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1. LINEAR MOMENTUM

1 Linear Momentum

Newton’s laws of motion laid the foundation for classical mechanics. They describe the relationship
between a body and the forces acting upon it, and its motion in response to those forces.
1.1 Newton’s first law - The law of Inertia

e Let us consider the change in the state of motion of various objects.

e wrong question: Why do they move?

e good question: Why does the state of motion change?

Newton’s 1st law: In an inertial frame of reference, an object either remains at rest
or continues to move at a constant velocity, unless acted upon by a force.

e In non-inertial frames of reference, Newton’s 1st law does not necessary hold.

e Inertial frame can be constructed by fixing the frame of reference with respect to distant
stars.

e If an inertial frame exists then infinitely many exist.

Extended objects require special care.

e [t is not true that in inertial frames, all points of an extended object either remain at rest or
continue to move at a constant velocity, unless acted upon by a force.

e However, one can always associate at least one point (the so called inertial point) to an
extended objects which either remains at rest or continues to move at a constant velocity,
unless acted upon by a force.

e velocity of an extended object is the velocity of its inertial point.
Postulate:
e inertial frame exists

e inertial point exists (in case of extended objects)

1.2 Experimental laws of two body interactions; inertial mass

Let us consider the planar motion, more precisely the collisions of two discs.
1. Our first observation is that the change in the velocities of the two object are anti-parallel.
Av; 1 Av;. (1)
where Av; = v{’ — vj and Avj = v{ —v].

2. Colliding the same two objects one finds that the following quantity

[Avj|
|AV1|

Gy . (2)

remains constant, i.e., the value of Cj; is unchanged over the collisions.
3. In case of three different objects, their relative inertia Cj;, Cix and Cjx are not independent.

Ci
Cik

CijCj = Cik, or Cy = (3)

Thus, the relation Cj; is transitive.
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4. In case of two identical objects one finds Cj; = 1. If one observes Cjj= 1 than Cj; = 1. Thus
the relation Cj; is reflexive and symmetric.

Therefore, the relation Cj; is an equivalence relation. As a consequence of the reflexive, symmetric,
and transitive properties, any equivalence relation provides a partition of the underlying set into
disjoint equivalence classes. Two elements of the given set are equivalent to each other, if and only
if they belong to the same equivalence class. This classification can be used to define the inertial
mass,

Definition : Mpody = Cbody,ref Myef - (4)

where we introduced a reference mass myr = 1kg.
By using the transitivity of the relative inertia Cj; one can derive the following expression for the
inertial mass

Ci,ref ﬁ |Avj| _ @

C~~: = =
Y et my |Avi|  m;

— miAvi = —mjAvj . (5)

Let us note that the inertial mass is found to be an additive quantity in classical mechanics,
MmA+B = Ma + Mp, (6)

but this is not true in quantum mechanics.

1.3 Linear momentum; conservation of linear momentum
It is useful to introduce a new vector quantity mv which is the so called linear momentum
Definition : p=mv. (7)

where dimp = M L T~!, ST unit [p] = kg'm/s. Thus, if one considers the case where the inertial
masses of the objects do not change over the interactions, one finds

A(mivi) = —A(myv;) . —  Ap; +Ap; =0 (8)

which indicates that the vector sum of the linear momenta remains constant over the
two-body interaction, i.e., the linear momentum is conserved,

p; + p; = constant. (9)

This can be generalised for many body interactions: the linear momentum is conserved for isolated
(closed) systems

Z p; = Zmivi = constant. (10)

1

1.4 Centre of mass - inertial point

Let us come back to the concept of the inertial point. One can show that the centre of mass is
identical to the inertial point. In case of two bodies (A and B), the position vector of the centre of
mass is defined as

ma mara +mprp

rc=rp+(rg—rp)——— — rio=———— 11
¢ A (B A)mA+mB ¢ ma +mp ( )

which can be generalised for N bodies

N
_ ZiZI mgTy . (12)

Its time derivative gives the velocity vector of the centre of mass which is constant for isolated
(closed) systems,

N d N
d N o, L N v
—Te = Ve = iz T T = L) MiVi = constant, (13)

N N
dt Dim1 ™M Dim1 ™M
which shows the equivalence of the inertial point and the centre of mass.
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1.5 Definition of Force; Newton’s 3rd Law

How can one quantify the change of the state of motion?
e Changing the velocity Av? Insufficient since the mass matters!
e Changing the momentum Ap? Insufficient since it matters how fast!
e proposal: Ap/At

Based on the above proposal one can introduce the concept of the force: a body A exerts a force
on body B,

Apg _ dpg
Definition : Fa,p=Fps= li =P8
cHnition AnB=EBA= G0 At T dt

where dim F'= M L T~2, SI unit [F] = kg m/s?. If one assumes a constant mass then it can be
written

(14)

d(vaB) dVB
Fpy=—7—""= — = . 1
BA o7 mp—= =Mp ap (15)
In case of an isolated (closed) system Ap, = —Apg, thus we can write
Fap=—-Fpa (16)

which the law of action-reaction, i.e., Newton’s 3rd law of motion: When one body exerts
a force on a second body, the second body simultaneously exerts a force equal in
magnitude and opposite in direction on the first body.

Knowing the force acting on a body in a given invironment is made possible by the existence
of force laws. On the fundamental level, we know of four basic forces: (i) the gravitational force,
which originates in mass of matter and is responsible for binding the solar system and the galaxies;
(ii) the electromagnetic force, which originates in electric charges and is responsible for binding the
constituents of atoms; (iii) the weak force, responsible for the radioactive processes; and (iv) the
strong force, which is responsible for binding the constituents of nuclei together. On the microscopic
scale, these forces have very different relative strength. Compared to the strong force between two
touching protons, the electromagnetic one has relative strength of 1072, the weak force has that
of 1077 and the gravitational has that of 10738, The large difference in strength between the
electromagnetic and gravitational forces ensures that our Universe is neutral: if there were just one
surplus of positive, or negative charge for 1036 protons and electrons, it would not be possible to
describe the motion of planets and stars by assuming only gravitational interaction between them.

Most of the forces we meet in daily life involves only two forces: gravity and electromagnetism.
The gravitational force is apparent in the Earth’s attraction of objects. The relative weakness of the
gravitational attraction between laboratory objects is negligible in comparison to the other forces,
such as elastic force of a spring, tensile force of a stretched rope, frictional force, viscous forces (for
instance air drag). Most of these forces are effective forces originating from the electromagnetic
forces between atoms. In analysing the motions of bodies, we can ignore the microscopic nature of
these forces and replace the complicated structure with a single effective force of a specific force
law.

1.6 Force laws

In order to have more quantitaive understanding of force laws, let us consider several specific cases,
often encountered in ordinary circumstances.

(i) Force law of the elastic interaction

Let us consider the motion of an extended body exerted by a stretched spring placed on a
frictionless table. Our goal is to measure the acceleration of the body at various stretched
(current) length of the spring. The acceleration is measured (calculated) by the following

formula
~ 82/At2 — Sl/Atl
~ At1+Ats
2
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where s; and sy are length intervals associated to the external object and At; and At
are the corresponding time intervals measured over the tabletop experiment. As a result of
the measurement one finds that the acceleration is always a linear function of the current
(stretched) length of the spring with different slope with different masses. However, if one
plots m|a| (instead of |a]) as a function of the current (stretched) length of the spring, the
slope becomes identical ma = ¢|Al| which means

ma = —cAl. (17)

and |Al] = I — Iy where [ is the current (stretched) length and [y is the rest length of the
spring. Therefore, the force law of the elastic interaction can be written as

F = —cAl (18)

and with a special chose of a cartesian coordinate system, the x-component of the vector is
given by
F, = —c(x — z0) (19)

Force law of the gravitational interaction

Let us perform free fall experiments with a sheet of paper and a metal ball.

— one finds that the metal ball falls faster (it has a larger acceleration). Air resistance
matters!

— after removing the air, the sheet of paper and the metal ball have exactly the same
acceleration!

— the acceleration caused by the gravitational field of the Earth is independent of the
inertial mass of the object.

— gravitational acceleration (g) is independent of the vertical and horizontal velocity of
the object.

Let us note that one can observe a very small variation of the gravitational acceleration (g)
on the position. For example, in Hungary on finds grungary = 9.81 m/ s and on the North
and South poles gpoles = 9.85 m/ s2. Therefore, the force law of the gravitational interaction
(on the surface of the Earth) can be written as

F, =gm, (20)

where the direction of g is towards the centre of the Earth.

Let us consider whether the above force law depends on the distance from the centre of the
Earth! For example, let us study the orbiting motion of the Moon around the Earth which
is caused by the gravitational interaction between the Earth and the Moon. This is exactly
the same kind of gravitational interaction as we studied in case of free fall experiments on
the surface of the Earth. The difference between the surface free fall experiments and the
study of the orbiting Moon is just the distance from the centre of the Earth. The ratio of the
radius of the Moon’s orbit (384.000 km) and the radius of the Earth (6400 km) is 60. Let us
compare the gravitational accelerations at the two distances. The centripetal acceleration of
the Moon can be calculated

21

2
m cm
— = ) .3,84-10°= =~ 0,27— 21
27,3-24-3600) 3,84-10 s? 0 782 ’ (21)

ayg :szH = (

so, it gives g/ay &~ 3600. Therefore, one can conclude that
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Due to Newton’s 3rd law Fgarth,Moon = —FMoon,Earth and their magnitudes are the same,
thus one should write Mm
Fo=G ot (23)
or in a vector form
Fyrar = ~C Tt?, (24)

where r’ = r/r is a unit vector towards r. G is the Newton constant which has the following
value,

G =6,67-107" Nm?/kg?. (25)
which is first measured by Henry Cavendish in 1798.

The simplified version of the Cavendish experiment can be performed in the lecture room
where two identical small balls with a mass m = 15g are placed on the edges of a rod which
is attached to a torsion spring. The length of the rod is 30cm, so, the distance between each
ball and the torsion spring is [ = 15cm. The system is at rest and then we place two larger
balls with a mass M = 1.5kg close to the small ones with a separation r = 5cm. Due to the
gravitational attraction between the small and large balls the torsion sprint starts to rotate.
A light beam is reflected from a mirror attached to the spring to the wall of the lecture hall
on the other side with a distance L = 15.5m. There is a length scale placed on the wall, so,
the displacement can be read off directly. This experimental setup is suitable to measure the
displacement with respect to time, so, one can measure the gravitational acceleration. As a
result, one finds that the displacement is 5¢cm in 66s and 10cm in 95s, so, the acceleration is
found to be a constant since 662 /952 a~ 5/10. Important to note that the angular displacement
 of the torsion spring is small, so, one can neglect its torque and indeed the acceleration is
entirely determined by the gravitation attraction between the balls (this is why we observe
a constant acceleration). Since the displacement of the ray of light on the scale is s = 2L,
the displacement of the small balls can be written as

st 0,10m-0,050m

Slzf(pzi

= =1,6-10"*m.
2L 2.15,5m ,6- 107 m

which again confirms that the displacement of the small balls compared to their original
distance from the large ones is negligible, so, the distance between the balls can be considered
as a constant over the measurement. Thus, the acceleration is

25’ 2:1,6-10"*m
2~ (95s)2

a =

~3,6-10752 .
S

and from (23) one finds

ar?  3,6-107%-0,0502 Nm®
M 1,5 kg?

~ . 10-11 NI
ng ’

which is in a very good agreement with the known value of G.

Based on the result of the Cavendish experiment one can estimate the mass of the Earth
since one can combine the acceleration of the free fall on the surface of the Earth (20) and
the general force law of gravitation (23)

g=G (26)

ﬁ )
where R is the radius of the Earth. Inserting the measured values of g, G and R one finds
M ~6-10*"kg.

Force law of friction and drag forces

On the fundamental level, the surface forces acting between two touching surfaces are due
to the electromagnetic interactions among the microscopic parts of the two bodies. On the
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phenomenological level it is possible to describe these interactions approximately assuming a
single effective force acting between the two surfaces. If the relative velocity of the surfaces is
non-zero, this effective force is called the force of kinetic friction, which has a direction such
that it is parallel to the surface and reduces the relative velocity v of the two bodies,

F = —fi~. (27)

The magnitude of the force of kinetic friction f; will be discussed later. Friction is very
important in our daily lives. It dissipates a lot of ordered kinetic energy (to be defined
precisely later). It causes wear and seizing of moving parts, and much enginieering effort is
devoted to reducing it. On the other hand, without friction we would not be able to write,
walk, as well many other means of transport would not be possible.

When an object moves through fluid (or gas) medium, frictional force emerges between the
object and fluid, which is called drag. The direction of drag is always opposite to the relative
velocity v of the body and the fluid. Its magnitude depends on the relative velocity such that
it cannot be expressed by a simple function. Nevertheless, for sufficiently small velocities the
dependence can be approximated by a linear function,

Fi=-Cv, (28)
while for sufficiently large velocities the functional form is approximately quadratic,

FII = —Cuov. (29)

(i) Force law of electrostatic interaction between two point charges (Coulomb’s law)

The magnitude of the force acting between two pointlike charges of charge Q4 and Qp is
inversely proportional to the square of the distance r between them. The direction of the
force exerted by charge A on charge B depends on the relative sign of the two charges. If the
relative signs are the same the force is repulsive, if those are different, the force is attractive.
This can be summarized in a single formula where the charges are considered positive or
negative:

QaQB
5 T

r

Fpi=K o, (30)

where the unit vector is defined as ro = r4_,5/r and the constant K has the approximate
numerical value of 9 - 10 N m?/C2.

(i) Force law of a charged particle moving in magnetic field (Lorentz’s law)

The force acting on a pointlike charge of charge @@ that moves in a magnetic field B with
velocity v is
F=QvxB. (31)

(i) Force law of Van der Waals interaction

The Van der Waals force acts between two dipoles and it has relevance in solid state physics.
We do not discuss the explicit form of this force law but mention a few properties. This is
a short range force, it drops to zero at a distance r ~ 107% cm. For very short distances
r < 1078 cm it is repulsive and for larger distances r > 1078 it is attractive.

1.7 Superposition principle — independence of forces

The definition of force is often supplemented with another statement, which is consistent with its
vector nature. It is not a necessity that net force can be calculated as a linear sum of all forces.
This is true only if there are no polarisation effects.

One can perform the following experiment. Let us attach a spring to an object with a rest
mass (m) and measure its acceleration a;. Attach a different spring to the same object and again
measure its acceleration as. Not attach both springs to the object and measure its net acceleration
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asum- 1he measurement confirms that asym = a3 + ap which results in the linear superposition
of the two individual forces Fgym = F1 + F2. This can be generalised for many body interactions
and summarised in a new law of motion.

Newton’s fourth law: when several forces act on a body, then the net force, that
appears in Newton?s second law, is a linear sum of the individual forces.

1.8 Newton’s second law — equation of motion

According to the Galilean transformation of velocities, if two frames of reference have a relative
motion of constant velocity, the accelaration of any object in the two frames are the same. Therefore,
the forces cannot depend on absolute coordinates and velocities (which are different in the two
frames), but on relative ones. For instance, the force exerted by an alongated spring depends
only on the deformation of the spring. Thus force laws express the forces as functions of relative
coordinate differences, velocities, physical properties of bodies in the environment of the object
(such as the spring constant), labelled ¢ whose motion is being analysed,

F:F(rij,vij,...). (32)

It is now possible to formulate the most important law of motion, the law of dynamics. Newton’s
second law: in an inertial frame of reference, the vector sum of the forces on an object
is equal to the time derivative of the momentum vector of the object. In other words,
the momentum of a body changes only if it comes into interaction with another body. The rate of
change of momentum is equal to the force acting on the body,

dp
E:F(rij,vij,...). (33)

If we assume that the inertial mass (m) of the object is constant,
ma:F(rij,Vij,...) . (34)

According to Newtons second law, the sum of these forces acting on the body is equal to
ma; = md?r;/dt?. Therefore, using the force laws, the law of dynamics is a differential equation
of second order, this is the equation of motion,

dzri 1
dt2 = EF(I‘U,VU‘,...) . (35)

The solution of this differential equation is the position vector of the body at any time, r;(t). Let
us summarise Newton’s laws of motion:

(N1) In an inertial frame of reference, an object either remains at rest or continues to
move at a constant velocity, unless acted upon by a force.

(N2) In an inertial frame of reference, the vector sum of the forces on an object is
equal to the time derivative of the momentum vector of the object.

(N3) When one body exerts a force on a second body, the second body simultaneously
exerts a force equal in magnitude and opposite in direction on the first body.

(N4) Forces add up like vectors, that is, that forces obey the principle of superposition.

Finally, let us discuss the principle of relativity in the Newtonian physics. The special principle
of relativity was first explicitly enunciated by Galileo Galilei in 1632 in his Dialogue Concerning the
Two Chief World Systems, using the metaphor of Galileo’s ship. When formulated in the context of
these laws, the special principle of relativity states that the laws of mechanics are invariant under
a Galilean transformation.
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1.9 Solving the equation of motion

1) Analytic solution for projectile motion
Near the surface of Earth the gravitational force acting on the stone can be considered constant,
therefore in the force law F = gm, g does not depend on the position of the stone. Let us assume
that we can neglect the drag force, so this is the only force acting on the stone during its motion.
Furthermore, we assume that the starting position is rg, and the starting velocity is vo. These are
the initial conditions. Using a = # and Newton’s 2nd law, F = ma, the equation of motion can be
written as follows:
r=g, (36)

which is a vectorial equation, containing the second derivative of the unkown function r, hence
called second order differential equation. We want to answer the following question: Which function
r = r(t) satisfies this equation? As the acceleration does not depend on the position, it is convenient
to compute the velocity as a function of time first. The velocity satisfies the v = g first order
differential equation, with the solution

Ir=v=vq+gt, (37)

because the first derivative of this function with respect to time is indeed g, and its value at time
t = 0 is vo. Then the solution of the first order differential equation (37), that also satisfies the
initial conditions, is

1
r(t) = ro + vot + §gt2 (38)

because the derivative of this equation with respect to time is indeed v+ gt, and its value at t = 0
is ro. We see that we must fix as many initial conditions as the order of the differential equation.
In order to solve a second order differential equation (the typical equation of motion) we must give
two initial conditions.

Let us choose the y axis pointing vertically
upward and the x axis pointing horizontally
such that the initial velocity and position lies in
the x — y plane. The gravitational acceleration
has direction —y, therefore the vector equation
(38) has no z component. The motion occurs
in the z — y plane, we do not even use the z
coordinates. We choose the origin of the coor- .
dinates such that the initial  coordinate of r
is zero, x¢p = 0 and its y coordinate is ysg = h, \\
denoting the initial height. Let the initial speed

be vy, and the angle between the initial veloc- ) *
ity and the x axis bea. Then the inital values
of the coordinates and velocity components are
20=0, yo=h, (39) Figure 1:
and
Voz = VpCOSCQ, Uoy = Upsina. (40)

Together with g these must be considered constants, we just have not yet specified their magnitudes.
The coordinates depend on time as

1
z(t) = vozt, yY(t) =h+ voyt — igt2 , (41)

while the components of velocity depend on time as

v (t) = voz, vy(t) =voy — gt. (42)
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We used equations (41) to draw the plots in figure 1., and the equations (42) to draw the velocity
vectors at several different times.

