
k + O(ũ3

k) (382)

where Ab,d and Bb,d are constants depending on the dimension d and the regulator parameter
b. Let me use the frequency instead of the wave function renormalization (β̃2 = 1/z̃), where the
additive case reads as [18]

k∂kũk =
[
Ab,d (β̃2

k)
2b−(2−d)

2b − d
]
ũ (383)

k∂kβ̃
2
k = β̃2

k

[
(d− 2) +Bb,d ũ

2
k(β̃2

k)
6b−(6−d)

2b

]
. (384)

From Eqs. (383) and (384) one can take the limit sharp cutoff limit b → ∞ and the additive and
multiplicative cases (371) can be compared to each other

additive, b → ∞ : k∂kũk =
[
A∞,d β̃

2
k − d

]
ũ, k∂kβ̃

2
k = β̃2

k

[
(d− 2) +B∞,d ũ

2
kβ̃

6
k

]
.(385)

multiplicative : k∂kũk =
[
Ab,d β̃

2
k − d

]
ũ, k∂kβ̃

2
k = β̃2

k

[
(d− 2) +Bb,d ũ

2
kβ̃

6
k

]
.(386)

which have the same functional but the coefficients are different. For the multiplicative case these
coefficients are well-defined (and depend on the parameter b and d) but for the additive case the
coefficient B∞,d cannot be defined unambigously, since the sharp cutoff confronts to the derivative
expansion.

Let me first compare Eqs. (385) and (386) to the RG equations (3.2.8) and (3.2.9) of [208]
which is obtained in the dilute gas approximation and reads

k∂kũk =
[
Kd

2 β̃2
k − d

]
ũ, k∂kβ̃

2
k = β̃2

k

[
(d− 2) +

(
I1Kd

2 +B

)
ũ2

k

4 β̃6
k

]
. (387)
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by using the following identifications 2z ≡ ũ, α ≡ β and ∂l ≡ −k∂k where Kd, I1 and B are
constants. It is clearly demonstrated that Eqs. (385) and (386) are identical to (387) up to some
constant but the coefficient B∞,d of the additive case (385) cannot be defined unambigously. So,
the multiplicative power-law gives better result then the additive one and again one can conclude
that the sharp-cutoff real space RG corresponds to a smooth cutoff regulator of the momentum
RG [18, 194].

As a next step, let me consider the flow equations above (45) in [209] which are obtained directly
for the SG model in d = 2 dimensions using the Wilson-Kadanoff blocking relation up to leading
order terms and reads as

k∂kũk =
(
β̃2

k

4π − 2
)
ũ (388)

k∂kβ̃
2
k = 3β̃6

kũ
2
k

4πΛ3 (389)

where the identifications g ≡ ũ and ∂l ≡ −k∂k are used. One finds agreement between Eqs. (383)
(384) and Eqs. (388) (389) since Ab,2 = 1/(4π) and b = 2 is chosen [18, 194]..

However, in [209] the same non-perturbative (Wilson-Kadanoff) RG method was used, so, all
what one can conclude is that the choice for the regulator functions is identified. Thus, if one wants
to find connections between renormalization schemes and regulators a better choice is Ref. [33]
because there one finds a standard perturbative RG approach for the SG model with the following
perturbative RG flow equations, see Eqs. (159) and (160) in [33]

k∂kũk = ũk

(
β2

k

4π − 2
)

− ũ3
k

β4
k

32π , k∂kβ
2
k = ũ2

k

β6
k

32π , (390)

where α̃k = ũkβ
2
k and tk = β2

k. These are identical (keeping only the leading order terms) to the
additive power-law flow equations Eqs. (383), (384) with b = 2. Of course, one can use again a
scheme transformation to relate the FRG flow equations with arbitrary choice of the regulator to
the perturbative RG flow equations. However, in this case the transformation is not trivial since one
has to rescale the Fourier amplitude by the frequency, so, practically one should consider different
models to be able to relate the FRG and perturbative RG β functions. It is more reasonable to
fix the model and look for a particular choice of the regulator by which the FRG flow equations
reproduce the functional form of the perturbative RG β functions. Based on this logic, the additive
power-law flow equations Eqs. (383), (384) with b = 2 are the best choice [194].