2) Numerical solution for ballistic motion

The drag force increases rapidly with increasing speed, therefore, it is certainly not negligible
in analysing the motion of bullets. The real motion of bullets cannot be described with equation
(38). For high speeds drag is proportional to the square of speed, Fapag = —Kv?v" = —Kwvv. The
equation of motion is

ma =mg — Kvv (43)

or dividing by m we obtain
a=g—Cuv. (44)

We choose the same coordinate system as in the previous case, therefore, as neither the acceleration
nor the initial position and velocity vectors have z component, the motion occurs in the x —y plane.
Writing the equation of motion in components,

ég;:—CUm\/m’ ﬁy:—g—C’Uy\/m (45)

we obtain a system of two coupled differential equations. The acceleration is still independent of
position, so it is convenient to compute the velocity first and then the coordinates of position. The
initial condition are the same as in the previous case with the choice h = 0. We can compute the
position using the following algorithm (:= means let it equal, i.e in the last line the new and the
old values appear on the left and right hand sides, respectively):

r:=0;y:=0; wv;=v9cos; vy =vgsinw

b:=C\ /v + 02

Gz = —bvg; ay = —g — by,

Vg 1= Vg + Az AL vy 1= vy + ay At (46)

Using the result v = v(t) we obtain the dependence of the position coordiantes on time using the
approximation of integration:

n n

(tn) = Y (va)ildt,  ylta) = D (v,)iAMt, (47)

i=1 i=1

where (v;); and (vy); denote the mean of the velocity components during the ith time interval.

In figure 2. we show the path and speed vectors of a bullet compared with and without drag.
The path with drag is called ballistic path.

3) Harmonic oscillator

Let us consider a one-dimensional motion on a frictionless table where an object is attached
to a spring. It is convenient to chose the x-coordinate along the spring. The spring force law is

F, = —c(x — x0), and it is free to choose the zero position at the rest length of the spring, so, the
force law is reduced to F,, = —czx. In this case the equation of motion reads as
. . c
mi = —cx, — F=—-— (48)
m

Let us look for the solution z(t) among the periodic functions,

z(t) = Asin(wt + @) (49)



1. LINEAR MOMENTUM

UM
. T e
v /
P o
v, - ' )
§§:§ UX

Figure 2:

where A, w and ¢ are constants which need to be determined. The dimension of A and «(¢) should
be the same and angular frequency dimw = T~! where T is the period time. In order to prove
that (49) is indeed a solution of (48) one has to derive x(t) with respect to time

& = Aw cos(wt + @), i = —Aw? sin(wt + @), (50)

and they should be substituted into the equation (48) which gives
k
—Aw? sin(wt + ¢) = —A— sin(wt + @) (51)
m

which holds only if the angular frequency is chosen to be

c

w=4/—. 52

- (5)

The two remaining parameters, the amplitude A and the phase ¢ are fixed by the initial conditions.

Assume that the position z and the velocity vk are known at ¢ = 0. Then one can write zy =
Asin ¢,, vy = Awcos ¢ which can be used to determine the amplitude and the phase,

2
A:\/xﬁ—i—%, d):arctg%. (53)

A remark is in order. What if we consider an object attached to a spring vertically. In this case
apart from the spring force (which depends on the position) a gravitational force is acting on the
object,

. mg
mi = —c(x — z9) + mg = —c {x— (xo—i——)} .
c

which shows that even if gravitational interaction is present, the equation of motion (54) is identical
to the equation of motion of the harmonic oscillator (48) if one redefines the rest length xg —
xo +mg/c.
4) Exponentially damped oscillator
Let us take into account the air resistance which can be done by the drag force depending on
the velocity,
MT = —CT — CylUy = —CT — CpT (54)

where the equation of motion can be rewritten by introducing § = ¢, /(2m) and wg = \/¢/m,
i+ 208 4+ wiz = 0. (55)

If the damping term is chosen appropriately, then one finds a decreasing amplitudes where its

odd and even maxima have the following property,
x3 x5 X7

10
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which results in a geometric series and an exponential damping. Let us look for the solution in the
following form

z(t) = Ae b sin(wt + ¢) (57)
where its derivatives with respect to time read
i(t) = Ae % [—bsin(wt+¢)+w cos(wt+a)], i(t) = Ae b [(b®—w?) sin(wt+¢) —2bw cos(wt+¢)] .
(58)

Inserting the solution and its derivatives into the equation of motion one finds an equation with
the following form X sin(wt + ¢) + Y cos(wt + ¢) = 0 which can be satisfied if and only if X =0
and Y =0,

X =0 —w? =265 +wi=0 Y = —2bw + 20w = 0 (59)

which results in the following solution for b and w,
b=26, é w?=wi-5. (60)

The amplitude and the phase are determined by initial conditions. Let us note, that the solution

is periodic if wy > 6,
2
T T (61)

which is larger then the period of time T > T = 27 /wq of the corresponding harmonic oscillator
without any damping term. If wg < § it is overdamped.

5) Forced oscillator

So far we have discussed natural oscillations of a body when it is displaced from its equilibrium.
A different situation is when the body is subject to a sinusoidal external force, which is characterised
by the following time-dependent displacement £(¢) = bsin wt. Thus the external force is

F, = —clz+x9 —&(t) — x0] = —cx + cbsinwt = —cx + Fysinwt . (62)

The resulting oscillation is called forced oscillation. Incorporating the damping term, too the equa-
tion of motion reads
mi = —cx + Fysinwt — ¢, & (63)

which can be rewritten as
i+ 200 4+ wix = fosinwt, (64)

where § are wg are defined previously and fy = Fy/m.

The forced oscillation is also a harmonic oscillation with the frequency of the external force and
not of the natural frequency of the body. However, the response of the body, that is the amplitude
and phase of the oscillation, depends on the relation between the forcing and natural frequencies.
A particular solution to the equation of motion is

z(t) = A(w) sin(wt — ¢(w)), (65)

where the dependence of the amplitude and the phase constant on the frequency of the external
force can be obtained by substituting the solution into the equation of motion and requiring that
the equality holds for any time ¢,

fo
Alw) = , (66)
\/(wg — w2)2 + 46202

and a phase shift is
(67)
If the damping is absent, then the amplitude of the forced oscillator aproaches infinity as

the forcing frequency aproaches the natural frequency. In reality, the damping is always present.
Nevertheless, the amplitude of the forced oscillation has a clear maximum when the denominator

11
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in (66) attains its minimum, which is close to, but always somewhat smaller than the natural
frequency (an effect of the damping). The position of the maximum is called resonant frequency
and the oscillation with maximal amplitude is a resonance. At resonance the phase shift is /2.

6) Equation of motion in case of the Lorentz force

Let us solve the equation motion in case of the Lorentz force, F = gv x B. The force, and
consequently the acceleration are perpendicular to the velocity, thus a; = © = 0. So, the velocity
is constant over the motion. If the initial velocity is perpendicular to the magnetic field then the
trajectory of the motion is a circle with the following centripetal acceleration,

q
n:*B7 68
a mv (68)

where the corresponding angular frequency (cyclotron frequency) is given by

n B
(% muv m

with the following radius
v omu

If the initial velocity is not perpendicular to the magnetic field then the trajectory of the motion
is a spiral.
7) Equation of motion in case of central forces

In case of central forces, the force F is parallel (or antiparallel) to the position vector r, thus
with appropriate initial conditions the trajectory of the motion is a circle. However, this requires a
particular initial velocity, which has to be perpendicular to the position vector and its magnitude
cannot be chosen arbitrarily. The magnitude of this critical velocity is determined by the kinematic
expression, a., = v?/r which relates the centripetal acceleration and the (tangent) velocity.

If one considers the gravitational force (which is an example for central forces) the magnitude
of the critical velocity is given by,

m— = F(r). (71)
where the force law has a well-known form close to the Earth,

m— =myg, (72)

which results in the so-called first cosmic speed, v; = v/gR ~ \/105% +6,4-105m = 81%“.

If the initial value of he velocity is not the critical one, then the trajectory of the motion is
not a circle and the equation of motion can be solved only numerically. For example in case of the
gravitational force one finds

Mm
ma = 7G TT r, (73)
which results in the following components,
ax:fGLx, a :fGLy. (74)
(22 + ) L @)

and it can be solved by the algorithm,

12
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T:=T0; Y:=Yo; Vg ="Uz0; Uy = Uyo

Vg 1= Uy + Az AL; ay 1= vy + ay At

T i=x+ VAL Y=y 4+ vy At (75)

Based on the above numerical solution, one can confirm Kepler’s (Johannes Kepler 1571-1630)
first law of planet motion. In astronomy, Kepler’s laws of planet motion are three scientific laws
describing the motion of planets around the Sun, published by Johannes Kepler between 1609 and
1619. These modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits
and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The laws
state that:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci. (Trajectory
of the motion is a conic section.)

2. A line segment joining a planet and the Sun sweeps out equal areas during equal
intervals of time. (The area-velocity is constant.)

3. The square of a planet’s orbital period is proportional to the cube of the length
of the semi-major axis of its orbit. (7?/a® = constant.)

1.10 Inertial and gravitational mass

In case of an inertial motion one can always find an inertial frame of reference where the object
(in case of extended object its centre of mass) is at rest. The required condition is

> Fi=0. (76)

By using this condition, one can measure the mass of any object. Assume an object with a mass
m attached to a spring vertically is at rest. This means, Frygs + mog = 0, so thus Frues = mog.
Therefore, if one measures the current length of the spring and its rest length, the spring force can
be calculated and the mass of the object is determined.

However, there is an important issue which needs to be mentioned here. The above argument is
true only if we assume that the inertial and the gravitational masses are equal. This is, in principle,
not a consequence of the gravitational force law or Newton’s laws of motion. One has to clarify or
falsify it by experiments. Indeed, it has been confirmed by various different type of measurements
with good accuracy. As an example one can mention the E6tvos pendulum. The equivalence of
the inertial and gravitational masses has very important consequences which are, however, not
discussed here and we reserve it for further advanced studies on the topic.

1.11 Constrained motion

In many cases the elastic forces are observed without any apparent change in the geometry of the
object that exerts the elastic force. For instance, the surface of the table appears flat after we put
a block on it, or the length of a rope after hanging some object on it. In these cases the geometry

13
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of the motion is fixed, and the force exerted on the body is called constraint, the motion is called
constrained motion.

a) Normal force

Thus, instead of applying the force law of some elastic force, we rather know the geometry of
the motion. For instance, putting a block of mass m on a horizontal surface, we find that the block
does not move, its acceleration is zero. Then it follows from Newton’s second law that the force
exerted by the surface of the table on the body F is equal in magnitude, but opposite in direction
to the gravitational force mg exerted by the Earth,

mg—l—FN:O, (77)

s0, the force of constraint, in this case the so called normal force is Fn = —mg.

What if the block has a non-vanishing acceleration? Knowing the motion of the block, we can
conclude about the force of the constraint. If the acceleration of the block is a, then we obtain the
force of the constraint from

mg+ Fn =ma (78)

as Fy = —m(g — a). Important to note, that the constrained force has no force law, it depends on
the apparent geometry of the motion.

b) Mathematical pendulum

Let us consider the motion of a point-like object with a mass m attached to a rope with a
length [ which is the so called mathematical pendulum. The change in the length of a rope after
hanging the object on it, is not observed, thus, the force exerted by the rope is considered as a
force of the constraint. Let us denote the path of the hanged object with s

s=rp (79)
where the tangent of the velocity and acceleration of the object can be written as
’Ut:té:lgb, at:i)t:lgb (80)

and there is no tangent of the force exerted by the rope, so one has to consider the tangent of the
gravitational force only
Fy = —mgsin g, (81)

which results in the following equation of motion
mlp = —mgsin (82)
Let us divide both sides of the equation of motion with mi
gb:—%singp, (83)

and if one approximates the sine function with its arguments which is valid for small angles,
sin p ~ ¢

. g

$=—7% (84)

then the resulting differential equation can be solved analytically

¢(t) = posin(wt + ¢), (85)

W= \ﬁ (36)

and consequently, T' = 2m/l/g. The constrained force can be calculated by solving the equation
of motion for the radial component,

where w is defined as

02
m—- =K —mgcosp, (87)

14
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where K = m(gcos ¢ + v2/1).

We obtained an explicit form for the constrained force of the mathematical pendulum. As
discussed in the case of the normal force, the constrained force has no force law, so, it is useful to
consider another example for constrained force exerted by the rope. Let us study a statical problem
where a point like object is hanged on two different ropes where the ropes are not vertical. Let us
denote the angles between the ropes and the vertical direction by « and . In this case one finds

ZFix:O:Flsinoz—ngin,Bz(), (88)
iEyO¢F1cosa+FgcosﬂmgO, (89)

with the solution
b= sin oz(ctgn:xg—i- ctg B)’ (90)
Fy = g (91)

sin B(ctg o + ctg B)

If @ = 8 the two forces are identical and equal to Fy = F» = mg/(2 cos o). However, if « = 8 = 0°
then the equation for the z-components carries no information since all terms are zero, thus, the
problem is underdetermined, and Fy = xmg, F» = (1 — z)mg is a solution for any real number
0<z<1.

3) Frictional force, motion on a slope

Let us consider a block of mass m on a table which is not frictionless. In this case one can
identify two constrained forces. If the block has no velocity one can identify the static frictional
force which is parallel to the surface of the table. Since the block is in equilibrium, the vector sum
of all forces acting on the block should be zero. The maximum of the static frictional force is given
by

Fs < Fsmaz = psFh, (92)

where F}, is the normal force and pug is the static frictional constant.
If the block has non-vanishing velocity, then one has to take into account the kinetic frictional
force,
Fk = ﬂFn ) (93)

where F}, is the normal force and and p is the kinetic frictional constant.

Another example of constrained motion is putting a block of mass m on a slope of angle o with
respect to the horizontal axis. The block may either stay on the slope in equilibrium (the motion
is completely constrained), or may slide down with acceleration parallel to the plane (the motion
is partially constrained). We find that there are two external agents that exert force on it: (i) the
gravitational pull of the earth, represented by the force mg, where g points vertically downwards,
and (ii) the surface of the the slope, represented by a force F, pointing to some direction upwards.
If the block stays in equilibrium, then these two forces sum to zero,

F+mg=0, (94)

which specifies the force of constraint completely. Such an equilibrium is possible if the coefficient
of static friction is sufficiently large,

F|=Fsina < p,F| = pFeosa, (95)

that is if ps > tan a. If ps < tan «, then equilibrium is not possible, the block slides down.

If the block slides down, then it does not leave the surface of the inclined plane, therefore,
its acceleration is parallel to the surface. Thus, the vector components of F and mg that are
perpendicular to the plane add to zero, so the scalar components are equal,

F| =mgcosa. (96)
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The parallel component of F is the force of friction that is always oppposite to the relative velocity
of the touching surfaces, therefore, we can write

mgsina — Fj = ma. (97)

These two equations are not sufficient to determine F, Fjj and a. However, we can use the
expression for the kinetic friction,

FH :[I,FJ_. (98)

We can solve the three equations (96), (97) and (98) to find the acceleration of the block, that is
a constant,

a=g(sina— pcosa). (99)

which gives the following critical value for the kinetic friction constant p = tan a.

Finally, let us pay the attention of the reader that strictly speaking the kinetic friction has no
force law. Although, the expression Fy = pFy has been used in the above example but the normal
force Fiy is a constrained force and thus, it has no force law, so does the kinetic friction. Indeed,
if one considers a constrained motion, the corresponding force of constraint has never had a force
law as opposed to free forces like for example the gravitational force where one finds a well defined
force law.

1.12 Bulk and surface forces

There are two different ways to build up a viable model description for objects (gases, liquids and
solids): one can relies on the molecular model where the objects are made up of atoms, molecules,
ions, or one can use the continuum model where objects are considered as a continuum media.

If we use the continuum model, an object can be divided into infinitely many small pieces
having the same properties of the original object. Let consider two forces, the gravitational and
the normal force. The gravitation force is expected to act on all pieces of the object, thus one can
define the force density

. AF,
T AV AV (100)
and similarly, the mass density
. Am
P= AT (101)

where ¥ = pg with dimy = M (L T)72, dimp = M L73; and their SI units are [y] = N/m3,
[o] = ke/m®.
Concerning the normal force it is clear that it acts on the surface of the object, so it is relevant

to introduce the area (or surface) density, lima a0 Af AN

called the pressure and it reads as

. The area-density of the normal force is

_ . AR
T AADS0 AA

P (102)

1.13 Newton’s laws for extended objects

We have already discussed how to generalise Newton’s first law for extended objects where the
centre of mass played an important rule. As a next step let us discuss how Newton’s second law
can be understood for extended objects, in particular whether the internal forces play any role or
one just have to take into account the vector sum of external forces. Since the centre of mass is
expected to have importance let us first give an example where it is calculated for an extended
object.
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1.13.1 Centre of mass of a half cylinder with homogeneous mass distribution

If one considers a system of particles, the centre of mass is given by

- Mirj - My
it ) (103)
2imi m
which can be used to calculate the centre of mass of a half cylinder with homogeneous mass
distribution where R is its radius and m is its total mass. On can choose a reference frame with

re =

cartesian coordinates where based on symmetry considerations, the y and the z components of the
position vector of the centre of mass are y. = 0 and z. = [/2 where [ is the hight of the cylinder.
Thus, only z. has to be determined.

Slice the half circle (the projection of the half cylinder into the x — y plane) into very narrow
stripes which are parallel to the y axis,

o = Zﬁ# (104)

Since the cylinder has a homogeneous mass distribution one can write Am;/m = AA;/A, which

results in 5 5
m m /

Then substituting it into Eq. (104) one finds

2
_ . _— 2 :
T, = e Ei 2xi4/ R? — x¥ Ax; (106)

Taking the limit Axz; — 0

Te = —/ 21‘\/R2—$2d1}—
R?nm

R
Ui N (107
3/2 o 37

The above strategy can be generalised for an arbitrary case, Am; = p AV},

SUAmry Y Amry Y pAVir p T /
1 — 1 — 1 — — 1
> Amy m m v dV v (108)

re =

1.13.2 Newton’s second law for extended bodies

In order to generalise Newton’s second law for an extended objects let us divide it into N point like
parts. If one applies Newton’s second law on one of these parts both the vector sum of external
(F;) and the vector sum of internal (ZN_l ;) forces should be taken into account,

N
Amiai = Fi + Z Fij s (109)
J#i

and then one can sums up both sides of the equation of motion which results in
N
SEUTED SRS 3 o
i i j#i

According to Newton’s third law, Fi; = —F;;, the double sum on the internal forces is zero. Thus,
the internal forces give no contribution to the equation of motion. In addition, if we use the
definition for the acceleration of the centre of mass, ma. =, Am;a;, then our final result reads

as
=> F, (111)
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1.14 Newton’s second law for variable-mass systems

In mechanics, a variable-mass system is a collection of matter whose mass varies with time. Let us
discuss how Newton’s second law can be generalised for such cases where the key issue is that one
has to take into account the momentum carried by mass entering or leaving the system.

1.14.1 Equation of motion for variable-mass systems

One has to redefine the concept of an object, or body because its mass varies with time. So, let us
consider a closed volume and define the body as the content of this finite volume which has the
surface-area A. Then, one can identify the mass and momentum which entering and leaving the
system. Thus, the mass current is defined as

Am
(m) — lim — 112
T = A (112)
and the momentum current is given by
A
® _ b
A 1

If we assume a finite, closed volume the net-current can be defined by the escaping current minus
the incoming current, J = Jese — Jinc. If the velocity of the escaping (or incoming) parts is constant,
the mass and the momentum current can be related to each other,

J®) =y (114)

where u is the velocity of the escaping (or incoming) parts in the inertial frame.

After this introduction, let us consider s simple case where the system gains some mass (mass
accretion) and simultaneously looses some mass (mass ejection). Assume a volume and three objects
where two of these are in the volume at ¢; and their masses are given by mgtay and Ames. and the
third object is outside of the volume at ¢; and its mass is given by Amy,.. We are interested in the
system at to = t; + At and we assume the following. The body with the mass mg,y, stays in the
volume, the body with the mass Ameg is now outside of the volume and the third object with the
mass AMiy,e is in the volume. Let p(t1) and p(¢2) denote the momentum associated to the mass
content of the closed volume,

p(tl) = pstay(tl) + Apesc(tl) (115)
p(t2> = pstay(t2) + Apinc(ﬁQ)' (116)

Apply Newton’s second law on the system of three object which is our starting point,

i 1
Aliglo E [pstay(tQ) + Apinc(tQ) + Apesc (t2) - (pstay(tl) + Apinc(tl) + Apesc (tl))] =F. (117)
Rearranging the terms one finds

Alirgo é {[pstay(tQ) + Apimc(tQ)] - [pstay(tl) + Apesc(tl)] + [Apesc <t2) - Apinc(tl)]} =F.
(118)

Since the momentum change associated to all objects in the closed volume is given by dp =
p(t2) — p(t1) one finds
Ap li Apesc — 1 Apinc

lim — =F 11
A A A A T A A (119)
which results in the following expression

dp (®) _ 3P (p)

P =F- (IR -3R)) =F - (120)

18



1. LINEAR MOMENTUM

1.14.2 Equation of motion of rockets

If there is no mass entering the system, which is the case of rocket motion, the general expression
(120) can be simplified
dm(t)v

=F-J® 121
dt esc ( )
and then d
v +ma=F—-JP) (122)
dt
For rockets the escaping current is Jé:? )= —dm /dt, so thus, J ((}S)g = uJéST ), where u is the velocity

of the mass (fuel) leaving the rocket with respect to the inertial reference frame. Therefore, one
finds

d d
mazF—i—(u—v)d—TEF—i—ure]d—T (123)

where u,; = u — v is the relative velocity of the escaping or incoming mass (fuel) with respect
to the center of mass of the rocket which is considered to be constant. If we study the motion of
the rocket (ideal rocket equation) where external forces can be neglected (F = 0), the equation of
motion is written as

dv dv dm dm
=MmM— =M = Uy —— 124
TAEM Y T T (124)
which results in the Tsiolkovsky-equation
dv 1
— = Upel—, 125
dm u 'm (125)

where the independent variable is the mass. Its solution has the form v = ue In(Cm) where C' is
the constant determined by the initial conditions. For m = mg the initial velocity is v = v, which
means vo = Uye In(C'myg). Then the final result reads

V =1vV(y — Ug In Mo (126)
m

1.15 Non-inertial reference frames; pseudo-forces

A non-inertial reference frame is a frame of reference that is undergoing acceleration with respect
to an inertial frame. While the laws of motion are the same in all inertial frames, in non-inertial
frames, they vary from frame to frame depending on the acceleration.

1.15.1 Pseudo-forces

In classical mechanics it is often possible to explain the motion of bodies in non-inertial refer-
ence frames by introducing additional fictitious forces also called inertial forces, pseudo-forces, to
Newton’s second law. To discuss these pseudo-forces one can start with the kinematical relation
between absolute a and relative a’ accelerations,

a=a +ag+ 20, XV, (127)

where a is the absolute acceleration of the object in a reference frame V, a’ and v’ are the relative
acceleration and velocity of the same object in a non-inertial frame V’, finally d, and ag, are the
angular velocity and the acceleration of the system V' with respect to the inertial frame V.
In case of pure translational acceleration where the non-inertial frame V' does not rotate, one
finds
a=a +ag,. (128)

and by inserting it into the equation of motion which stands for the absolute acceleration given by
Newton’s second law,

ma =Y Fi, (129)
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one finds the following expression for the relative acceleration

ma’ = Z Fi + FpSeudo y (Fpseudo = —masz> . (130)

where Fpgeudo = —ag, is the translational fictitious or pseudo force. One can say that Newton’s
second law holds in any coordinate system provided the term ’force’ is redefined to include the
pseudo-forces. Important to note that Fpseudo is not a real force, it has no counter-force, so, one
cannot apply Newton’s third law in this case.

In case of pure rotational acceleration where the non-inertial frame V' does not have a trans-
lational acceleration, one finds

a’=a—a, — 20, XV =a—ag + 2V X Jy,, (131)

then by using Newton’s second law one writes

ma’ = Z F; — mag, +2mv’ X @y, . (132)

where a new type of pseudo forces can be identified,

Foo = 2mv’ X dg, . (133)
which is the Coriolis-force. If one considers pure rotation, the acceleration of the non-inertial frame
reads as ag, = —wgzr = Wg, X Vg, and so the corresponding pseudo force is given by

Fg = mwgzr = MVg, X Wy (134)

which is the centrifugal force. Therefore, the final expression of Newton’s second law in this case
reads as
ma' =Y Fi+Fer + Foo. (135)

1.15.2 Pseudo-forces on the rotating Earth

In popular usage of the term "Coriolis effect", the rotating reference frame implied is almost always
the Earth. Since the Earth spins with the angular velocity w, Earth-bound observers need to
account for the centrifugal and the Coriolis force to correctly analyze the motion of objects.

The centrifugal force acts on objects which either stay at rest or have non-vanishing velocity with
respect to the Earth. Its direction is always perpendicular to the axis of rotation, in particular, it
acts outwards in the radial direction and its magnitude is given by mw? R cos 1. Since the centrifugal
force is a bulk force like the gravitational one, it contributes to the measured weight of an object.
However, this contribution is, of course very small. Even if one takes its maximum, the ratio of the
centrifugal and gravitational force is

Fot max 2R 2 2 6.4-10°
fomax _ 9T ( T > 341078, (136)

mgo  mgo  \24-3600s 10m/s2

where the gravitational acceleration is denoted by gg. Although this is indeed a small contribution
but if one would like to incorporate this effect, the observed weight (mg) of an object is written
as,

mg = m\/gg + (w?Rcos 1/))2 — 2gow? R cos? 1 ~ mgo/1 — 2w2R cos2 v/ go (137)

which can be well approximated
mg ~ mgo (1 — w?R cos? ¥/g0) =m (g0 — w? R cos? V), (138)
so thus the measured value of g is smaller than gq

g~ go—w?Rcos? . (139)
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The Coriolis force acts on objects which have non-vanishing velocity with respect to the Earth.
The Earth completes one rotation for each day/night cycle, so for motions of everyday objects
the Coriolis force is usually quite small compared with other forces; its effects generally become
noticeable only for motions occurring over large distances and long periods of time, such as large-
scale movement of air in the atmosphere or water in the ocean; or where high precision is important,
such are long range artillery or missile trajectories. Such motions are constrained by the surface of
the Earth, so only the horizontal component of the Coriolis force is generally important. This force
causes moving objects on the surface of the Earth to be deflected to the right (with respect to the
direction of travel) in the Northern Hemisphere and to the left in the Southern Hemisphere. The
horizontal deflection effect is greater near the poles, since the effective rotation rate about a local
vertical axis is largest there, and decreases to zero at the equator. Rather than flowing directly
from areas of high pressure to low pressure, as they would in a non-rotating system, winds and
currents tend to flow to the right of this direction north of the equator (anticlockwise) and to the
left of this direction south of it (clockwise). This effect is responsible for the rotation and thus
formation of cyclones.

2 Angular momentum

The generalisation of Newton’s laws for extended objects is straightforward where the centre of
mass plays a crucial role. If we are interested in the motion of the centre of mass only, the mechanics
of any extended object can be considered as a point-like mechanics where the total mass of the
object is placed in its centre of mass. However, if we would like to describe the motion of all points
of the extended object one has to solve a set of coupled differential equations (equation of motion
for each point-like parts of the extended object). One can find a drastic simplification of this rather
involved mathematical problem by choosing a different strategy based on the concept of angular
momentum which is discussed in this section.

2.1 Angular momentum of a point-like particle and system of point-like
particles

2.1.1 Areal velocity and the angular momentum of a point-like particle

Let us start our discussion on the angular moment with Kepler’s second law of planetary motion
which states that a planet sweeps out equal areas in equal times, that is, the area divided by time,
called the areal velocity, is constant. In other words, a line joining a planet and the Sun sweeps
out equal areas during equal intervals of time.

In a small time At the planet sweeps out a small triangle having base line r and height Ar = vA¢
and the area is AA ~ %|r x vAt|. Then the magnitude of the areal velocity is given by

. AA 11 1

A= lim — =1 ——|r x VAt = =|r x v|. 140
Amy A T Aim g g P VAl = glexy (140)

The vector r x v is perpendicular to the plane determined by the vectors r and v. The planet

moves in this plane, thus, one can write

. 1
A= 51‘ XV (141)

which is the areal velocity vector. If one proves that the areal acceleration is zero then the areal
velocity should be constant,
dA 1 1 1
E:5(VXV+I’X3):i(rxa):%(er):o. (142)

where we used that the force is central, thus, it is parallel to the position vector.
What if the force is not central? In the very general case one finds,

dA  d (1 1 d
dt—dt<2r><v>—27n(r><F) — E(rxmv)—(rXF) (143)
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and if the right hand side of the above equation is zero, the following quantity is conserved,
L=rxp (144)

which is the angular momentum of a point particle where p is the momentum of the particle and r
is its position vector from the O reference point, a fixed point of the inertial reference frame. Thus
angular momentum depends on the reference point and dim L = ML2T~! and its SI unit is [L] =
kg-m?/s. In addition, one can define another new quantity, the torque,

M=rxF (145)

where dim M = ML?*T~2 and its SI unit is [M] = kg-m?/s?. Thus, the angular momentum theorem

reads as,

dL

— =M 146

¥ (146)
which is a collorary of Newton’s second law. In the case when there are only central forces, for
instance, in the case of motion of planets, the position vector from the Sun is parallel to the force
and thus its torque is zero. As a result the angular momentum is conserved.

It is useful to introduce the moment of inertia
L=06w, (147)

where
0 =mr? (148)

is a scalar quantity, the moment of inertia of a point-like particle. By using the definition of the
angular acceleration, 8 = dw/dt, one can write ©8 = M.

As an application of the angular momentum theorem let us consider the mathematical pendu-
lum. The angular momentum of the object is L = r x (m& x r), where the length of the pendulum
is r and the angular velocity is w where w = ¢. Since the vectors r and & = wk are perpendicu-
lar to each other, the magnitude of the angular momentum is L = mr2w, and its direction o||k.
The force exerted by the rope is parallel to the position vector thus its torque is zero. Therefore,
only the gravitational force has a non-vanishing torque, r x (mg) with the following magnitude
M = rmgsin p, and its direction is M = —Mk. According to the angular momentum the theorem,

d
amﬂw = —rmgsing (149)

which is exactly the known equation of motion obtained by Newton’s second law.

2.1.2 Angular momentum of system of particles

Let us generalise the angular momentum for a system of particle

L=) Li=) (rxmviy). (150)
The equation of motion for the angular momentum of the individual particles of the system is

given by
dL;

dt

=T X Fi (151)

where the net force F; can be decomposed into external Fi(k) and internal Fi(jb) forces,

F,=F" + > FY (152)
j#i
which results in dLL
5= S FY Y N rx B, (153)
i i g
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where the first torque on the right hand side is the torque of external forces and the second is that
of internal ones.

According to Newton’s third law of motion, Fi(jb) = —FJ(Ib ),

ZZI‘IXF ZZ(I‘IXF —l—rij ) ZZ r; —r;) Fi(jb), (154)

i g#d i g>t i g>t

where we used the following identity,

n n n n n j—1
DI D) B SRS 9D SETED H TS 9 3L
i=1 JJ;} i=1 =1 j=i+1 i=1 j=1 i=1 j=i+1 j=11i=1 i=1 j=i+1

DD XYY Xy = Y (X +X) (155)

i=1 j=i+1 i=1 j=i+1 i=1 j=it+1

which holds for any quantity Xj; which depends on the indices i and j.
So, if the internal forces are central, i.e., they are parallel to the vectors (r; —r;), as is often
the case, their contribution is zero and the angular momentum theorem for a system of particle

reads as, oL

@M, (156)
1

where Mi(k) =1 X Fi(k) is the torque of the external forces. However, there are forces that are
not central, for instance, two magnets exert on each other equal and opposite, but non-aligned
forces. Nevertheless, it is an empirical fact that when the net external torque acting on a system of
particles is zero, then the total angular momentum of the system remains a constant, even if the
internal forces are not central. As a result, we conclude that the net internal torque is always zero,
and the net external torque acting on a system of particles is equal to the time rate of change of

the total angular momentum of the system.
The angular momentum and the torque are defined with respect to a reference point O. Let us
examine this dependence by choosing another point O’ and then the position vector can be written

r=ro +r and
Zr{xXi:ZrixXi—rO/xZXi. (157)

which clearly indicates that if one considers a centre of mass frame the torque and the angular
momentum is independent of the particular choice of the reference point. Similarly if the vector
sum of all external forces is zero, for example in the case of two parallel forces which have identical
magnitude but different directions, the torque depends on the difference of the position vectors,

M1+M2:I'1XF1+r2XF2:(P1—P2)XF1. (158)

Another interesting case when one can define a torque but no force can be associated to this
torque. One example is the torque of the torsion pendulum, M, = —c*p or the torque caused by
a magnetic field on a magnetic dipole, M = m x B.

2.2  Angular momentum of rigid bodies

Angular momentum of a system of particles is defined as L = )", (r; x m;v;). If a rigid body
is considered as a system of point-like particles then rigidity represents a constraint for these
particles. Is it possible to use this constraint to simplify the rather general expression for the
angular momentum? Let us examine this possibility.

2.2.1 Angular momentum with respect to a fixed axis

Assume that a rigid object is spinning around a fixed axis where the axis of rotation is chosen
to be the z-axis, thus, the angular velocity w has only a z-component w,. Let us calculate the

23



2. ANGULAR MOMENTUM

z-component of the angular momentum vector,

Lz =L -k= Z(I‘i X mivi) -k = Z(I‘iz X mivi) -k + Z(I‘iL X mivi) . k7 (159)

where the position vector r; is decomposed into a perpendicular r;; and a parallel r;, combination,
r; = ri] +71i,. The first term of the right hand side of (159) vanishes because the vectors (r;, X m;v;)
and k are perpendicular to each other and consequently their scalar product is zero. The vectors
ri; and v; = @ X r;, are perpendicular to each other and the magnitude of their vector product is
parallel to k with the magnitude riw, thus one can write,

L.=0%y,, (160)

where

0 = "mir, (161)

which is the moment of inertia of the rigid body with respect to the z-axis.
The expression (161) can be generalised for the continuous case

@z/ridm:/ p(r)rd dV (162)
m \%4

where the lower index m and the lower index V indicate that the integration is understood over
the total mass and the whole volume of the object.

The unit of moment of inertia is dim © = ML? and it has a general expression © = C'mr? where
m is the total mass of the object and r is some geometric parameter perpendicular to the axis of
rotation, for example the radius of a sphere or cylinder. C' is a dimensionless number which can be
calculated as

1
C=—— [ ridv. 163
r2V v L ( )
where we assumed a homogeneous mass distribution, m = pV.
As an example let us calculate the moment of inertia of a cylinder with respect to its symmetry
axis where we assume homogeneous mass distribution. Instead of using cartesian coordinate z, y
and z where 72 = 2%+y? it is more convenient to switch to cylindrical coordinates r, ¢ and z where

ri = 72, In this case the integration measure is dV = rdr dz dy with the following bounderies

0<r<R; 0<¢p<2r; 0<z<I, (164)

where R is the radius and [ is the length of the cylinder. Its total volume is V' = R%r [, thus,

1 (R 2m ol ol (B orl [+ 2nl R* 1
C= *d de [ dz= Sdr = —| =S —-—==2. (165
R47rl/0 " r/o <p/0 ? R47rl/0 e R%lhh Riria 2 U169
Similar procedure can be applied to determine the moment of inertia for other object. For
example, the moment of inertia of a ball with respect to one of its symmetry axis is %mR2 where

R is its radius and m is its total mass. Important to note that the moment of inertia is an additive
scalar, so, for example the moment of inertia of a half ball is %mR2.

2.2.2 Parallel axis theorem

The parallel axis theorem, also known as Huygens-Steiner theorem, or just as Steiner’s theorem,
named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of
inertia or the second moment of area of a rigid body about any axis, given the body’s moment of
inertia about a parallel axis through the object’s center of gravity and the perpendicular distance
between the axes.