11.1.3 Isotropic classical XY spin model in d = 3

The partition function of the d-dimensional isotropic classical XY spin model can be expressed
in terms of topological excitations of the original degrees of freedom. For d = 2 dimensions, the
dual theory is the vortex gas which is known to belong to the class of universality of the neutral
CG [210, 211, 214]. Two-dimensional generalized models are well known where both the CG and
the vortex gas are included as particular limiting cases [210, 211, 214] and are self-dual under the
duality transformation. For d = 3, the dual theory is the gas of interacting vortex loops [212, 213]
(i.e. the lattice CG [214]). Corresponding flow equations have been derived for the parameters K
(i.e. the coupling between the spins) and y (i.e. the fugacity of the vortex loops) by real-space RG
method (a ∼ 1/k where a is the running cutoff in the coordinate space while k is the running
momentum cutoff) in the limit of low fugacity [212, 213],

a∂aK = K − 4π3

3 K2y2, a∂ay =
(
6 − π2KL

)
y, (391)

where L approaches a constant in the IR limit (L → 1) [212], or it is weakly divergent (L →
ln(a/ac) + 1) [213]. Since a∂a = −k∂k and by using the identities y ≡ ũ, K ≡ 1/z̃, RG equations
of (391) are rewritten as [18].

k∂kz̃k = z̃k − 4π3

3 ũ2
k, k∂kũk = 2

(
1
z̃k

π2L

2 − 3
)
ũk, (392)
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which can be compared to the linearized RG obtained for the SG (376), (377) and the CG (380)
models in d = 3 dimensions. The only qualitative disagreement is the sign of the tree-level scaling
term of z̃k but it has important consequences since the RG flow of the vortex-loop gas has a non-
trivial fixed point which is absent in case of the 3-dimensional SG and CG models. Therefore, it
demonstrates that the vortex-loop gas has a different scaling behaviour, thus it belongs to a class
of universality different from that of the SG and CG models for d 6= 2. For d = 2, the couplings
K, z̃ have no tree-level scaling thus SG, CG, XY models are in the same universality class. Let me
emphasize that RG equations are compared at the linearized level, however the exact RG study
of the SG and CG models is required since it shows the absence of new non-trivial fixed points,
thus there is no room to find a mapping between the parameters of the vortex-loop gas and the
3-dimensional CG which could produce the same phase structure [18]..

11.1.4 Central charges of the SG model in d = 2

Let me finish the RG study of the SG model at LPA’ by the discussion of its conformal properties
and their connection to RG flow equations [10]. In d = 2 dimensions, by using the mass cutoff, i.e.
power-law type regulator with b = 1, the momentum integrals of (367) and (368) can be performed
and the RG equations reads as [10],

(2 + k∂k)ũk = 1
2πzkũk

[
1 −

√
1 − ũ2

k

]
, k∂kzk = − 1

24π
ũ2

k

[1 − ũ2
k] 3

2
(393)

with the dimensionless coupling ũ = k−2u. The phase diagram obtained at this approximation level
is sketched in Fig. 38 and obtained by power-law type regulator with b = 2, where one evidences
three different regions, [10].
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Figure 38: The flow diagram of the SG model in the scale-dependent frequency approxima-
tion. The phase space is divided into three regions [10]. In region I we have a line of UV
repulsive Gaussian fixed points (ū = 0, β2 < 8π). Every trajectory starting in the vicinity
of this line ends in an IR attractive fixed point (purple full circle, ū = 1, β2 = 0). The ∆c
observed along the trajectories of this region should be equal to 1. Region II contains a
line of IR attractive Gaussian fixed points (ū = 0, β2 > 8π,) which are the end points of
trajectories starting at β2 ≈ ∞ below the thick green line, i.e. the separatrix. Region III

contains those trajectories starting at β2 ≈ ∞ which end in the IR attractive fixed point
(purple full circle).

In Ref. [195] an explicit expression for the flow equation of the c-function in the LPA scheme
has been derived with the mass cutoff

k∂kck = [k∂kṼ
′′

k (ϕ0,k)]2

[1 + Ṽ ′′
k (ϕ0,k)]3

, (394)

with the dimensionless blocked potential Ṽk(ϕ) which is evaluated at its running minimum ϕ = ϕ0,k

(i.e. the solution of Ṽ ′
k(ϕ) = 0). Based on (394) a detailed study of the c-function of the SG model
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in the framework of FRG method is discussed in [10]. The ∆c is strictly well defined only in region
I, where I start from a Gaussian fixed point cUV = 1 and I end up on a massive IR fixed point
cIR = 0. The massive IR fixed point related to the degeneracy of the blocked action is an important
feature of the exact RG flow. In region II the trajectories end in the Gaussian fixed points c = 1
but they are coming from infinity where actually no fixed point is present. Thus, ∆c is not defined
in this region. Region III contains those trajectories which start at β = ∞ but end in the IR
massive fixed point at c = 0. Even in this case the ∆c is not well defined.