Suppose a body of mass m is rotated about an axis z passing through the body’s center of
mass. The body has a moment of inertia ©. with respect to this axis. The parallel axis theorem
states that if the body is made to rotate instead about a new axis z’, which is parallel to the first
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axis and displaced from it by a distance s, then the moment of inertia ©p with respect to the new
axis is related to ©. by Op = O, + ms2. Its derivation is

Op =Y mi(af +y7) =Y mi((af +5)° + %)

= Z mi(z? + ) + z:mis2 + Z m;2z]s = O, + ms* (166)

where it is assumed, without loss of generality, that in a Cartesian coordinate system the perpen-
dicular distance between the axes lies along the x-axis and that the center of mass lies at the origin.
In addition, 2’ and 3y’ are coordinates of the center of mass system and x = 2z’ + s. We used that
(3= miz{) /m is the coordinate of the position vector to the center of mass in the center of mass
frame which is zero. By using the Stener’s theorem, one can calculate the moment of inertia of a
cylinder about an axis going through the cylinder wall (and being parallel to its symmetry axis),
%mR2 +mR? = %mRQ.
According ot Eq. (156) if the torque is zero the angular moment is conserved, L = constant,
thus,
0w, = const. (167)

Therefore, if the moment of inertia has been changed for some reason like in case of collapsing
stars, the new angular velocity should fulfil the following expression,

O5i) wota = O, wnew (168)

2.2.3 Angular momentum of a rigid body with respect to a reference point

While velocity and linear momentum always show in the same direction, angular velocity and
angular momentum are, in general, not parallel. As an example, let us consider a rigid body
consisting of a vertical shaft rotating freely between two (an upper and a lower) bearings and
an arm of length v’ welded perpendicularly to the shaft. We assume both the shaft and the arm
massless. At the end of the arm there is a pointlike particle of mass m. Let us fix the reference
point O to the lower bearing that is at distance r from the particle. If the rigid body rotates,
its angular velocity is parallel to the shaft, while the angular momentum is perpendicular to the
position vector of the particle, r = zi+ yj + zk and thus, & = w,k and L are not parallel. To show
this, let us calculate

v=dxr=wkx (i+yj+zk) = —w,yi + w.zj. (169)
and then L = r x mv gives
L, =—-mzw.,x, L,=-mzwy, L,= m(z® + y*)w. (170)

which demonstrates that the angular momentum has parallel L, and perpendicular L | components
while the angular velocity is parallel to the z-axis. In addition, since the perpendicular component
of the angular momentum vector depends on time, L} = —mzw,r | (), a non-vanishing torque is
required

L=L, =@dxL, =&xL, (171)

where we used I = J X r.
We can extend the above argument to the discussion of rotation of an arbitrary rigid body. Le

us assume that J = w,k,
ng) = 0w, , Lz(f) = 0,,w,, LY =0,,w,, (172)

z

where the upper index indicates that the angular velocity is parallel to the z-axis and

Gwz = - Zmixizi 5 @yz = - Zmixiyi 5 922 = Zml(x? + y12) . (173)
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Let us pay the attention of the reader that ©,, is the moment of inertia Eq.(161) introduced
previously when we discussed the rotation of a rigid body around a fixed axis and we computed
the moment of inertia with respect to the rotation axis. ©,, and ©,, are moments of inertia which
show that the angular momentum and the angular velocity (which has only z-component) are not
parallel. One can consider the most general case, where the angular velocity has three components,
Wz, Wy and .. In this case the three components of the angular momentum reads as

L, = L?(jb) + L?(f/) + Léz) = G)yzwa: + @yywy + (“)yzwz ) (175)
L, = LO+LY +LP =06,,w, +6,ywy + 0.0, , (176)

which can be summarised in the following expression
L = 63. (177)

where © is the moment of inertia tensor. The moment of inertia tensor is a convenient way to
summarise all moments of inertia of an object with one quantity. It may be calculated with respect
to any point in space. The representation of the moment of inertia tensor in a particular frame of
reference is the moment of inertia matrix,

@rz Gmy emz
O—= | Oy, O, O, , (178)
@z:r ®zy @zz

which is symmetric by the definition, thus,

exy = - Z mixilYi

= miyim; = Oy . (179)

Therefore, it has only 6 (instead of nine) independent elements.

Since the moment of inertia matrix is real symmetric, thus, it can be diagonalised or in other
words, a real symmetric matrix has the eigendecomposition into the product of a rotation matrix
and a diagonal matrix. This means one can always find a reference frame where it is diagonal. This
reference frame is called the principal axis frame where the the columns of the rotation matrix
define the directions of the principal axes of the body, and the elements of the diagonal moment
of inertia matrix, ©11, ©99, ©33 are the principal moments of inertia. The highest and the lowest
moments of inertia are among the principal moments. The principal axis with the highest moment
of inertia is sometimes called the figure axis. When all principal moments of inertia are distinct,
the principal axes through center of mass are uniquely specified. If two principal moments are
the same, the rigid body is called a symmetrical top and there is no unique choice for the two
corresponding principal axes. If all three principal moments are the same, the rigid body is called
a spherical top (although it need not be spherical) and any axis can be considered a principal
axis, meaning that the moment of inertia is the same about any axis. The principal axes are often
aligned with the object’s symmetry axes. If a rigid body has at | east two symmetry axes that are
not parallel or perpendicular to each other, it is a spherical top.

The motion of vehicles is often described in terms of yaw, pitch, and roll which usually cor-
respond approximately to rotations about the three principal axes. If the vehicle has bilateral
symmetry then one of the principal axes will correspond exactly to the transverse (pitch) axis. A
practical example of this mathematical phenomenon is the routine automotive task of balancing a
tire, which basically means adjusting the distribution of mass of a car wheel such that its principal
axis of inertia is aligned with the axle so the wheel does not wobble.

Let us denote the unit vectors of the principal axis frame by e; (i = 1, 2, 3) and the principal
axis by xs1, o and z3 where the principal moments of inertia are ©11, O, O33, thus one can
write

Li = @iiwi, 1= 1, 2, 3. (180)
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Let the body rotate around an arbitrarily chosen axis given by the Euler angles a; (i = 1, 2,
3) and its unit vector is denoted by e;. In this case, & = wye;. One can write

cosq; =e¢-€, — W= € =wicosa;, — L=17L1e; + Lyes + Lses (181)
and the component of the angular momentum with respect to this arbitrary direction is

Li=L-e;, = Licosaj + Lacosag + L3 cosasz = O11w1 cos a1 + Oaows cOS arg + O33w3 coS oz

= (011 cos? ay 4 Ogy cos? ay + O35 cos? o) wy - (182)
Since Ly = ©®w;, one can conclude,

01 = O1; cos® ay + Ogs cos® ag + O3 cos® ag . (183)

2.2.4 Solving the equation of motion for rigid bodies

The most general motion of a rigid body has six degrees of freedom: three of the translational
motion of one of its points, let it be P, and three of the orientation of the body around this point
P. It is natural to choose P the center of mass, denoted by C. The motion of the center of mass is
described by Newton’s second law that can be solved using the algorithm,

F Ap P -V Ar r

L l | s

The orientation around the center of mass can be described by solving the equation of motion
for the angular momentum vector. It follows the same algorithm as that for a point particle,
M AL L AL - - Ay -

L

[ 6 Y (185)

where ¢ represents the angles that describe the orientation of the rigid body, the angular position.
However, it is important to note that one cannot get the step L — & by simple division with
the moment of inertia because in general it is a tensor. If the axis of rotation is fixed, or the
body rotates around an axis that is an axis of rotational symmetry of the body, than this step is
straightforward. In addition, one has to recalculate the moment of inertia matrix in every At steps
of the algorithm, since it depends on the particular configuration.

2.2.5 Equilibrium of rigid bodies, equivalent substitution of forces

A pointlike object is in equilibrium (or in more general terms: it performs inertial motion) if the
net external force acting on it is zero. Under the same condition the center of mass of an extended
object also performs inertial motion. We now extend the notion of inertial motion to all other
points of a rigid body: If there exists an inertial reference frame where each point of a rigid body is
at rest and the forces acting on this body are such that all points remain at rest, then we say that
the rigid body performs inertial motion. Thus, the inertial motion of a rigid body has a kinematical
condition and two dynamical conditions, > ; F; =0 and ), M; = 0.

If a force acting on a body is represented (or replaced) by another force or a force-moment
system (at a different point on the body) such that the resulting rigid-body effects (i.e., translation
and rotation) remain unchanged, i.e.,

S>E=)F,, Y M=> M, (186)
i 7 i 7

the two systems are said to be equivalent. We are interested in this concept because in many
problems, it may be more convenient to replace the existing force with another equivalent force or
force-moment system. For example, the force can be shifted along its line of action if we consider
rigid bodies (and do not interested in the deformation).
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2.2.6 Equivalent substitution of weight

Let us consider the weight of an extended object. It has been discussed that for a pointlike particle
with a mass m; the weight is given by m;g where g is the gravitational acceleration. Assume that
the extended object is divided into pointlike parts and we wish to substitute the weight of these
parts by a single force. According to the rules of equivalent substitution one can write,

ZAmig =mg (187)

where m is the total mass. In addition one should write,

iAmy;
ZrixAmig:ZriAmixg:Zrmm X Mg =Tre X Mg (188)

which indicates that the equivalent substitution is indeed mg.

2.2.7 Equation of motion for of rotation

For a rigid body rotating around the z axis the equation of motion is
0¥E, =M -k = M, (189)
which can be generalised for a rotation around an arbitrary axis given by the unit vector ey,
OWgs, =M- e, = M, (190)

It is useful to discuss the magnitude of the torque acting about an axis which is directly propor-
tional to the distance of the force from the axis. It is defined as the product of the perpendicular
component of the force (F|) and the moment arm (k), so M®) = +kF, where the moment arm
is the perpendicular distance between the line of action of the force and the center of moments,

Mt:[(rl—i—rt) X (FL—i-Ft)]-et
=(ry xF1) e+ (rs xF ) e+ (ry xFy) e+ (ry xFy)-eg=(rp xF1)-e, (191)

since the vector r; x F is parallel to e
|Me| =[xy xF1) e =[rL xFL|. (192)

In addition, |r; x F | =r, F) sina = kF, with the moment arm k& = r, sin«a where « is the
angle between the vectors r; and F, and M) = M, thus one finds,

eMs =pm® (193)

which is the equation of motion for rotation around a fixed axis.
A simple application of the above equation of motion is the case of the torsion pendulum where
the torque is given by M; = —c*p, so, the angular acceleration 8 = ¢ can be calculated by the

equation of motion
X

. c
Y= —® ¥ (194)

which is the well-known differential equation of the harmonic oscillator having the solution ¢(t) =

o sin(wt + @) where w is given
c*

Another example is the compound pendulum. A compound pendulum is a body formed from
an assembly of particles of continuous shape that rotates rigidly around a pivot. Let us assume
that a rigid object is rotating around a horizontal axis going through an arbitrary point of the
rigid object which is not the centre of mass. The distance between this point and the centre of
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mass is denoted by s. In this case the torque caused by the gravitational force (weight) is given by

M, = —mgssin ¢ = —mgs ¢ where M, and ¢ has opposite signs. The equation of motion reads
. mgs
$="5m ¢ (196)

with a solution ¢(t) = g sin(wt + ¢) where the natural frequency of the compound pendulum is

mgs

=0 (197)

w =

thus, T' = 2m/0®) /(mgs).

Our last example is Atwood’s machine (fixed pulley). Let us assume that the system is released
from rest (assuming that the string does not stretch or slip) and that the friction of the pulley is
negligible. Our goal is to find the linear acceleration of the blocks attached to both sides of the
pulley and the angular acceleration of the pulley. In this case the set of equations of motion is
given

mia =myg — Ky, (198)
maa = Ky —mag, (199)
Of =rK, —rKs, (200)

where © is the moment of inertia with respect to the rotational axis. Since we assume that the
string does not stretch or slip, the kinematic condition a = r holds and the third equatin can be
written as K; — Ko = Oa/r?. Then the solution of the differential equations is K; = m;(g — a),
K3 = ma(g + a), ahol a = g(my — ma)/(my1 +ma + 6/r?).

2.2.8 Planar rigid body dynamics; orbital and spin angular momenta

If a system of particles (or rigid body) moves parallel to a fixed plane, the system is said to be
constrained to planar movement. In this case, the dynamics for a rigid system of N particles,
simplify because there is no movement in the direction perpendicular to the plane. To study this
simplified motion let us first decompose the position vector r; = r. + r{, and the velocity vector
vi = V¢ + V| where the vectors r{ and v! are understood as the position and velocity in the center
of frame. In this case, the total angular momentum of the system is

L=r.x (Z mi> ve + (Z mu‘{) X Vg + I X (Z mw{) + Z (r] x myvi) . (201)

where only the first and the last terms are non-vanishing this is because ), mr{ is the position
vector and ). m;vj is the total momentum of the center of mass in the center of mass frame which
are zero. The first term simplifies as

L, =r. xmve. (202)

which is the orbital angular momentum. The last term reads
L, = Z (r] x m;vi) . (203)
i
which is the spin angular momentum. The total angular momentum is the sum of these,

L=L,+L,. (204)

The advantage of the decomposition of the total angular momentum into orbital and spin
angular momenta is the equation of motion can also be separated. Let us first consider the equation
of motion for the orbital angular momentum,

dL,

dve
S —roxm St v x B, (205)
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which is basically Newton’s second law for the center of mass of the rigid body. The equation of
motion for the total momentum reads,

dL c
E:Z(rc—krg)xFi(k):rchi()+Zr§><Fi(k), (206)

i

and one can also write

dL.  dL, dLg () , dbs
e ) - F —. 2
dt dt a e LT (207)
thus, one obtains
dLs , (k) _
Tl E r; x F;"' =M, (208)

i
which is the equation of motion for the spin angular momentum where where M, is the torque
about an axis perpendicular to the movement of the rigid system and through the center of mass.
Important to note that the above expression holds also if the center of mass has a non-inertial
motion.

2.2.9 DMotion on a slope

In case of the motion of rigid bodies in a plane there are three degrees of freedom, which are two
coordinates of the center of mass in the plane and an angle describing the rotation around an axis
perpendicular to the plane. The three equations of motion are

may =Y Fiy (209)

may = Z Fiy (210)

oltelg, =" Mo (211)
i

The first two equations describe the motion of the center of mass and the third one is the equation
of motion for the rotation around the tc axis. It can be shown that the motion can always be
considered for a short time interval as a pure rotation around the instantaneous axis of rotation t;.
For instance, if a wheel rolls on a surface without slipping, then the instantaneous axis of rotation
is the line where the surface touches the wheel. If we are not interested in the forces of constraints,
then for the description of the motion, we can solve the single equation

?

As an example, let us consider the motion of a cylinder on a slope (or incline) described by the
angle a. An incline (or slope) is an ideal arrangement to realize accelerated rolling motion. Let us
use a frame where the x-axis is parallel and the y-axis is perpendicular to the incline. Force due
to gravity acts through the center of mass of the rolling body. When a body rolls down, it has
linear acceleration in downward direction. The friction, therefore, acts upward to counter sliding
tendency. This friction constitutes an anticlockwise torque,

ma = mgsina — Fy, (213)
0=mgcosa — Fy, (214)
OB = RFs, (215)

where the moment of inertia is © = CmR?, where C is a number and it depends on whether we
consider a solid cylinder or a ring. The condition of rolling (without slipping) is a = RS, thus

gsina

=— 21
“Tayco (216)

Fy =mgsina 1 (217)

+C
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Let us compare the case of the solid cylinder Ceylinder = 1/2 and the ring Cling. = 1 which gives
eylinder/@ring. = (1 + Cring)/(1 4 Coeylinder) = 4/3 . Once can also calculate the condition of rolling
(without slipping) which is

mgsinaC/(1+C) < pgmgcosa, (218)

which gives tga < po(1+1/C).

2.2.10 Spinning top

A typical example of a rotating rigid body is a spinning top. The top has three degrees of freedom.
It has a fixed point and the orientation of the top around that point is arbitrary.

Let us first consider the case of the torqueless spinnig top with the following principal moments
of inertia ©17 = O99, and O33. Let the spinning top rotates around an arbitrary axis where the
angular moment can be decomposed into a parallel and a perpendicular combination according to
the symmetry axis,

L3 = 633&)3 Ll = @11WL 5 (219)

where w is the perpendicular component of the angular velocity. Important observation is that the
angular velocity, the symmetry axis and the angular momentum are in the same plane. Assume,

O33 > Oq1, in this case
L3y  Ozzws  Ogs
tgf=—= = —"tga>tga. 220
L, ©nwy On (220)
Since the spinning top is torqueless, the angular momentum is constant, thus, the symmetry axis
and the angular velocity are orbiting around the angular momentum. This is called the nutation.

Let us consider the case of the torque induced precession. In this case the axis of rotation,
which coincides with the symmetry axis of the top, rotates relatively slowly around the z axis.
This motion is called precession. The top interacts with two external bodies. One is the Earth
exerting the gravitational pull, the other is the table on which the top resides. Choosing the
reference point to be the tip of the top, the only extrenal torque is exerted by gravity,

M = Zri X Am;g = (Z r;Am;) X g =7, X mg. (221)

The magnitude of the torque is
M = mgrsina, (222)

where « is the angle between the z axis and the symmetry axis of the top. In a short time interval
At, the change in the angular momentum of the top is

AL = MAt. (223)
Furthermore, if the angular velocity of the precession is wp, then in a short time interval
A¢p = wpAt, (224)

and, using geometric considerations, the same angle can be expressed as

AL
Ap = . 225
¢ Lsina (225)
From these equations we obtain wp as
mgr mgr
= — = . 226
wr L @33&)3 ( )
Considering the directions of the vectors, it is easy to show that
M =dp x L. (227)
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3 Energy

3.1 Collisions

There certain situations when it is difficult to represent the effect of the environment on a body
by forces. An example is collisions, when the the duration of the interaction (the collision) is
seemingly instantaneous. Careful examination of the process shows that actually the forces acting
between colliding bodies can be considered elastic elastic forces, but the quantitative description
of the force is difficult. Without knowing the forces explicitly, all we know so far is that in pure
two-body interactions the total momentum is conserved. However, that is not sufficient to predict
the velocities of the colliding bodies after collision expressed as functions of the velocities before
collision.

If we describe the collision in the centre-of-mass (cm) reference frame of the two bodies, then we
know that the total momentum is zero: mawa , + mgwgp = 0. (In the following, we shall denote
velocities by v in the laboratory frame V, and by w in the cm frame. Furthermore, we use index b
to denote velocities before and a to denote those after collision.) As total momentum is conserved,
we know that mawa o + mpwp,, = 0. Clearly, from these equations we can only predict the ratio
of the speeds,

Yab _MB _ WAa (228)

WBp MA  WB.

From these equations it follows that

Dha _ DBa (229)

WAL  WBp

meaning that the speeds increase (r > 1), decrease (r < 1) or remain unchanged (r = 1) with the
same ratio. If the speeds remain unchanged we talk about elastic collision, if change, then inelastic
collision. According to our daily experience, speeds usually decrease during collisions, but it is also
possible to prepare collision such that the speeds increase.

Let us first consider the case of elastic collision. In this case

WA, =wWAp, and wpg=wpp. (230)
We obtain the speeds in the laboratory frame V by using the transformation rule
Vi = Ve + W, i=A, B, (231)

where v, means the velocity of the centre of mass in the laboratory frame. As a result, for both
bodies

w; = \/v2 +v2 —2v; - v,
Substituting into the Eqn. (230), we obtain
2 2 _ 2 2 -
Vi g T V5 = 2Via Ve =05, 07— 2Vip - Ve, i1=A B. (232)

We then multiply each equation by the mass of the corresponding body and find the following two
equations:
mAUZA,a —2MAVA,q Ve = MAU%",} —2mAvVaA - Ve (233)

and
2 2
MBUR,, — 2MBVB,a * Ve = MBUR), — 2MBVB,b - Ve - (234)

Adding these two equations and dividing by two and using the conservation of total momentum,
MAVA L+ MBVBp = MAVA e+ MBVB., (235)

we obtain that in elastic collisions the quantity

1 1
E, = §mAvi + §va]23 (236)
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conserved, as well: Ey, = Fk1,. We already know that any conserved quantity is very useful even if
there are conditions of conservation. Therefore, we give a name for the new quantity Ex = %va:
it is the kinetic energy of body of mass m moving with speed v. The kinetic energy is a derived
physical quantity. Its physical dimension is dim B, = ML?T~2, its unit in SI is [Ey] = kg-m?/s?,
that is called joule, 1J = 1joule = 1kg-m?/s%.