11.2 The ShG model in d = 2
In this subsection I consider the phase structure and conformal properties of the ShG model in
d = 2 dimensions by using the FRG method in LPA’ [11]. It is important to note that (56) has a
Z2 symmetry, and that the ShG model is not periodic. Therefore, in order to study the RG flow
of the ShG model and to map out its phase structure one can use the Taylor-expanded form of
Eq. (56)

Ṽk(ϕ) = ũk

[
1 + 1

2β
2ϕ2 + 1

4!β
4ϕ4 + ...

]
=

∞∑
n=0

1
(2n)!g2nϕ

2n, g2n = ũkβ
2n. (395)

Thus, the ShG model can be considered as an Ising-type model but with restricted initial values
for the couplings. The key point is that with ShG-type initial values the RG flow always starts
from the symmetric phase, see Fig. 19, so, the ShG model has a single phase with ∆c = 1.

The phase structure of the ShG model can also be mapped out by using analytic continuation.
The simplest way of doing that if one replaces the frequency of the SG model by an imaginary one
directly which leads to the following RG flow equations [11]

(2 + k∂k)ũk = − β2

2πũk

[
1 −

√
1 − ũ2

k

]
(396)

k∂kβ
2
k = − 1

24π
β4

kũ
2
k

[1 − ũ2
k] 3

2
. (397)

Important to note that the RG flow equations of the SG model contains β2 and β4. This means
that one can apply the following replacement β2 → −β2 in the flow equations of the SG theory in
order to obtain the flow equations for the ShG model. Indeed, the flow diagram of the ShG can be
represented by extending the SG flow diagram for negative values of the frequency β2, see Fig. 39,
which can be compared to figure 1 of Ref. [209]. There is a disagreement between the two figures,
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Figure 39: Phase structure of the SG model for regions of positive and negative β2, i.e., the
RG flow diagram of the SG and ShG models are merged into a single one [11]. Black circles
denote the IR attractive fixed points.

namely in [209] the RG trajectories of the negative β2 regime run into the IR (symmetry breaking)

100



11. EXACT FRG EQUATION IN THE SINGLE FOURIER MODE APPROXIMATION BEYOND LPA

fixed point of the SG model which signals the presence of spontaneous symmetry breaking (SSB).
At variance, we argued here that the ShG model has no SSB, since it has a single phase which is the
symmetric one. Moreover, the flow diagram plotted in figure 1 of [209] suggests that the negative
and positive β2 regions are basically reflected to each other, implying in turn the reflection of the
critical value of the frequency (β2

c = 8π) too. However, it was also shown that no such critical
frequency exists for the ShG model i.e., the negative β2 case of the SG theory [11]. Therefore, I
conclude that figure 1 of [209] is misleading.

11.3 The SnG model in d = 2
I am now in position to perform the functional RG study of the SnG model [11]. According to
the previous discussion, it is based on the Fourier decomposition where the frequency b2 of the
fundamental mode plays a crucial role in the determination of the phase structure. Thus, beyond
LPA, the SnG model can be treated the way as the SG model, so the RG equation has to be solved
over the functional subspace spanned by the following ansatz [11]

Γk =
∫
d2x

[
1
2zk(∂µϕx)2 + Vk(ϕx)

]
, Vk(ϕ) = −

∞∑
n=1

un(k) cos(nϕ), (398)

where the local potential contains infinitely many Fourier modes and I use the notation [11]

z ≡ 1
b2 =

[
2F1

( 1
2 ,

1
2 , 1,m

)]2
β2 (399)

via the rescaling of the field ϕ → ϕ/b in (61) and zk again stands for the field-independent wave-
function renormalization. It is important to note that m remains a non-scaling parameter even
beyond LPA. By using the mass cutoff, i.e., the power-law type regulator with b = 1, the RG
equations for the couplings of the SnG reads as [11],

(2 + k∂k)ũk = 1
2πzkũk

[
1 −

√
1 − ũ2

k

]
, k∂kzk = − 1

24π
ũ2

k

[1 − ũ2
k] 3

2
(400)

with the dimensionless coupling ũ = k−2u which is identical to the flow equations of the SG model
but with the different definition for z. In order to compare the flow diagrams of the SnG and SG
models it is convenient to use the squared frequency β2 instead of the wave function renormalization
z. Then, the flow diagram of the SnG model obtained in the single-Fourier approximation beyond
LPA is shown in Fig. 40.

I finally comment on the limit m → 1 of the SnG model [11]. I showed that the SnG model,
being periodic, has a BKT transition in all points but for m = 1 where it reduces to the ShG
model. Therefore, let me discuss whether the limit m → 1 is analytic or not. Two facts that would
support the analytic behaviour are following [11]: (i) the ShG as well as the SnG model with m = 1
show a single phase; (ii) this phase is the high-temperature one, where the Fourier amplitude is
relevant. However, in favour of the fact that the limit m → 1 is not analytic one can argue that
(i) the frequency is relevant in the ShG model, but irrelevant in the m → 1 limit; and (ii) the
single phase of the ShG model is the symmetric one, but the m → 1 limit suggests SSB. In order
to clearly make a conclusion on the subtleties of the m → 1 limit, one has to show a physical
quantity which has different value at the two cases. To this purpose I propose the susceptibility of
the topological charge

χ = 〈Q2〉 − 〈Q〉2 (401)

where Q is the winding number, see [1]. This serves as a disorder parameter, since the topological
susceptibility is vanishing whenever the Fourier amplitude is zero. This quantity can be shown to
be non-zero in the limit m → 1 of the SnG model, but vanishing for the ShG theory. Therefore, I
conclude that the limit m → 1 is non analytic.
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Figure 40: Phase structure of the SnG model for m = 0, 0.35, 0.7 [11]. The dashed line
indicates the critical frequency β2

c (m) of the BKT phase transition.

11.4 The MSG model in d = 2
Let me study the MSG model beyond LPA where I use the following ansatz [22]

Γk =
∫

x

[
1
2z(k)(∂µθ)2 + Vk(θ)

]
, Vk(θ) = 1

2M2(k) θ2 + u(k) cos(θ), M2 ≡ M2

β2 , (402)

where the field θ = βϕ is rescaled in (41) and z(k) stands for the field-independent wave-function
renormalization. The flow equations for the MSG model are identical to those obtained for the
rescaled SG model (for d = 2), i.e., (367) and (368) with the only modification, P̂ = ẑ(k)p2 +M2 +
R̂k and with ∂kM = 0. By using the power-law type regulator function with b = 1, the RG flow
equations for MSG model reads as [22],

(2 + k∂k)ũ = 1
2πzũ

[
1 + M̃2 −

√
(1 + M̃2)2 − ũ2

]
,

k∂kz = − 1
24π

ũ2

[(1 + M̃2)2 − ũ2] 3
2
, (2 + k∂k)M̃2 = 0, (403)

with dimensionless couplings ũ = k−2u, M̃2 = k−2M2. In the massless limit (M̃ → 0), Eqs. (11.4)
reduce to those derived for the SG model (393).

For nonvanishing mass (M̃ 6= 0), the linearized form of Eq. (11.4) is equivalent to the pertur-
bative RG equations of [52, 87]. However, the perturbative RG flow produces arbitrary large ratio
u/M2 = ũ/M̃2 depending on the initial conditions (there is no upper bound), hence no critical
value can be determined. Consequently, the perturbative RG flow is not suitable for the prediction
of the Ising-type phase transition of the MSG model [22].

So, let me first consider the exact RG flow equations for the MSG model in the mass cutoff
scheme, (i.e., for the power-law regulator with b = 1) where RG flow equations are given by Eq.
(11.4). SI appears in the RG flow in the symmetry broken phase, i.e. the RG equation becomes
singular in the IR limit and the flow stops at some finite momentum scale. In order to eliminate (or
suppress) the appearance of SI, one has to increase the convergence properties of the RG equations
which can be done by choosing b > 1 for the power-law regulator. In this case the (exact) RG flow
equations have no analytic form and they are solved numerically (see Fig. 41). Independently of
the actual value of b, the potential was found to become degenerate in the broken symmetric phase
and the RG flow is determined by the degeneracy condition [22]