3.1.1 Collisions in one dimensions

We can use the conservation of kinetic energy for solving the complete dynamical problem: with
conservation of momentum we can write sufficient number of equations for computing the speeds
after collision. Let us consider elastic collisions in one dimension first. Conservation of momentum
can be written as

MAUVA b + MBUB, = MAVA,q + MBUB,q , (237)

while conservation of kinetic energy reads

1 1 1 1
§mAviyb + ivalz_%,b = imAvi,a + iva%’“ ) (238)

The best strategy to solve these equations for the unkown quantities va o and vg 4 is to rearrange
them such that the quantities of body A and those of body B appear on different sides of the
equations:

ma(vap —VAa) = mB(VBa — UBb), (239)
mA('Uzzx,b - vzzx,a) = mB(U123,a - Ulz_%,b) . (240)

Dividing the second equation with the first, we find
VAL T VA,a = UB,a + UBb, (241)

which yields v 4 = va 5 + VAo — VB,b. Substituting this expression into the equation on momenta,
We can express va o easily:

2mB
VAg =VAp+ ———(UBp—V . 242
Aa S — mB( B,b — VAb) (242)
The starting equations are symmetric with respect to the interchange A <+ B, so the solution for
UB,q is obtained from that for va , by this interchange,
2ma

= _ — . 243
UB,q = UBb T g Rp— (vap —UBp) (243)

3.1.2 Special cases of one-dimensional collisions

It is instructive to discuss some special cases.

(a) For collisions of bodies of equal masses, we find that the speeds interchange, va , = v
and vB,q = VA b-

(b) If one body, called target, is at rest, vg = 0, then

ma — mp 2ma

VA,a = VAb UB,a =

v 244
ma +mp Adb ( )

ma + mp

(c) If the target is much heavier than the projectile, for instance, a car crashing into a truck,
mp > ma, then va o = —vap + 2uBy and v, = vByp. As a result, the acceleration of the car
will be very large, leading to severe damage, while that of the truck is small. The same physics is
used by soccer players when stopping the ball flying to him. Choosing vg properly, he can reach
va,q = 0. If the target is a wall, then v, = 0, and the projectile has the same speed after collision,
then before. We can use the same result for colliding particles into a wall away from right angles,
provided the surface of the wall is slippery (no friction during collision), so it does not exert a force
tangent to the wall. In such circumstances the tangent (to the wall) component of the velocity
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does not change, while the perpendicular component changes sign, keeping the original magnitude.
Therefore, the particle is reflected from the wall at the same angle as it arrived to it.

(d) If the projectile is much faster than the target, for instance a car hit a pedestrian, ma > mg,
then the speed of the car hardly changes, va,, = va,p, but the pedestrian is shot off, vg, =~
2vap — vBp. For example, a car of speed 30km/h hitting a pedestrian, the initial speed of the
latter will be 60 km /h!

If the collision is inelastic, then the kinetic energy is not conserved. In order to write two inde-
pendent equations, we have to specify the ratio (the collision number) r. The case of completely
inelastic collision means r = 0. In such a case, we only have one equation, conservation of momen-
tum, but also only one unknown, as the bodies move on with common velocity. Then conservation
of momentum is sufficient to determine this common velocity in any dimensions:

MAVAb +MpVEy = (Ma + mp)v, (245)
leads to m m
A B
Vo= — A B . 246
ma +mp b ma +mp B (246)

For instance, if the target is at rest, vg, = 0, then the common final velocity is smaller than the

initial one by the ratio of the masses, v, = — 22 —v ;. The same can be used in blow-up into
’ ma+mg ’

two pieces. In the cm frame of the original single body

0=mawWa q+ MBWB , (247)

SO WA o/WB,q = mp/ma. The velocity in the laboratory frame V can be obtained from transfor-
mation of velocites.

3.2 Work-energy theorem
3.2.1 Work-energy theorem for point-like particle, power

The conservation of kinetic energy is more limited than conservation of momentum for two reasons:
(i) it is valid only for elastic collisions, and (ii) the kinetic energy is actually not a constant: it
decreases for a short time (during the actual interaction of the colliding bodies) and it attains its
original value only after the collision is over. The bodies in interaction act by forces on one another.
It is conceivable that these forces cause the change of kinetic energy. Let us examine why and how.
As before, we denote the velocities before and after collision by indices b and a. Let us assume first
that the force acting on the body is a constant (if not so, let us consider a sufficiently short time
interval, so that it is true approximately). Thus

1 o, 1 ., 1

2 _ 2
3MVa = 50y = 5m (Vi-vi) = gm(va —Vp) - (Va+vp) =
Vo —Vp Vg+Vyp Av
— . At = m— - (V)At ~m -aAr. 24
me 5 tht<v)tmar (248)

According to Newton’s 2nd law ma = F, therefore,

1 1

imvg - gmuf =F Ar. (249)
Here we see the reason for introducing the factor 1/2 in the definition of kinetic energy. Otherwise,
a factor of two would appear on the right hand side. We name the new physical quantity on the

right hand side: the scalar product of force and displacement,
AW =F - Ar (250)

is called (mechanical) work, abbreviated by W, while the result in Eq. (249) is called work-energy
theorem. In words: the change of kinetic energy of a body is equal to the work done by the forces
acting on the body,

W = FAsp = FsAs = FAscosa. (251)
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Let us note, that work is a derived physical quantity of physical dimension dim W = ML2T~2. It
has the following SI unit [W] = N-m = kg-m?/s? = J.

So far we have defined work of constant force and straight path. The generalization is of course
easy: we partition the path into sufficiently small sections that can be considered straight lines and
the force can be considered constant along the sections. Then we simply sum up the individual
contributions as numbers,

= lim ZF -Ar; = / F(r) -dr = /Sng(s)ds =Wi(s1 — s2). (252)

A;—0 51

In the last line of this equation the notation W(s; — s2) is meant to emphasize that work depends
on the path and not only on the starting and ending positions. On the graph of the component of
force tangent to the path as a function of the measured path, Fy(s), the work is equal to the area
under this function. Of course, we can also compute the work using

W:/ Foo)de+ |y dy+/ F.(2)dz (253)

Y1

Let us now write the work energy theorem for each section of the partition of path:

Ex(1) = Ex(0) = FaAs;
(254)

Ex(2) — Ex(1) = Fols,
(255)
(256)
Ex(n) — Ex(n—1) = FsnAsy. (257)

Adding these equations, on the left hand side we always obtain the total change of kinetic energy,
Ex(n) — Ex(0). Thus we can refine infinitely the partition and obtain

Ei(s1) — Ex(so) = lim ZFSIASI— / F.ds, (258)

As;i—0 50

i.e. the total change in kinetic energy is equal to the work done by the force on the body (cf. with
Eq. (252)). Then the work-energy theorem can then be written in the form

Ek(S) — Ek(O) = W(SO — S) (259)

Work can be positive, negative (when the angle between the direction of displacement and
force is at an angle larger than right angle), or zero even when neither the force, nor the path
is zero, but these are perpendicular to one another. For instance, in the case of uniform circular
motion, the displacement element is tangent to the path, while the force is radial, therefore, these
are perpendicular and the work is zero. As a result the kinetic energy and the speed are constant.

If there are more than one forces acting on the body, the work of the net force can be computed
as a simple sum of the work of each individual force, as the scalar product is distributive,

(ZF1>~ArZFi~ArZWi. (260)

The work-energy theorem can be used easily when the forces do not depend on the relative
velocities and we are interested in the path-dependence of the speed.

For example, if we choose the starting point of the coordinate system to the equlibrium position,
then the force law of the spring is F,, = —cx. Its work on the body belonging to the displacement
x1 — 0is

0 0 1
W = / Fydx = —c/ rdr = icx% . (261)
T 1
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The work-energy theorem can be used to find the requested starting position: %va = %caﬁ implies

x1 =vy/mjc.

We often use the “speed” of work: the ratio of work and the time interval needed for that work,
in the limit when the interval shrinks to zero is called power,

AW
P= lim — 262
Y (262)

Its physical dimension is dim P = ML?T 3, ST unit is [P] = J/s = N-m/s = kg:m?/s®, which has
its own name: 1 watt = 1 W = 1J/s. Using the watt unit of power, work os often measured in units
of Ws or Wh, especially in electromagnetism.

Power can also be computed as

F.-Ar
P=1
A?BO At

=F v. (263)

3.2.2 Work-energy theorem for extended bodies

The kinetic energy of a system of particles reads as
1 2
Ey = gi Ex;= Ei PRELE (264)

and the work-energy theorem includes internal and external forces

AB =Y F A+ Y Y FY - Ar (265)
i ijA
Thus, for system of particles the work of the internal forces matters!

However, in case of rigid bodies, the net work of the internal forces are zero. This holds for
central and non-central internal forces. If the internal forces are central one can argue. For trans-
lational motion the work of the opposite internal forces has opposite signs. For rotational motion
the relative displacement of two points of the rigid object is perpendicular to the vector which
connects the two points, thus the work done by central forces is zero.

If the internal forces are not central one can argue as follows. Let us calculate the total kinetic
energy of a rotating rigid object,

1 1 1 1
Ex = Z §mivi2 = Z §mi(wz7”u)2 = <Z 2mirﬁ> w? = §®(Z)w§. (266)

i

where 7;, is the distance of the point-like particle i from the axis of rotation which is the z-axis.

Then,
— Wz,1 Wz 2 + Wz1

At 2
where Ay is the angle displacement over At. By using ©(*)3, = M., one finds

At =08, Ap, (267)

1 z
AEk = 56(2) (wz’Q - wz’l) = G(Z)w 2

—
AEk = MZAQO, — AEk =M- A(p. (268)
The expression (268) is equal to the work done by the external forces. For example in case of two

forces which are not central (but have the same magnitude and opposite direction) the work done
is FsAs = FsrAp = M,Ap, thus

AW =Y "M;.Ap = (Z Mi,,z) Ap = M. Ayp (269)

where Ay is the same for all cases. Thus, we showed that the work of the internal forces is zero in
case of rigid bodies, so, for rotating motion one can write the work-energy theorem as

1 1
§@(Z)w§,2 - §®(Z)w,§,1 = M:Ayp (270)
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3.2.3 Work-energy theorem for planar motion of rigid bodies

Let us apply the work-energy theorem for planar motion of rigid bodies. The velocity vector of an
arbitrary point-like part of the rigid object is written as the sum of the velocity of the center of
mass and the relative velocity in the center of mass frame v; = v. 4+ v{. Then the kinetic energy
reads

EkZZ%miv?:Z;ml vc+v Z —Miv, —|—Z mv + v - va (271)

Since the last term is zero, one finds
= 1mv2 + E lm-v-2 (272)
2 9 i 2 1% -

thus the kinetic energy consists of a two terms, the translational which is the first one and a
rotational which is the last one. The latter can be written as %@Coﬂ, thus by choosing the z-axis
as the rotational axis, one finds

1 1
Ex = Fxtr + By rot = imvg + 5@3%5 . (273)

In order to apply the work-energy theorem the dispalcement of an arbitrary point-like part of
the rigid object is Ar; = Ar. + Ap x r}, thus the work can be calculated

AW = Zml F_Z(Arc+Agpxr)-Fi
- Arc-ZFﬁLZ(A«pxr;)-Fi
= ZF +Ap- ZﬂxF
- ZF G- ZM (274)

which gives

1 1 1 —
Emui2 - imvil + §9£Z:2w2 - *@c Jw? = Ar, - z}: Fi+ Ap- zl: M. (275)

which is the work-energy theorem for planar motion of rigid bodies. Important to note that this
theorem holds separately for the translational and rotational parts,

1 1

§mvf’2 - imvil = Ar, - E Fi, (276)
Lo@w2 — Lo@,2 - A,
i@c,sz - §®c, W, = ZMC i- (277)

In order to prove the above separation one should consider the translational part,

1 1 1 1
§mvc2,2 - §mvf’1 = §m (ng - V<2:,1) = §m(vc,2 - Vc,l) “(Ve2 + Vc,l)
(278)
_ mvc,zA—tvc,1 Ve ;—VCJ At =~ ma, - Ar, = Ar, - Z:Fi’ (279)
which demonstrates that the above separation of the work-energy theorem holds.
For the sake of completeness, the expression of the power can also be written as
P=F -v=F - (dxr)=d-rxF)=d-M. (280)
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3.3 DPotential energy

In general, the work of a force depends on the path over which the work is done. If the force is a
central force (always pointing to the same centre) then the work is independent of the path and
depends only on the starting and ending position. Examples are the gravitational and the spring
forces. On any small path segment, labelled by i, the work is AW; = £FAr;, where Ar; is the
component of the displacement in the radial direction, and the sign is positive if the direction of
the force and that of the radial displacement are the same, otherwise negative. Thus, the work
does not depend on the actual path, only on the change in the radial distance from the centre.
Then the total work over any path starting at a distance r and ending at 7y is equal to the work
done over a straight radial line starting at r; and ending at rs:

T1 T1 T1

zlc(rl — 1) — 1c(rg —rg)?. (281)
2 2
where 7¢ is the unstretched length of the spring. We can define a function U(r) = W(r — 1),
which depends only on r and the work done by the force between any staring position r; and
ending position 7o is

W(’/‘l — ’/’2) = U(Tl) — U(’f‘g) = U1 — U2 . (282)

Using the work-energy theorem, Fyi,(2) — Exin(1) = W(r; — 72) and Eq. (282), we find Eyi,(2) —
Eyin(1) = Uy — Us, which yields
U + Eyi, = const (283)

Although we obtained Eq. (281) assuming linear force law, the result in Eq. (282) and conse-
quently in Eq. (283) is clearly more general. If the work of a force does not depend on the path,
we can define a function U(r) such that the work done by the force between any staring position
r1 and ending position 79 can be obtained by simple difference as in Eq. (282). In such cases of
force laws, the quantity in Eq. (283), called the total mechanical energy, is conserved. As always,
we welcome conserved quantities, as those can be used for making predictions, even if the validity
of consarvation is limited. We call those forces for which the total mechanical energy is conserved
conservative forces. The function U(r) is called potential energy and it is the work done by the
force on the body during the latter moves from the starting position r to the arbitrarily chose end-
ing position 9. (Observe that the work being a difference is independent of r¢.) Strictly speaking
the potential energy characterizes the force, but having Eq. (283) in mind, we say that it is the
potential energy of the body under consideration. Thus we interpret Eq. (283) such that if only
onservative forces act on a body, then its total mechanical energy, i.e. the sum of its potential and
kinetic energy, is conserved.

Friction or drag are examples of forces when the work depends also on the path, as those are
always opposite to the relative displacement (as compared to the surface or medium). For such
forces potential energy cannot be defined and the total mechanical energy is not conserved. Such
forces are called dissipative.

Let us give two examples for the potential energy. The first is the potential energy of a spring

1
U(r) = e(r —mo)*, (284)
the second example is the potential energy of the torsion spring, (M, = —c*p),
1
U(r) = 50*(,0%. (285)

3.3.1 Interaction potential energy

Up to now we have been discussing the potential energy of a single particle attached to a spring.
Let us look at the energy of two particles attached to each edges of an extended spring. The
two particles are considered as isolated ones, which means no external forces interacting with each
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other. Particle B, at position rp from the origin, exerts a force F 4 g on particle A, while the particle
1 at position r 4 exerts an equal and opposite force Fg4 = —F 45 on particle 2. The displacements
of the two particles are Ara and Arg. In this case one can write,

FABAI‘A + FBAAI‘B = FABAI'A — FABAI‘B = FAB(AI'A - AI‘B) = FABAI'AB, (286)

thus, the works done in the lab frame and in the frame attached to one of the particles are the
same. According to the work-energy theorem,

W(l — 2) =U; — Us = Exin a2 + Exin,B2 — (Exin,a1 + Exin,B1) , (287)

which means the the total mechanical energy is conserved, U + Fyin A + Fkin,gp = constant.

Thus, potential energy is the energy held by an object because of its position relative to other
objects, stresses within itself, its electric charge, or other factors. There are various types of po-
tential energy, each associated with a particular type of force. Common types of potential energy
include the gravitational potential energy of an object that depends on its mass and its distance
from the center of mass of another object, the elastic potential energy of an extended spring,
and the electric potential energy of an electric charge in an electric field. The total work done by
these (gravitational, elastic and Coulomb) forces on the body depends only on the initial and final
positions of the body in space. These forces are called conservative forces.

There are, however, non-conservative forces such as the frictional force where the work does
depend on the path and not just the initial and final positions. In this case the total mechanical
energy is not conserved, or in other words, strictly speaking one cannot define potential energy.

3.3.2 Potential energy of a force field

A conservative forces conserve mechanical energy. We showed that this can also be recognised by
the closed path test which means that the work done by the force is independent of the path, thus,
it depends on the initial and the final position only. So, if one considers the work done by the force
over a closed path it should be zero. Any force that passes the closed path test for all possible
closed paths is classified as a conservative force.

What if multiple conservative forces act on a particular point-like object? In this case one can
take the net force, so, thus it can be considered as a single (conservative) force problem. In addition,
the concept of field force can be introduced. Only the actual magnitude and direction of the net
force at a given space point matters if we wish to determine the work. In other words, various
force laws standing behind the actual value of the net force are irrelevant if one is interested in the
work done by the net force. A force field F, defined everywhere in space is called a conservative
force or conservative vector field if passes the closed path test. Therefore, the potential energy
of this conservative force field is defined as U(r) = W(r — rg) where r¢ is the point where the
potential energy is assumed to be zero. Note that there is an arbitrary constant of integration in
the definition of the potential energy, showing that any constant can be added to the potential
energy. Practically, this means that you can set the zero of potential energy at any point which is
convenient,

U'r) =W(r = ry) =W(r—ro) + W(rg — rj) = U(r) + constant. (288)

The term conservative force comes from the fact that when a conservative force exists, it
conserves mechanical energy, so, if the potential energy function is known then the work can
be calculated, W (1 — 2) = U; — Us. Introducing this into the work-energy theorem one finds,
Ui — Uy = Ekin,2 — Fxin,1 which clearly shows the conservation of the mechanical energy,

U + FEyin = constant (289)

The most familiar conservative forces are gravity, the electric force and the spring force. Up to now
we considered the potential energy of the spring force. Let us now turn to gravitational potential
energy.
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A well known central force is gravitation. Let us compute the potential energy of a body under
the influence of gravitational force of the Earth only. The force law is central again, so the work is
independent of the path, we can compute its work along any path, say along a straight radial line
alined with the z axis:

T0 1 To 1 1
U(r)=W(r—ry) = —GmM/ d—f = —-GmM [—} =—-GmM ( - ) - (290)
r x X r T To

There are two natural choices for the zero point. If the motion is close to the surface of the Earth,
i.e. the distance h is much smaller than the radius of Earth R, h < R, then the potential energy
at height h is

M
h =~ mG—h = mgh. (291)

1 1>_m GM
CUR2(1+ L) R2

The second natural choice is at infinity for arbitrary motions, rg — oo. Then

mM
-

Ulr)=-G

(292)

Let us calculate how fast we should start the spacecraft vertically, if we want it to leave Earth
forever. The gravitational force is conservative, so the total mechanical energy is a constant,
1 mM
—mv? — G—— = E = constant, (293)
2 R
where R is the radius of Earth and we used Eq. (292). If the initial speed of the spacecraft is smaller
than necessary, then it will turn back at a distance 7ry.. At the moment of turn its speed and
consequently, kinetic energy is zero, so

=F. (294)
Tmax

We see that the total energy is negative (and it was so at any moment due to our choice of zero-

energy point at infinity). Thus the spacecraft turns back as long as we start it with negative total

energy (F < 0). If we start it with positive total energy (E > 0), it will never turn back. The

smallest starting speed of path with no return is obtained from the condition

1 mM
imUQ GT =F= 0, (295)

ie.,

M
\/ 2% ~ 2R~ 11 (296)

This is called escape speed or second cosmic speed (hence the subscript 2).