c(b)z1−1/b − ũ+ M̃2 = 0 (404)
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where c(b) = b/(b− 1)1−1/b. Therefore, in the IR limit the ratio [22]

rb(k) = ũ

c(b)z1−1/b + M̃2
(405)

tends to one (i.e. rb(k → 0) = 1) in the broken phase (see the dashed lines in Fig. 41 for b = 2).
Therefore, the ratio becomes universal in the broken phase. In the symmetric phase it tends to a
constant IR value depending on the initial conditions. The critical ratio rc

b(k) which separates the
phases of the single-frequency MSG model is represented by the thick solid line in Fig. 41 [22].
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Figure 41: RG trajectories are obtained for the power-law regulator with b = 2 for the MSG
model at LPA’ [22]. Dashed lines correspond to RG trajectories of the broken symmetric
phase. Vertical line shows the dimensionful mass scale which remains unchanged under RG
transformations. The inset shows the scaling of the wave-function renormalization in the
two phases.

Let me note that the RG flow always stops at a finite momentum scale in the broken phase
independently of b but a better convergence is obtained for b > 1 [22]. In general, the single-mode
approximation at LPA is "improved" by the inclusion of the wave-function renormalization. For
example, the critical exponent ν of the MSG model can be obtained in the framework of the
power-law RG with b > 1 if z(k) is kept scale-dependent [22]. It is known [54] that the MSG
model belongs to the two-dimensional Ising universality class, thus the correlation length is a
power-law function of the reduced temperature ξ ∼ t−ν with ν = 1. Indeed, if one defines [22]
the correlation length in the symmetric (disordered) phase by the constant IR values of the ratio,
ξ ∼ [1 − rb(k → 0)]−1 and the reduced temperature is given by the initial UV (k = Λ) values,
t = [rb(Λ)−1 − rc

b(Λ)−1]/rc
b(Λ)−1 then ν = 1 is obtained (see solid lines in Fig. 41 for b = 2). Let

me note that the correlation length can be defined as ξ ∼ (M − kc)−1 in the broken phase where
kc represents the momentum scale at which the ratio (405) becomes constant during the RG flow.
If the reduced temperature is t = [rb(Λ) − rc

b(Λ)]/rc
b(Λ) then one obtains again the power-law

behavior with ν = 1. Consequently, the RG equations derived for the single-frequency MSG model
beyond LPA are sufficient to indicate that the model undergoes a second order Ising-type phase
transition [22].

Let me consider the RG evolution of the wave-function renormalization which is equivalent to
the inverse frequency, i.e. z(k) ≡ 1/β2(k). In the symmetric phase z(k) becomes a constant in the
IR limit depending on the initial conditions (see the solid lines in the inset of Fig. 41). In the broken
phase, however z(k) runs into infinity for k → 0 (see dashed lines in the inset of Fig. 41), i.e. it
has a universal behavior in the broken phase thus β(k) tends to zero. Therefore, if one assumes
that bosonization identifications between the parameters of the fermionic and the corresponding
bosonic theory hold also for the blocked action then my result has a drawback on bosonization,
namely it indicates the necessity to construct the fermionic counterpart of the MSG model for
β2 6= 4π [22].
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12 Summary
1. The application of the FRG method for sine-Gordon models

The renormalization of sine–Gordon (SG) type models represents a challenge in quantum field
theory since one has to use a method which retains the symmetry (periodicity) of the system.
Consequently, the usual perturbative treatment which is based on the Taylor expansion of
the potential does not work for SG type models, at least in d > 2 dimensions. The Functional
Renormalization Group (FRG) approach is one of the examples which is suitable to perform
the renormalization of such models non-perturbatively.

1.1 The non-perturbative RG analysis of SG type models has been started with the work [1]
where I developed a method based on the Fourier expansion of the periodic potential to
perform the FRG study of SG type models and I have succeed in elucidating the phase
structure of the 2-dimensional SG model within the framework of the FRG approach at
the first time in the literature. I have argued that the periodicity and the convexity are
so strong constraints on the dimensionful effective potential that it always becomes flat
which was reproduced by integrating out the RG equation.

1.2 I have shown [3] that the Polchinski RG equation obtained in the next-to-leading order
of the gradient expansion (LPA’) is not suitable to recover the known dilute gas RG
equations obtained for the 2-dimensional Coulomb-gas (CG) which is equivalent to the
2-dimensional SG model. Similarly, the use of the Wegner-Houghton RG equation is
also problematic: although flow equations can be obtained at LPA and LPA’ [2] but it
confronts with the gradient expansion, so, it is not a good choice beyond LPA.

1.3 I have shown that linearised RG flow equations obtained in LPA are suitable to deter-
mine the critical value of the frequency parameter of SG type models and it is inde-
pendent of the choice of the regulator function [4]. I have determined the low energy
behaviour of the dimensionless effective potential of the SG model which can be used
to distinguish between the phases of the model.

1.4 I have shown that the critical value of the frequency parameter of SG type models
is not influenced by the compactness of the field variable [5] and not affected by the
reflection symmetry. In particular, I have studied the interplay between periodicity and
the reflection symmetry with regard to the phase structure of an SG model where apart
from the usual cosine one finds sine modes which break the reflection symmetry.

1.5 I have generalised the FRG approach for layered sine-Gordon (LSG) type models [6, 7]
and I have shown that the massive sine-Gordon (MSG) model which has an explicit mass
term in addition to the periodic self-interaction, has no topological phase transition.

1.6 I have shown that the breakdown of periodicity of the LSG model is only partial and
it depends on the number of non-zero eigenvalues of the mass matrix which couples the
SG fields [8] and showed that the critical frequency of the topological phase transition
of the LSG model depends on the number of layers N .

2. Sine-Gordon models in low-dimensions
The goal was to determine the low-energy behaviour and conformal properties of various
2-dimensional SG type field theoretical models including the massive sine-Gordon (MSG)
and layered sine-Gordon (LSG) models which are bosonised version of the multi-flavor QED2
and the multi-color QCD2 and to construct an LSG type model which can be used to describe
the vortex behavior of layered superconductors and study the vortex dynamics by the FRG
study of this LSG theory.

2.1 I have constructed an FRG approach combined with a suitable rotation of the fields
which makes the mass matrix diagonal of the LSG model with N-layers and provides
us the tool to investigate the phase structure of the bosonised QED2 with Nf flavors
and QCD2 with Nc colors [9] and shown that the magnetically coupled LSG model with
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N-layer is identical to the bosonised version of the QED2 with Nf flavors where the
number of flavors and layers are the same N = Nf

2.2 I studied the c-function and the central charge of the SG model from the FRG flow [10].
The integration of the c-function along trajectories of the FRG flow gives access to the
central charges of the model in the fixed points. I have shown that the central charge
obtained by integrating the trajectories starting from the repulsive low-frequencies fixed
points (below the critical frequency) to the infrared limit is in good quantitative agree-
ment with the expected ∆c = 1 result.

2.3 I have introduced the so called sn-Gordon periodic model which interpolates between
the sine– and the sinh–Gordon theories in 1 + 1 dimensions. I have performed the FRG
study of the model which was written in terms of Jacobi functions [11] and derived
the critical frequency as a function of the elliptic modulus and discussed its conformal
properties.

2.4 I have constructed the effective action [12] of the LSG model proposed previously in the
corresponding literature with a Josephson type mass matrix and showed that it is not
suitable to describe the vortex dynamics in Josephson-type superconductors [13].

2.5 I have constructed a 2-dimensional LSG model and mapped onto the corresponding gas
of topological excitations and shown that with a special choice of its mass matrix, this
magnetically coupled LSG model can be used to recover the well known interaction
potentials of fractional flux vortices of magnetically coupled layered superconductors in
an extremely simple manner [14]. This provided us a tool to study the vortex dynamics in
magnetically coupled layered superconducting systems by means of the FRG method. I
determined the dependence of the transition temperature on the number of layers for the
magnetically coupled superconducting system by the FRG method from first principles
at the first time in the literature which was found to be in agreement with known results
based on other methods.

2.6 I studied the role of amplitude fluctuations in the lattice XY spin model and the equiv-
alent φ4 theory [15]. In the so called amplitude-phase representation, I have shown that
amplitude fluctuations can be integrated out which yields an effective SG model which
proves that amplitude fluctuations cannot affect the topological phase transition. In ad-
dition, I suggested a coupled XY model [16] where the Kosterlitz-Thouless-Berezinskii
paired phase can be observed.

3. Sine-Gordon models in higher dimensions

It is a natural question to ask whether one can find any role of SG type models in higher
dimensions. The answer can be found if one looks for special cases where scalar fields have
applications such as Branon, Inflaton, Higgs and Axion physics.