As a second example, let us proove Kepler’s I11. law of planetary motion. Kepler’s three laws
state that: (i) the orbit of a planet is an ellipse with the Sun at one of the two foci, (ii) A line
segment joining a planet and the Sun sweeps out equal areas during equal intervals of time, (iii)
The square of a planet’s orbital period is proportional to the cube of the length of the semi-major
axis of its orbit. Let us consider the total mechanical energy at two distinguished points of the
ellipse, the perihelion (minimum distance to the sun) and the aphelion (maximum distance to the

sun),
1, mM 1 mM

§mv1_Ga—c:§mU2_G e (297)
from which one finds,
1 1 4c
2 — 2 = — = _—
v —v; =2GM (ac a+c> GMaQ—cz . (298)
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As a next step let us apply Kepler’s second law, again for perihelion and for aphelion,

1 1 abm

5((1 —cv = §(a +c)ve = T (299)
where T is the orbital period, and abr is the circumference of the ellipse. Express v; and vo,
2abm 2abmw
_ - =" 300
vt T(a—c)’ 2 T(a+c) (300)

Substituting them back to Eq. (298), one finds

4a?b?7? 1 B 1 _ 40?2 dac oM 4c (301)
T2 (a—c)? (a+c)? T2 (a? —c?)? a? — 2
By using the expression a? — ¢ = b? valid for any ellipse, one finds
5 GM
% =z = constant (302)

which is Kepler’s third law of planetary motion.

3.4 Forces and potential energy
3.4.1 Force derived from the potential energy function

Potential energy is closely linked with forces. If the work done by a force on a body that moves from
A to B does not depend on the path between these points, then the work of this force measured
from A assigns a scalar value to every other point in space and defines a scalar potential field. If
the force law is given one can compute the corresponding potential energy by calculating the work
done by the force. This can be obtained by integrating out the scalar product of the force and
displacement vector which serves as the integration measure. What if the potential energy function
is known and we are interested in the corresponding force? Let us show that in this case, the force
can be defined as the negative of the vector gradient of the potential field.

Let us consider the work over the so called virtual displacement ér which is a mathematical
construction where we assume that physical quantities, like the force remains unchanged over the
displacement. In other words, over virtual displacement one assumes time-independence, i.e. the
displacement is happened to be instanteneous. In this case the corresponding work is the virtual
work and it reads as,

W =F-or=U(r)—U(r+or). (303)

In order to express the force, one has to evaluate the scalar product and then one can divide by
the magnitude of dr,

U(r+dr)—Ul(r)

||

In order to complete our task we need to define the direction of the force. Indeed, one can evaluate
the virtual work for various virtual displacement vectors with various directions and let us choose
the one which gives the largest component Fj,., and this direction is chosen to be the direction of
the force component. Finally, with a particular choice for the reference frame, the z-component
reads as

F&r:_

(304)

. Ul@+ér)—-U(x) _ oU
e == lim 5 =" (305)

Fy=-" F,=——— (306)

which gives

(307)
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Let us choose another way to discuss the relationship between work and potential energy. The
details of this derivation will be discussed in advanced studies, however, it is insightful to summarise
the major steps. The line integral that defines work along a curve takes a special form if the force
F is related to a scalar field U(r) so that

F=-— (51,;;,;;) U(r) =-VU(r), (308)

where the vector V= (8%, 3%, %) is introduced. In this case, the work along the curve is given by

Iro Iro ry
W = Fdr = — VU(r)dr = VU (r)dr (309)
ry ry r2

which can be evaluated using the so called gradient theorem (which is discussed in advanced
studies) to obtain

W =U(r1) — Ulra). (310)

Thus, we recovered the usual relationship between the work and the potential energy and our result
implies that F must be a conservative vector field and the potential U(r) defines a force F at every
point r in space, so the set of forces is called a force field. Another usual notation is, F = —grad U
where the so called gradient is given by the vector V. The force vector is indeed perpendicular to
the curve where each point has the same potential energy, so, they are equipotential.

3.5 Equilibrium positions

In mechanics, equilibrium is the condition of a system when its state of motion remains unchanged
with time. A simple mechanical body is said to be in equilibrium if it experiences neither linear
acceleration nor angular acceleration; unless it is disturbed by an outside force, it will continue in
that condition indefinitely. For a single particle, equilibrium arises if the vector sum of all forces
acting upon the particle is zero. A rigid body is considered to be in equilibrium if, in addition to
the states listed for the particle above, the vector sum of all torques acting on the body equals
zero so that its state of rotational motion remains constant.

There are three types of equilibrium: stable, unstable, and neutral. An equilibrium is said to
be stable if small, externally induced displacements from that state produce forces that tend to
oppose the displacement and return the body or particle to the equilibrium state. An example is a
ball placed in the potential well. An equilibrium is unstable if the least departure produces forces
that tend to increase the displacement. An example is a ball bearing balanced on the potential
hill. A system is in neutral equilibrium if its equilibrium is independent of displacements from its
original position. A ball on a flat horizontal surface (equipotential points) is an example.

3.6 Gravitational field, gravitational potential

In classical mechanics gravitational field is a model used to explain the influence that a massive
body extends into the space around itself, producing a force on another massive body. In its
original concept, gravity was a force between point masses. In a field model, rather than two
particles attracting each other, a gravitational field is used to explain gravitational phenomena.
We have already introduced the gravitational potential energy which contains the mass of the test
particle, too. In the concept of the gravitational field and gravitational potential the mass of the
test particle is removed.

Thus, gravitational field can be defined using Newton’s law of universal gravitation. Determined
in this way, the gravitational field g around a single particle of mass M is a vector field consisting
at every point of a vector pointing directly towards the particle. The magnitude of the field at every
point is calculated applying the universal law, and represents the force per unit mass on any object
at that point in space. Because the force field is conservative, there is a scalar potential energy
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per unit mass, at each point in space associated with the force fields; this is called gravitational
potential. The gravitational field can be constructed from the gravitational force

F(r) = mg(r), (311)

which acts an the test particle with mass m. Let us consider the most general case where g(r) is
the field around multiple particles with various masses m; which is the vector sum of the fields
around each individual particle and it is determined by the position vectors (r;) of these multiple
particles,

my r—r;
gr)=-S G———— L 312

Similarly, the gravitational potential can be constructed from the gravitational potential energy,
U(r) = mu(r), (313)

where the gravitational potential reads as

u(r)z—ZG ULT (314)

|r — 1y

Thus, u(r) is the gravitational potential which is the function of the position and related to the
gravitational field,

g(r) = —gradu(r) . (315)

If the source is a single particle with the mass M then

g(r) = —G%ro, u(r) = —G% . (316)
As an example, let us calculate the gravitational potential inside and outside of a spherical
shell. It is important since a spherical mass can be thought of as built up of many infinitely thin
spherical shells, each one nested inside the other. We will consider the gravitational attraction that
such a shell exerts on a particle at a distance r from the center of the shell. The total mass of the
shell is m and its radius is R. To do this, consider cutting the shell into rings. Every point on the
ring is a distance r(9;) from the test particle, and the ring has width RA®; and radius Rsin¢;
where ¥; is the angle corresponds to the ring. The surface area of the ring equals

AA; = 27 R? sin ;A , (317)

The total mass of the shell, m, is evenly distributed over the surface, so the mass of the ring is
given by the fraction of the total surface area

AA; 1
—m sin ’LgiAﬂi . (318)

A = ——= =
T )

Since r(9;) = v/r2 + R? — 2r Rcos ¥; then,

Z m sin %AV,

) 319
2v/1r2 + R? — 2rR cos ¥; (319)

which results in the following integral,

/ 2rRsin 9 dv
47"R V12 + R? — 2rRcos?

[\/7’2 + R2 — 2rR cos 19]

7R
—G—R (Ve +R? - Vir = Rp)
2rR

= G (r+R-|r—R|. (320)
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Outside of the shell one finds r > R, thus |r — R| = r — R, and

w=-G=. (321)
r

This result mirrors the result we would receive if all the mass had been concentrated at the center
of the shell. This similarity holds true for all shells, and since a sphere is composed of such shells,
it must be true for a sphere too. The phenomenon holds even if the different shells are not of
equal mass density—that is, if the density is a function of the radius. We can conclude that the
gravitational force exerted by one planet on another acts as if all the mass of each planet were
concentrated at its center. The corresponding gravitational field reads as

g(r)=—-G—=r". (322)
Now let us consider the potential for a particle inside such a shell, |r — R| = R —r,
m
=-G— 323
u=-G7 (323)

which is constant. Thus the potential inside the sphere is independent of position, i.e., it is constant
in 7. Since the force is the gradient (derivative) of the potential, we can infer that the shell exerts no
force on the particle inside it. For a solid sphere this means that for a particle, the only gravitational
force it feels will be due to the matter closer to center of the sphere (below it). The matter above
it (since it is inside its shell) exerts no influence on it, clearly illustrates this fact.

4 Mechanics of elastic bodies, liquids and gases

4.1 Elastic bodies

All rigid bodies are to some extent elastic: their dimensions change slightly by pulling, pushing,
twisting or compressing them. For instance, let us hang a car on a steel rod that is 1 m long and
1cm in diameter. The rod stretches 0.5 mm, but returns to its original size if the car is removed. If
we hang two cars on the same rod, then the rod will be permanently stretched after the removal of
the cars. Hanging three cars will break the rod. Just before rupture, the elongation will be 20 mm.

4.1.1 Differential and integral Hook’s law in one dimension

There are three ways of changing the dimensions of a solid
by acting forces on them: (i) tensile stress, (ii) shearing Stress
stress and (iii) uniform compression. All three ways pro-  (MN/m?)

duce some kind of deformation of the solid, which is called 100l
strain. Any stressed material strains uniformly, therefore, |
. . . . . . Elastic .
it is useful to consider relative strain, a dimensionless ggol— limit Breaking
quantity. This means that, point
200—
Aly Aby  AY Elastic
=—=—= 324 -
¢ 2 lo l; (324) 100 behavior
| | | | .

where A/; is the deformation on the length ¢;. Strain

Consider a bar of a cross sectional area A being sub- 0 0002 0.004 0.006 0.008 0.01

jected to equal and opposite forces F pulling at the ends
so the bar is under tension. Strain is a description of
deformation in terms of relative displacement of particles in the body that excludes rigid-body
motions. An experimental fact is that the material is experiencing a stress where the strain is a
monotonic function of the force and depends on the inverse of the cross sectional area of the bar,

e=f (i) (325)
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where F is perpendicular to the cross sectional area. Based on this observation one can define the

(longitudinal) stress
AF|

= lim

AA—0 AA
where the strain is a unique function of stress e = f(o). If the strain is small, the dependence of
the stress on the relative strain is linear,

(326)

oy

stress = modulus x relative strain.

If the stress is tensile one, then the modulus is called Young’s modulus E. Let us note that strains
are classified as either normal or shear. A normal strain is perpendicular to the face of an element,
and a shear strain is parallel to it. These definitions are consistent with those of normal stress
and shear stress. If the stress is shearing one, then the modulus is the shear modulus G. Finally,
if the stress is uniform compression, then the modulus is called compression modulus, k. For
uniform compression the relative strain is negative, therefore, in order to keep k positive, we have
o = —kAV/V which will be discussed later.

Increasing strain we find eventually that stress and strain are no longer proportional. Instead,
we find that equal increments in stress cause smaller and smaller change in strain: we say that the
elastic material becomes more rigid. However, beyond some stress the material becomes more fluid
like, and small increase in stress produces large increase in strain. Finally, at some ultimate stress
the material breaks. In physics, we are usually interested in the region of linear response. In the
case of tensile stress, the linear response is described by what is usually called Hooke’s law:

o, = FEe, — % = %% (327)
which are also called the differential (first expression) and integral (second expression) forms of
the one-dimensional Hooke’s Law.

4.1.2 Transverse contraction

When analyzing more than one dimension, interaction between all directions needs to be consid-
ered. This is done through Poisson’s ratio. Basically, Poisson’s ratio is the amount of transverse
contraction, or negative strain, when strained in a given direction. For a basic object pulled or
strained in the x-direction, the Poisson’s Ratio is defined as

Al, 1AL,

e __144 2
i .. — 7 il (328)

Thus, when a member is pulled in the x-direction, there is a contraction strain in the y-direction
(and z-direction). If it is pulled in the y-direction, then the contraction strain will be in the x-
direction (and z-direction). For a three dimensional object, Poisson’s ratio will occur in equally in
both perpendicular directions. If the load is in the x-direction, then strain in the y- and z-direction
will be

€y = €, = — €y, (329)

Therefore, the volume deformation can be written as

AV by + Al (A+AA) -1, A
%4 A
where A is the cross sectional area perpendicular to the x-direction. If one neglects the term AAAZ,
it reduces to

AV AGLAYAAL AL AA

v T LA 4 A (331)
which can be furthered simplified by using AA/A ~ Al /¢, + AL, /L,
AV AL, AL, AL,
— & —— =€ +e+e=¢€(1—-2p). (332)

v T, l, .

Since the volume deformation is typically positive, AV/V > 0, the following relation holds (1 —
2p) > 0 which results in a constraint for the Poisson coefficient, 0.5 > p > 0.
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4.1.3 Stress tensor

In continuum mechanics, the physical quantity which describes the stress and denoted by o is a
second order tensor and called the stress tensor. In general, the tensor consists of nine components
o;; that completely define the state of stress at a point inside a material in the deformed state,
placement, or configuration. It is used for stress analysis of material bodies experiencing small
deformations which is the central concept of the linear theory of elasticity. If one considers the
stress over a given plane defined by its normal vector n, the so called stress vector can be derived
from the stress tensor.

. F
o(n,r) = Aljlrgo A (333)

Depending on the orientation of the plane under consideration, the stress vector may not necessarily
be perpendicular to that plane, i.e. parallel to n, and can be resolved into two components. One is
normal to the plane, called normal or longitudinal (or radial) stress,

Fy

= A (334)

gy
where F'| is perpendicular to the cross section area. The other is parallel to this plane, called the
shear stress
os = lim ﬂ (335)
AA=0 AA

where Fj is in the plane of the cross section area.

4.1.4 Elastic potential energy

Strained material posseses elastic potential energy. For instance, in the case of Hooke’s law, this
energy can be obtained by observing that the elastic rod under tensile stress behaves like a spring,
with force law

EA
i.e. the “spring constant” k = EFA/¢. The stored elastic energy is
1 1EA 1
oot = 5k(M)2 = §7(M)2 = §E62(AZ) : (337)

where in the parenthesis we recognize the volume of the rod, therefore, the elastic energy density
is > 1
pot 2
Uy = ——— = —Fe”. 338
P Vv 9 € ( )

4.1.5 Volume deformation, compression

Volume deformation is due to either tension or compression. In case of compression, we define
compressive stress,

AF,

= 1 ——— 339
P= A450 A4 (339)
where p = —oy is the pressure which has the SI unit [Pa] where 1Pa = 1N/m”. For uniform
compression the volume deformation reads
AV 1
=_= 340
v P (340)

Just like 1D or 2D, Hooke’s Law can also be applied to material undergoing three dimensional
stress (triaxial loading). The development of 3D equations is similar to 2D, sum the total normal
strain in one direction due to loads in all three directions. For the x-direction, this gives,

1 (F, F, F, 1
€z, total = €z,due to o’x+€z,due to 0y+6:r,due to o, — E K - :U/I - _MI = E (wa — HOyy — /”LUZZ) :
(341)
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In case of uniform compression, 0y, = 0yy = 0., = —p, one finds

1-2
€z,total = _( E ‘uf) D. (342)

Since AV/V = €z + €4y + €, our final results is

AV 3(1—2w) 1
— It 4
1% FE p mp (343)

which shows that E, k and p are not independent of each other.

4.1.6 Shear stress, Torsion spring

If a material is isotropic (homogenous in all directions, such as a solid metal) and is pulled in
two directions, then due to Poisson’s ratio, the overall normal strain will be the total of the two
strains. However, Hooke’s Law also relates shear strain and shear stress. If the shear stress and
strain occurs in a plane then the stress and strain are related as

AR
os = lim

AAS0 AA =Gy (344)

where G is the shear modulus (a material property) and + is the shear strain. The shear strain is
defined as the angle (radians) caused by the shear stress. The shear modulus is related to Young

modulus and Poisson’s ratio,
E

214 p)

Let us use the relation between the shear stress and shear strain in order to consider the

dependence of the torsion spring constant on the length and width of the torsion fibre. A torsion

spring is a spring that works by twisting its end along its axis. When it is twisted, it exerts a torque
in the opposite direction, proportional to the amount (deflection angle) it is twisted.

(345)

M =cp (346)

A torsion bar is a straight bar of metal or rubber that is subjected to twisting (shear stress) about
its axis by torque applied at its ends. Let us consider the case when the deflection angle is ¢ and
the corresponding shear strain is v where one finds a geometric relation between these angles and
the length ¢ and the radius R of the bar,

ro = £y. (347)

In order to calculate the torque and the spring constant one assume the bar as a solid cylinder and
it has to be divided into symmetric rings each of which has the width Ar. Assume two parallel
forces with a magnitude F' acting on this ring with a moment arm r which generate a torque,

AM =rF =ro,AA=rG~2rrAr = 27r§r3Ar (348)

and if one summs up the torques of the individual rings and takes the limit Ar — 0 one finds,

GR*
_0rPY / =z Y (349)
which results in the following expression for the torsion spring constant, ¢ = %54.

4.2 Fluid statics — hydrostatics

In a mechanical view, a fluid is a substance that does not support shear stress which means that a
fluid at rest has no shear stress at all. Fluid mechanics is the branch of physics concerned with the
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mechanics of fluids. It can be divided into fluid statics (hydrostatics) which is the study of fluids
at rest and fluid dynamics which is the study of the effect of forces on fluid motion.

Consider a bucket holding some viscous, homogeneous and incompressible fluid (e.g. water).
The bucket starts to rotate with constant angular frequency w around a vertical axis passing
through the center of its bottom surface. Due to friction with the walls, the fluid is influenced by
the rotation of the bucket and at some point will also be rotating with angular frequency w. Let
us determine the shape of the fluid surface.

The easiest way to solve this problem is by using a non-inertial frame of reference which rotates
with the bucket. The vertical axis z of this rotating frame is chosen to be the axis of rotation of the
bucket. At the point at which the fluid is rotating with the bucket with angular frequency w the
fluid is seen as being at rest in this rotating frame. We are interested in the z(r) function which
determine the shape of the fluid surface where r is the radial distance from the axis of rotation.
Let us consider the forces acting on a fluid element of mass m on the surface of the fluid (assumed
to be already rotating with the bucket). There are only two forces experienced by the fluid element
in the non-rotating frame: the gravitational force mg and the force exerted on the fluid element
by the surrounding fluid. This latter force is orthogonal to the surface of the fluid. This is because
a fluid at rest (which is the case in the non-inertial frame) has no shear stress. In the non-inertial
frame one has to incorporate the centrifugal force, which is perpendicular to the rotation axis and
its magnitude is mrw? where r is the radial distance of the fluid element from the rotation axis.
Thus, the centrifugal force is horizontal. The gravitational force is vertical. The force exerted on
the fluid element by the surrounding fluid has both horizontal and vertical components since it is
orthogonal to the surface. Let us denote by « the angle between the horizontal line and the tangent
to the surface. In this case one finds,

dz(r)  mrw?  rw? w?

tan o = o = mg = o — z(r) = @7‘2 + 20 (350)

where the solution gives us the required shape function of the rotating surface.