3.1 I have shown that the SG model has a single phase for d > 2 dimensions [17] based on its
FRG study at LPA. Since the neutral Coulomb-gas and the SG model can be mapped
onto each other, they belong to the same universality class for arbitrary dimension
which is not true for the XY spin model. By using the FRG method and the Villain-
transformation, I argued that the SG scalar theory and the XY model have different
phase structures for d > 2 dimensions.

3.2 By the FRG study of the SG model at LPA’ for d > 2 dimensions [18], I have shown
that the dimensionful periodic potential flattens out in the IR limit which confirmed
previous results on the flattening of the axion potential. I determined the FRG running
of the frequency parameter and used it to show that starting from a small value, it does
not evolve along the corresponding RG trajectory, thus, it supports the viability of a
periodic inflationary potential. I have shown that the dimensionless SG potential remains
bounded from below which opened a new platform to periodic type Higgs potentials.
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3.3 I have proposed the so-called Massive Natural Inflation (MNI) as a viable model for a
pseudo-periodic Higgs-inflation [19]. This model is identical to the MSG scalar theory
and I have shown by its slow-roll analysis that its theoretical predictions are in excellent
agreement with the PLANCK data and by its FRG study, I argued that it can play a
role in Higgs physics, too.

3.4 I have shown that pre-inflationary quantum fluctuations can provide a scenario for the
long-sought initial conditions for the inflaton field [20]. I have proposed an RG running
induced cosmic inflation where at very high energies the vacuum-expectation value of
the field was trapped in a false vacuum and then, due to RG running, at low-energies
the flattening of the potential allows the field to roll down to its true vacuum.

3.5 I have studied the renormalisation of non-differentiable potentials and shown that quan-
tum fluctuations smoothen the bare singularity of the potential [21]. An example for
such, non-differentiable potentials is the effective action for branons in the framework
of the brane world scenario which contains a Liouville-type V-shaped interaction and,
in principle, can be replaced by SG or MSG type models.

4. Methodical issues of the FRG approach
The FRG method is designed to perform renormalization non-perturbatively, however, it
has its limitation, too. Approximations are required to solve this partial integro-differential
equation and the solution of the approximated FRG equation depends on the choice of the
regulator function which requires optimisation.

4.1 I have shown that known results on critical value of the Nf = 1 QED2 can be used
to study the dependence of FRG equations on the choice of the regulator function and
approximations applied for its bosonized version [22] which is the MSG model. I have
shown that the MSG model has an Ising-type phase transition with two phases where
the reflection symmetry can be broken spontaneously.

4.2 I have introduced a new type of regulator function, i.e, the Compactly Supported Smooth
(CSS) regulator [23]. It reduces to all major type of regulator functions (exponential,
power-law, optimised, sharp) in appropriate limits of its parameters thus it provides us
the tool to compare various regulators in the framework of the Principle of Minimum
Sensitivity (PMS) optimisation method. In addition, it has derivatives of all orders, so,
it solves the problem of differentiability in case of the Litim–Pawlowski optimization
method, thus, one can consider the Litim limit at any order of the gradient expansion.

4.3 I have determined the optimised parameters of the CSS regulator by the PMS method
for the Ising and MSG models [24] and I have found its Litim limit as the best choice.

4.4 I have suggested a new optimisation method based on the requirement for the absence
of Spontaneous Symmetry Breaking (SSB) in the SG model for d = 1 dimensions [25].
It is based on the idea that for special cases where SSB is not allowed, like in the
1-dimensional SG model, the truncated FRG equation still signals the appearance of
SSB, so, the best parameters of the CSS can be chosen to minimise this fake SSB phase.
Again, the Litim limit of the CSS was found to be the optimal choice. In addition, I
have studied various aspects of truncation effects in the FRG approach for SSB [26].

4.5 I have suggested a special subtraction method to handle the problem of UV divergent
nature of the RG evolution of the field independent term which due to its construction,
requires special care in the FRG approach [27]. In several instances, the constant term
of the potential has no physical meaning, however, in low dimensions, this is associated
with the ground-state energy and in higher dimensions it is identical to the vacuum
energy term and it plays a role in cosmic inflation, too. The subtraction was needed if
the Gaussian fixed point is missing in the FRG flow once the constant term is included
and the suggested subtraction method was suitable to restore the Gaussian fixed point
in these cases.
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