4.2.1 Pascal’s law

Pascal’s law (also Pascal’s principle) is a principle in fluid mechanics given by Blaise Pascal that
states that a pressure change at any point in a confined incompressible fluid is transmitted through-
out the fluid such that the same change occurs everywhere. In other words, Pascal’s principle is
defined as a change in pressure at any point in an enclosed fluid at rest is transmitted undiminished
to all points in the fluid. Alternate definition: The pressure applied to any part of the enclosed
liquid will be transmitted equally in all directions through the liquid.

Let us prove Pascal’s law. Assume an element in the interior of a fluid at rest. The element is
an arbitrary right-angled prismatic triangle in the liquid. Since the prismatic element is very small,
every point is considered to be at the same depth from the liquid surface. The effect of gravity is
also the same at all these points. Since the shear stress is zero, forces exerted on various surfaces
of the prismatic element by the surrounding fluid are always perpendicular to the surfaces.

Let AA is the area of the largest surface of the element which corresponds to the hypotenuse of
the right triangle where pressure exerts a force which is normal to this surface and denoted by AF'.
The area of the vertical surface of the element is denoted by AA; = AAsin a and the corresponding
force is given by AF;. The are of the horizontal surface of the element is AAs = AAcosa and the
corresponding force is given by AF,. The net force on the prism will be zero since the prism is in
equilibrium. The horizontal components give,

AFy AF

AFlZAFSIHCY — mzﬂ

- pp=0p. (351)

The vertical components give,

AFy AF Amg

ARy =AFcosa+lAmg = o =S+ o

—  pa=p+Ahpg (352)

48



4. MECHANICS OF ELASTIC BODIES, LIQUIDS AND GASES

where the mass of the element Am = pAV is related to its volume AV = AAcos aAh where Ah
is the height of the element. In order to fulfil the conditions of Pascal’s law, one has to take the
limit Ah — 0, which results in py = p. Therefore, the pressure exerted is the same in all directions
in the fluid, which is at rest.

We can say that pressure is not a vector quantity. No direction can be assigned to it. The force
against any area within (or bounding) a fluid at rest and under pressure is normal to the area,
regardless of the orientation of the area.

4.2.2 Hydrostatic pressure

Let us consider the variation of pressure with depth. Consider a fluid at rest in a container. The
z-axis is chosen to be vertical, i.e., orthogonal to the surface of the fluid and the we set z = 0 at
the surface with a pressure pg. Consider a cylindrical element of fluid having an area of base AA
and height Az. Assume that the bottom of the cylindrical element of fluid is at the depth h = —z
from the fluid surface. Since the fluid is at rest, the resultant horizontal forces should be zero along
with the resultant vertical forces balancing the weight of the element. The forces, which are acting
in the vertical direction, are due to the fluid pressure at the top p(z + Az)AA acting downward
and at the bottom p(z)AA acting upward. If mg is the weight of the fluid in the cylinder then we
can say that,
p(z + Az) —p(2)

p(2)AA =p(z+ Az) AA+ gp AAAz — A = —pyg (353)

where p is the mass density of the fluid, so, m = pAAAz. If one takes the limit Az — 0 one finds
the following differential equation,

dp(z)
=— 354
e pg (354)
Since fluids has a constant mass density (it does not depend on the pressure), the solution is
p(2) = —zpg + po — p(h) = hpg + po (355)
where we used the identification h = —z.

4.2.3 Archimedes’ principle

Archimedes’ principle states that the upward buoyant force that is exerted on a body immersed
in a fluid, whether fully or partially submerged, is equal to the weight of the fluid that the body
displaces. Archimedes’ principle is a law of physics fundamental to fluid mechanics. It was formu-
lated by Archimedes of Syracuse. In other words, Archimedes suggested that any object, totally
or partially immersed in a fluid or liquid, is buoyed up by a force equal to the weight of the fluid
displaced by the object.

Archimedes’ principle allows the buoyancy of any floating object partially or fully immersed in
a fluid to be calculated. The downward force on the object is simply its weight. The upward, or
buoyant, force on the object is that stated by Archimedes’ principle, above. Thus, the net force on
the object is the difference between the magnitudes of the buoyant force and its weight. If this net
force is positive, the object rises; if negative, the object sinks; and if zero, the object is neutrally
buoyant (it remains in place without either rising or sinking).

Consider a cuboid immersed in a fluid, its top and bottom faces orthogonal to the direction of
gravity (assumed constant across the cube’s stretch). The fluid will exert a normal force on each
face, but only the normal forces on top and bottom will contribute to buoyancy. The pressure
difference between the bottom and the top face is directly proportional to the height (difference
in depth of submersion). Multiplying the pressure difference by the area of a face gives a net force
on the cuboid equaling in size the weight of the fluid displaced by the cuboid. By summing up
sufficiently many arbitrarily small cuboids this reasoning may be extended to irregular shapes, and
so, whatever the shape of the submerged body, the buoyant force is equal to the weight of the
displaced fluid,

weight of displaced fluid = weight of object in vacuum — weight of object in fluid (356)
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The weight of the displaced fluid is directly proportional to the volume of the displaced fluid (if the
surrounding fluid is of uniform density). The weight of the object in the fluid is reduced, because
of the force acting on it, which is called upthrust. In simple terms, the principle states that the
buoyant force F on an object is equal to the weight of the fluid displaced by the object, or the
density p of the fluid multiplied by the submerged volume V times the gravity g. We can express
this relation in the equation,

F, = pgV (357)

where F} denotes the buoyant force applied onto the submerged object, p denotes the density of
the fluid, V represents the volume of the displaced fluid and g is the acceleration due to gravity.
Thus, among completely submerged objects with equal masses, objects with greater volume have
greater buoyancy.

4.3 Aerostatics

A subfield of fluid statics, aerostatics is the study of gases that are not in motion with respect to
the coordinate system in which they are considered. The corresponding study of gases in motion
is called aerodynamics. Aerostatics studies density allocation, especially in air. The mass density
of air or atmospheric density is approximately p = 1.225 kg/m3. A lifting gas or lighter than air
gas is a gas that has a lower density than the normal atmospheric density and rises above them as
a result.

4.3.1 Torricelli’s experiment

Torricelli’s experiment was invented in Pisa in 1643 by the Italian scientist Evangelista Torricelli
(1608-1647). The experiment uses a simple barometer to measure the pressure of air, filling it with
mercury. Any air bubbles in the tube must be removed by inverting several times. After that, a
clean mercury is filled once again until the tube is completely full. The barometer is then placed
inverted on the dish full of mercury. This causes the mercury in the tube to fall down until the
difference between mercury on the surface and in the tube is about 760 mm. Even when the tube
is shaken or tilted, the difference between the surface and in the tube is not affected due to the
influence of atmospheric pressure. Torricelli concluded that the mercury fluid in the tube is aided
by the atmospheric pressure that is present on the surface of mercury fluid on the dish. Thus the
atmospheric pressure is equal to the hydrostatical pressure of the mercury,

k
Pair = hpg, = 1 atm = 0.76 m x 13.59 —= x 9.81 = = 1.013 x 10°Pa (358
m S

and 1 Bar = 10° Pa. He also stated that the changes of liquid level from day to day are caused
by the variation of atmospheric pressure. The empty space in the tube is called the Torricellian
vacuum.

4.3.2 Barometric formula

One of the applications of aerostatics is the barometric formula. The barometric formula, sometimes
called the exponential atmosphere or isothermal atmosphere, is a formula used to model how the
pressure (or density) of the air changes with altitude. Treatment of the equations of gaseous
behaviour at rest is generally taken, as in hydrostatics. Assuming that all pressure is hydrostatic,
one can write J
di; = —p(p)g. (359)
However, the presence of a non-constant density (p = p(p)) as is found in gaseous fluid systems (due
to the compressibility of gases) requires the inclusion of the ideal gas law which makes connection
between the pressure (p) and the mass density (p).
Boyle’s law, also referred to as the Boyle-Mariotte law is an experimental gas law that describes
how the pressure of a gas tends to increase as the volume of the container decreases. A modern
statement of Boyle’s law is: The absolute pressure exerted by a given mass of an ideal gas is
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inversely proportional to the volume it occupies if the temperature and amount of gas remain
unchanged within a closed system. Mathematically, Boyle’s law can be stated as,

\Y%
p V = constant, —  p — = constant, — P_ constant,  — b_ @, (360)
P

p P Po
which results in p(p) = p po/po. Thus, one finds the following equation,

d
Loy — p(2) = poexp (—2292> (361)

where py is the pressure at the surface (sea level) and z is the altitude. According to the barometric
formula the pressure drops approximately by 11.3 pascals per meter in first 1000 meters above sea
level and it drops to half of its sea level value at the altitude z = 4.5 km.

4.4 Fluid dynamics - inviscid flow

Fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids (i.e., liquids
and gases). It has several subdisciplines, including aerodynamics (the study of air and other gases
in motion) and hydrodynamics (the study of liquids in motion). All fluids are compressible to an
extent; that is, changes in pressure cause changes in density, however, liquids are considered as
incompressible by definition.

The solution to a fluid dynamics problem typically involves the calculation of various properties
of the fluid, such as flow velocity v(r,t), pressure p(r,t), density p(r,t) as functions of space r and
time t. By using the so called Euler’s method the time-derivative of the flow velocity is given as

dv(r,t)  0Ov(r,t) N ov(r,t)de  Ov(r,t)dy Ov(r,t)dz
dt N ot or dt dy dt 0z dt
_ov(r,1) ov(r,t) ov(r,t) ov(r,t)
= 5 + vy o + vy 9 + v, 5 (362)

A flow that is not a function of time is called steady flow. Steady-state flow refers to the
condition where the fluid properties at a point in the system do not change over time. Time
dependent flow is known as unsteady (also called transient). Whether a particular flow is steady
or unsteady, can depend on the chosen frame of reference. For instance, laminar flow over a sphere
is steady in the frame of reference that is stationary with respect to the sphere. In a frame of
reference that is stationary with respect to a background flow, the flow is unsteady.

Flow in which randomness (turbulence) is not exhibited is called laminar. Laminar flow is
characterised by fluid particles following smooth paths in layers, with each layer moving smoothly
past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without
lateral mixing, and adjacent layers slide past one another like playing cards. There are no cross-
currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the
motion of the particles of the fluid is very orderly with particles close to a solid surface moving in
straight lines parallel to that surface.

Streamlines and pathlines are field lines in a fluid flow. They differ only when the flow
changes with time, that is, when the flow is not steady. Streamlines are a family of curves that
are instantaneously tangent to the velocity vector of the flow. These show the direction in which a
massless fluid element will travel at any point in time. Pathlines are the trajectories that individual
fluid particles follow. These can be thought of as "recording" the path of a fluid element in the flow
over a certain period. The direction the path takes will be determined by the streamlines of the
fluid at each moment in time. In steady flow (when the velocity vector-field does not change with
time), the streamlines and pathlines coincide. Knowledge of the streamlines can be useful in fluid
dynamics,

e different streamlines at the same instant in a flow do not intersect, because a fluid particle
cannot have two different velocities at the same point.

e streamlines have no origin and end points.
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Imagine a set of streamlines starting at points that form a closed loop. These streamlines form
a tube that is impermeable since the walls of the tube are made up of streamlines, and there can
be no flow normal to a streamline (by definition). This tube is called a streamtube.

4.4.1 Continuity equation

Since streamtube is the flow element which is bounded by streamlines, the flow is possible only
through the tube and not across the tube. Therefore, the definition of the streamtube is particularly
useful for deriving the so called continuity equation for fluid flow. For deriving the continuity
equation, consider an elemental streamtube. Since there is no mass flow across the surface of the
streamtube, by the law of conservation of mass, we can say mass entering the streamtube per
second is equal to the mass leaving the tube per second. Thus the mass current is constant,

Jom = i SEAPY

— _ m) _ g(m)
Jim —+ = Apv = constant, — Ji =y (363)

where A is the surface area of the cross-section of the streamtube, p is the density of the fluid (liquid
and gas) and v is the flow velocity. This can be integrated and written for a finite streamtube with
average values at the entrance and exit of the streamtube.

For incompressible steady flow the equation for conservation of mass is reduced to the continuity
equation which means that the volume current is constant in a streamtube,

AtA
JV) = AlimO Atv = Av = constant, — Jl(v) = JQ(V). (364)
5

4.4.2 Bernoulli’s equation

In fluid dynamics, Bernoulli’s principle states that an increase in the speed of a fluid oc-
curs simultaneously with a decrease in static pressure or a decrease in the fluid’s poten-
tial energy. Bernoulli’s principle can be derived from the principle of conservation of en-
ergy (work-energy theorem). This states that, in a steady, incompressible and ideal flow, the
sum of all forms of energy in a fluid along a streamline is the same at all points on that
streamline. This formula is Bernoulli’s equation. Consider a pipe (reservoir) with varying di-
ameter and height through which an incompressible fluid (liquid) is flowing. In figure Fig.3
one can see the relationship between the ar-
eas of cross-sections A, the flow speed v, height
from the ground z, and pressure p at two differ-
ent points 1 and 2 is given in the Let us assume
that (i) the density of the incompressible fluid
remains constant at both points, (ii) the energy
of the fluid is conserved as there are no viscous
forces in the fluid. Therefore, the work done on
the fluid is given as,

AW = F1Asy — F5Aso,
AW = p1A1Asy — paAsQss,
AW = p AV — po AV = (p; — p2) AV (365)

where the continuity equation, AV} =
Al’UlAt = A‘/Q = Az’UgAt = AV has been
used. The change in kinetic energy of the fluid
is given as, Figure 3:

1 1 1
AEyi, = §mv§ - va% = ipAV(vg — ).
(366)
The change in potential energy is given as,

AEpo = mgzy —mgze = pAVg(z1 — z2). (367)
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Therefore, the work-energy equation is given as,
1
AFEyxin = AEpor + AW,  — ipAV(vg —v}) = pAVg(z1 — 22) + (p1 — p2) AV
1 1 1
5,0”% +p1+pgz1 = §P'U% +p2+pgz2 = §PU2 +p + pgz = constant. (368)

Let us consider some applications of Bernoulli’s principle or Bernoulli’s equation which states that
% pv? + p+ pgz is constant for any two points in the liquid.

e Torricelli’s law states that the speed v of efflux of a fluid through a sharp-edged hole at the
bottom of a tank filled to a depth h is v = v/2gh, where g is the acceleration due to gravity. If
we need to calculate the speed of eflux we can use Bernoulli’s formula where the first point
can be taken at the liquid’s surface, and the second just outside the opening, so one finds
po + pgh = % pv® + py which results in v = /2gh.

e Venturi meter is a device that is based on Bernoulli’s theorem and is used for measuring
the rate of flow of liquid through the pipes. The Venturi effect is the reduction in fluid
pressure that results when a fluid flows through a constricted section (or choke) of a pipe.
Using Bernoulli’s equation in the special case of steady, incompressible, inviscid flows along a
streamline, the theoretical pressure drop at the constriction is given by, p1 —ps = % pv3— % pv3.
If one incorporates the continuity equation, Ajv; = Agvy then the volume current can be

given as J) = A1 Ay /py = /[ 30(AT — 43).

e The Pitot-Prandtl tube is a flow measurement device used to measure fluid flow velocity
based on Bernoulli’s equation. The pitot tube is widely used to determine the airspeed of
an aircraft. The basic pitot tube consists of a tube pointing directly into the fluid flow. As
this tube contains fluid, a pressure can be measured; the moving fluid is brought to rest
(stagnates) as there is no outlet to allow flow to continue. This pressure is the stagnation
pressure of the fluid, also known as the total pressure or (particularly in aviation) the pitot
pressure. The measured stagnation pressure cannot itself be used to determine the fluid flow
velocity (airspeed in aviation). However, Bernoulli’s equation states: Stagnation pressure =
static pressure 4+ dynamic pressure. Which can also be written p; = ps + % pv? which results

in v =1/2(p: — ps)/p-

4.5 Fluid dynamics - viscous flow

As we have already discussed, fluid is a substance that does not support shear stress which means
that a fluid at rest has no shear stress at all. What if we consider fluid dynamics? In this case, it
is not anymore true that shear stress does not appear. Indeed, viscosity is the physical property
that characterizes the flow resistance of simple fluids. A fluid that has no resistance to shear stress
is known as an ideal or inviscid fluid.

4.5.1 Newton’s law of viscosity

Newton’s law of viscosity defines the relationship between the shear stress and shear rate of a fluid
subjected to a mechanical stress. The ratio of shear stress to shear rate is a constant, for a given
(temperature) and pressure, and is defined as the viscosity or coefficient of viscosity. Newtonian
fluids obey Newton’s law of viscosity. The viscosity is independent of the shear rate. Non-Newtonian
fluids do not follow Newton’s law and, thus, their viscosity (ratio of shear stress to shear rate) is
not constant and is dependent on the shear rate.

Viscosity can be conceptualized as quantifying the internal frictional force that arises between
adjacent layers of fluid that are in relative motion. For instance, a fluid is trapped between two
infinitely large plates, one fixed and one in parallel motion at constant speed vy maq-. If the speed
of the top plate is low enough (to avoid turbulence), then in steady state the fluid particles move
parallel to it, and their speed varies from v, = 0 at the bottom to vy = vy maes at the top. Each
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layer of fluid (in the z-direction) moves faster (in the z-direction) than the one just below it, thus
one can define an angle which characterises the velocity difference of each layers,

N  [ve(z + Az) —v.(2)]At Ay vz 4+ Az) —v(2) dy _ dv,
tan(Ay) & Ay = Az - At Az - dt  dz
(369)

and friction between them gives rise to a force resisting their relative motion, thus one can define
a shear stress,

dv
Oshear = 1] |T;|’ (370)
where 7 is Newton’s viscosity constant and the corresponding force is given as
dv
Fihear = UshcarA = A |d7;|7 (371)

where A is the surface area.

4.5.2 Hagen-Poiseuille law

In nonideal fluid dynamics, the Hagen-Poiseuille equation, also known as the Hagen-Poiseuille law,
is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar
flow flowing through a long cylindrical pipe of constant cross section. When a fluid is forced through
a tube, it flows more quickly near the tube’s axis than near its walls. In such a case, experiments
show that some stress such as a pressure difference between the two ends of the tube is needed
to sustain the flow through the tube. This is because a force is required to overcome the friction
between the layers of the fluid which are in relative motion: the strength of this force is proportional
to the viscosity. Hagen-Poiseuille equation describes the pressure drop due to the viscosity of the
fluid.

A cylindrical fluid element (fluid parcel) with the radius r and length [ is considered. Forces act
on the end faces of this volume element which are considered constant over the entire cross-section
of the pipe. These forces result from the pressures in the fluid acting on the faces of the volume
element. At the point x; the pressure p; acts and at the point x5 a lower pressure py acts which
results in the force (p; — p2)r?m.

On the other hand, the speed of the flow within the pipe is not constant over the cross-section.
There is friction between the fluid and the pipe, which is why the flow velocity near the wall is
lower than in the middle of the pipe. At the wall, the fluid even adheres to the wall due to the
adhesive forces. Thus, there is no relative speed between fluid and wall, i.e., v(r = R) = 0 which
is also called no-slip condition where the radius of the pipe is R. The individual fluid layers also
have friction between each other due to the viscosity of the fluid. This leads to the formation of a
certain velocity profile, the course of which is yet to be determined. It should be noted, that the
flow velocity is maximum in the middle of the pipe i.e., v(r = 0) = vy. Thus, one can define a shear
(frictional) force as n2ml 2.

For a steady flow, in which the flow velocities no longer change over time, a balance of forces
applies to the volume element under consideration. The pressure force and the counteracting shear
(frictional) force can thus be equated,

dv dv 1— P2
— = T

_ 2 27l — = il = —71 — P22 . 2
(p1 — p2)rim + 2w o 0, o o " — v(r) P r° +v. (372)

Since v(R) = 0 one finds vy = %RQ and the radial dependence of the velocity profile reads as

_ 2 2
o(r) = p14nlp2 2 (1 _ ;2> — v (1 _ ;) . (373)

Since the velocity profile is now known, the volume flow rate or volume current can now be
determined by the cross-section of a pipe. To derive the flow rate, we consider a ring with the
infinitesimal thickness Ar; at any distance r; from the center of the pipe. The area of the considered
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ring AA; can be derived from the "length" of the ring 27r; (circumference) and the "height" of the
ring Ar; ( thickness), AA; = 27r;Ar;. The volume current is then given by

R R 9
1
J(V) = E U(’I"i>AAi = E Vo (1 — ]{2> 2mr; Arg
i=0 i=0
R 2 2 4
r R’mvg  R'7m(p1 — po)
=9 1— — | rdr = = . 374
mo/o ( R2>r T sl (3874)

4.6 Turbulent flows - Aerodynamics

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in
pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in
parallel layers, with no disruption between those layers. Turbulence is commonly observed in every-
day phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney,
and most fluid flows occurring in nature or created in engineering applications are turbulent. In
general terms, in turbulent flow, unsteady vortices appear of many sizes which interact with each
other, consequently drag due to friction effects increases.

The onset of turbulence can be predicted by the dimensionless Reynolds number. Laminar
flow occurs at lower Reynolds number, below a threshold at which the flow becomes turbulent.
Turbulent flow is a less orderly flow regime that is characterised by randomness which result
in lateral mixing. The Reynolds number depends on the viscosity and density of the fluid and
dimensions of the channel,

_ Rup

n

where R is a geometric parameter (e.g., radius of a ball), v is the velocity, p is the mass density
of the fluid and 7 is the viscosity. A typical value for the critical Reynolds number is around
Re =~ 1160 where the flow becomes turbulent.

In 1851, George Gabriel Stokes derived an expression, now known as Stokes law, for the frictional
force - also called drag force - exerted on spherical objects with very small Reynolds numbers in a
viscous fluid. The force of viscosity on a small sphere moving through a viscous fluid is given by

Re (375)

F; = 6mnRu, (376)

thus the constant of the drag force for low velocities can be determined. For large velocities one
finds,

1
Frr = constantipRUQ. (377)

The Magnus effect is an observable phenomenon that is commonly associated with a spinning
object moving through air or another fluid. The path of the spinning object is deflected in a manner
that is not present when the object is not spinning. The deflection can be explained by the difference
in pressure of the fluid on opposite sides of the spinning object. The Magnus Effect depends on
the speed of rotation. An intuitive understanding of the phenomenon comes from Newton’s third
law, that the deflective force on the body is a reaction to the deflection that the body imposes on
the air-flow. The body "pushes" the air in one direction, and the air pushes the body in the other
direction. In particular, a lifting force is accompanied by a downward deflection of the air-flow.

5 Wave motion - elastic waves

Wave motion is very common in nature. We have even evolved receptors capable of detecting waves.
In this chapter we develop the verbal and mathematical description of waves.

Mechanical waves can travel far, but the particles of the elastic medium, where the waves
travel do not make that journey. For instance, ocean waves travel thousands of kilometers, without
transporting any water. What kind of physical quantity is transported in waves then? We can
produce mechanical waves by displacing some portion of a continuous elastic medium, which is
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called the center of the wave. For instance, two of us can stretch a long elastic rope; one can
make a disturbance at one end by suddenly displacing the end. In a short time the person at the
other end will feel a sudden pull at his hand indicating that the elastic medium exerts force on
it, therefore, momentum is transported in the wave. Energy is also transported. When displacing
the medium, it becomes stretched, therefore, at the disturbance the medium has elastic potential
energy. The particles also move with some velocity, therefore, kinetic energy is also transported.

We can distinguish two kind of mechanical waves by considering the direction of the motion
of particles of the elastic medium and the direction of the propagation of waves. If these are
perpendicular, then the wave is called a transverse wave, if the motion of particles is aligned with
the direction of wave propagation, the wave is called a longitudinal wave. The waves on the surface
of water are complicated combination of both types. Waves can be further classified according to
the type of motion of the particles at the center of the wave. If it is a single displacement followed
by a return, then we talk about a pulse. If the center continues to move back and forth, then it
produces a train of waves. If the motion at the center is periodic, then it produces a periodic train
of waves — the simplest special case being a harmonic wave.

5.1 Speed of travelling waves

Wave motion can occur in any physical dimensions. For the sake of simplicity, let us consider wave
motion in one dimension. It is an experimental fact that the speed of the wave, ¢ is to a good
approximation does not depend on the waveform, or on the frequency of the periodic wave. Let us
investigate the of speed of travelling waves for three cases, (i) transverse wave travelling along a
stretched string, (ii) longitudinal wave travelling along a string, (iii) longitudinal wave travelling
in a fluid.

5.1.1 Transverse wave travelling along a stretched string

Let us consider a stretched horizontal string where two horizontal forces with the same magnitude
Fy act on each edges of the string which has a cross-section surface A, so, the stress is given as
o9 = Fy/A. Let us calculate the speed of a transverse wave travelling along the stretched string.
Assume that the deformation is caused by a constant vertical force (F') acting on a very small
line segment of the horizontal stretched string which creates a V-shaped deformation or in other
words a triangle-shaped pulse. The points of this deformed part have a constant vertical velocity
(v) and the deformation propagates horizontally with the speed (c¢) towards both left and right
directions. The half of the V-shaped deformation is a right triangle where 6 is the angle between
the horizontal line and the deformation, thus

v At v

v (378)

tanf = =
c At c

The V-shaped deformation carries a momentum Ap = 2pA ¢ At v which is related to the vertical

force as

|Ap|
F=—=2pA
At pAcv (379)

On the other hand, the following relations holds betweem the vertical and horizontal components
of forces,

F = 2F, sind, Fo=Ficosf, — F=2Ftanf= 2F0% (380)

where Fj is the magnitude of the forces exerted by the deformed string. Thus, one finds

F E
2Acy=2F> = c=4]-L= /2=~ (381)
c Ap p p

where 0y = Feg. We showed that the speed of the wave, ¢ depends only on the mechanical properties
of the elastic medium, namely on its density p and elasticity, characterized by Young’s modulus E.
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5.1.2 Longitudinal wave travelling along a string
Let us repeat the previous analysis for a longitudinal pulse where the strain is given by

Al vAt v
_ =2 —— 382
‘ 14 cAt ¢ (382)
and the corresponding stress and the force can be written as

o:Ek:E% - F:oA:EA% (383)

Since Ap = pAcAtv and the force is F' = Ap/At, thus one finds

E
pAcv:EA%. — cz“;. (384)

Therefore, we found the general formula
E
c=ky—. (385)
p

where k is a dimensionless constant and for longitudinal pulse £ = 1 and for a transverse pulse is
k = \/€g, where ¢ is the relative deformation of the string without the wave on it. This shows that
transverse waves can travel only if there is already stress in the medium without the wave.

5.1.3 Longitudinal wave travelling in a fluid

In fluids (liquids and gases) one observes only longitudinal travelling waves. This is because trans-
verse waves can travel only if there is already stress in the medium and one finds no shear stress
in fluids at rest. Longitudinal waves are waves in which the displacement of the medium is in the
same direction as, or the opposite direction to, the direction of propagation of the wave. Mechan-
ical longitudinal waves are also called compressional or compression waves, because they produce
compression and rarefaction when traveling through a medium, and pressure waves, because they
produce increases and decreases in pressure. Although liquids are considered as incompressible flu-
ids this does not mean that a very small deformation is not allowed. Thus, in case of longitudinal
travelling waves in fluids one should start from the volume deformation caused by the mechanical

longitudinal wave,
AV 1
—— =—-ZA 386
7 —Ap (386)

where k is the compression modulus. Based on this, the speed of the travelling longitudinal wave
is written as

—A
F:AAp:AH(J:AK%, F=pAcv, — pAcvzmA% — c=\/f. (387)
5.2 Wave function and wave equation

If the motion of the particles at the center of the wave, where we choose the origin of our coordinate
system (z = 0), can be described by a function f(¢) than the same motion will appear at position
x # 0 at a later time. The time delay is determined by the speed of the wavefront. Thus the motion
of the particles at position x is described by a function

ﬂ@ﬂ:fog), (388)

which is called the wave function. The sign in the argument of f is negative if the wave travels in
positive = direction and vice versa. The wave function is a function of both position and time.

o7



5. WAVE MOTION - ELASTIC WAVES

The wave function has the special property that its two arguments are related as shown by
Eq. (388). As a result the time and space derivatives are also related:

9 08

Eq. (389) depends on the direction of wave propagation. If we take the second derivatives, this
ambiguity disappears, , )
QA§,:ZC2§3;§7 (390)
ot? 0x?
which is called the wave equation. It is identical to the equation of motion for the particles of the
elastic medium at position z, therefore, it is a consequence of Newton’s 2nd law (therefore, can be

derived from it).

5.3 Energy transport in travelling waves

As we have already discussed, apart from momentum, energy is also transported in wave motion. If
one creates a disturbance (transverse or longitudinal), the medium has elastic potential energy. In
additon, the particles of the medium in case of disturbance also move with some velocity, therefore,
kinetic energy is also transported. Let us consider the relation between the kinetic and potential
energy carried by the mechanical wave in two cases, when (i) transverse wave is travelling along a
stretched string, (ii) longitudinal wave is travelling along a string.

5.3.1 Energy transport in a transverse wave travelling along a stretched string

If we have a triangle-shape transverse wave in a string, one can relate kinetic energy to each
individual bit of the disturbed part of the string, so, a kinetic energy density is written as,
L
U = 5P (391)
where v is the transverse velocity of each individual bit of the disturbed part of the string and
p is the mass density. The potential energy depends on how stretched the string is. Indeed, the
potential energy density,

1
%:5&2 (392)

depends on the relative deformation e = (¢ — £y)/fy. Of course, having a string with some tension
€0 = (£ — £y)/ly automatically has some potential energy due to the stretching, even if there are
no waves passing through the string and one finds ¢/¢y = 1 4 ¢p. We are instead interested in the
potential energy stored in the string as it is stretched further from ¢ to ¢ due to the propagation
of transverse waves.

The half of the triangle-shape disturbance is a right triangle and the amount the string is
stretched at point x is given by the difference between the length of the hypotenuse ¢ of this
triangle and its base £,

(393)

€ = =

0ty NETE -ty G TEd]C 1
4y 4 B o

where d is the height of the triangle. Since the string is close to equilibrium d << /¢, so we can
Taylor expanding the square-root,

1d2 01+ Ly — g 1d2 ¢ 1d2
VI 2/l + —— = 2F B S = -— 1 4
+d?/¢ —|—2€2 — € A 60+2£2£0 €0+2£2( +e) (394)

Since g << 1 and d << £ one can further approximate the relative deformation and its squared

value )
1 d? 1 v2 102 V2
6%60+§€7:€0+§§ — 62:(50+202> %6(2)4—6067 (395)
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Thus, by dropping all subleading terms, the potential energy density reads as

1 1 2 1 2
u, = ~Eeg + fEeolc% - up, =K ?

3 3 5Eeo g (396)

where the constant term %Ee% is set to zero by choosing appropriately the zero point of the
potential energy density. Inserting ¢ = /€gy/E/p into the expression derived for the potential
energy density, one finds

1
up = —Eeg——= = —pv° = uy, (397)

that the kinetic and the potential energy densities are the same for all points of a travelling
transverse wave.

5.3.2 [Energy transport in a longitudinal wave travelling along a string

Let us repeat the above derivation for a longitudinal wave which is travelling along a string. In
this case the relative deformation is directly related to the ratio v/c,
Al vAt v y V2 1., 1 02 1 2%
f=—=—=- = &=— = w=-FBf=-F5=-F—=u (398
l cAt ¢ c2 L 2 2 k (398)
where we used the expression ¢ = \/E/p for the speed of the longitudinal wave.
Therefore, it is always true that for travelling waves the kinetic and the potential energy den-
sities are the same for all points. Thus, the total energy density is given as

U = ug + up = 2uy = 2uy,. (399)

From practical point of view, waves are created to transport energy without transporting particles.
The total energy transported in time At over the cross section A of the elastic medium is cAtAu.
Accordingly, the energy current and the energy density current are written as

J(E)

=cAu, — P = — = cu (400)

where the latter is also called the rate of flow of energy density, or the transmitted power density.

(m) _ CAtAu
d At

5.4 Superposition, reflection

It is an experimental fact that linear superposition holds for simple mechanical waves. This means
that energy and momentum are conserved if two wave fronts or pulses meet. In other words, if
we require energy and momentum conservation then we can rely on linear superposition of wave
fronts and pulses.

From dimensional analysis we could conclude that n different §; waves traveling in the same
region of space could merge to give a wave

n 1/n
(o) <4m>

with any n. The principle of linear superposition asserts that n = 1, which means that displace-
ments, and therefore, velocities of particles in the elastic medium, add linearly. Observing simple
triangle pulses of waves, it is easy to prove that energy and momentum conservation requires linear
superposition.

Thus, for example if two identical triangle-shape transverse pulses travel towards each other
and they do not overlap, the total energy density of the two waves is u = 4u, = 4uy. If they
fully overlap, the height of the superposed wave front (2d) is twice as much large as those of the
individual wave fronts (d) but its vertical velocity is zero v = 0, thus,

1. (2d)? 1 _d?
uzaE( 9) :4( Ed>:4up (402)

2 272
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which is in agreement of energy conservation in case of linear superposition.

Let us assume a wave pulse on a string moving from left to right towards the end which is
rigidly clamped. As the wave pulse approaches the fixed end, the internal restoring forces which
allow the wave to propagate exert an upward force on the end of the string. But, since the end
is clamped, it cannot move. According to Newton’s third law, the wall must be exerting an equal
downward force on the end of the string. This new force creates a wave pulse that propagates from
right to left, with the same speed and amplitude as the incident wave, but with opposite polarity
(upside down).

Let us assume a wave pulse on a string moving from left to right towards the end which is free to
move vertically (imagine the string tied to a massless ring which slides frictionlessly up and down
a vertical pole). The net vertical force at the free end must be zero. This boundary condition is
mathematically equivalent to requiring that the slope of the string displacement be zero at the free
end. The reflected wave pulse propagates from right to left, with the same speed and amplitude as
the incident wave, and with the same polarity (right-side up).

Therefore, observational rules of reflection of mechanical waves from hard and soft boundaries
are the following;:

e at a fixed (hard) boundary, the displacement remains zero and the reflected wave changes its
polarity (undergoes a 180° phase change),

e at a free (soft) boundary, the restoring force is zero and the reflected wave has the same
polarity (no phase change) as the incident wave.

When a wave encounters a boundary which is neither rigid (hard) nor free (soft) but instead
somewhere in between, part of the wave is reflected from the boundary and part of the wave is
transmitted across the boundary. The exact behavior of reflection and transmission depends on
the material properties on both sides of the boundary.

5.5 Harmonic waves

We state without proof a mathematical theorem: any periodic function f(t) can be written as an
infinite sum of harmonic functions. Therefore, studying harmonic waves gives results that are valid
generally. Harmonic waves are produced if the motion of the wave center is sinusoidal,

E(x =0,t) = Asin(wt + ¢). (403)

According to Eq. (388), the wave function is

&(z,t) = Asin [w (t F %) + (;5} . (404)

We can rewrite the argument in a more symmetric way,

w(tq:%)zw <;$§) , (405)

where A = ¢T is called the wavelength, which is the distance that the wavefront covers during
one complete period of the oscillation at the center (time period T'). Introducing the wave number
k = 2x /A, which gives the number of waves in 27 units of length, we can write the argument as
wt — kx, which is the most common way of representation.

5.6 Energy transport in waves with differentiable wave function

We have already proved that for traveling transverse and longitudinal wave pulses the kinetic (uy)
and potential (u,) energy densities transported by the pulse are equal at any fixed position at any
instant. Let us consider the most general case, where we do not restrict our considerations to a
specific shape of a wave pulse but we investigate arbitrary wave fronts and pulses requiring only
the differentiability of its wave function.
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5.6.1 Energy transport in a transverse differentiable wave

We can prove this proposition for transverse waves using arguments similar to the case of the
specific triangle-shape situation. Our starting point is that the relative deformation e(z) can be
obtained by considering a small part of the medium of length Az at position z. In this case the
total deformation is given as

(o) A=Ay Ax? + (GA)? — Azg  Axy/1+(52)? — Az (106
o Az o Az N Axg

where (Az')? = Az? + A€? = Az? + (95 Ax)2. After dropping all subleading terms one finds,

1o\’
E(ZE) ~ €0 + 5 (81‘) 5 (407)

where €9 = (Ax — Axg)/Axg. Therefore, the potential energy density transported by the wave is

1 1 1 oe\? 1 oEN\® 1 [ag\?
= 7E 2 —_ 7E 2 ~ - E —_— = - 2 —_— = - —_— = 4
up = 5 Ee@)” = S e = 3¢ (ax) 2%¢ ((995 2%\ ot e (408)
where we used the square of eq. (389) and the expression for the speed of transverse wave propa-
gation, ¢ = g E/p.

5.6.2 Energy transport in a longitudinal differentiable wave

The potential energy of the elastic medium is due to the relative deformation in the wave, its
density is given by

uy () = %Ee(m)Q. (409)

The relative deformation €(z) can be obtained by considering a small part of the medium of length
Az at position x. The difference of the wave function at z + Az and x and dividing by the length
Ax, gives the relative deformation of this portion of the medium. If we take the limit Az — 0, we
obtain

. A +&(x+ Ax,t) — E(x,t) — Az O¢

=1 == 410

(@) Az Ax Oz’ (410)

which is the derivative of the wave function with respect to x at fixed ¢. The kinetic energy density

is
1 2

uk(z) = Spole)?, (411)

where v(z) is the velocity of the particles in the medium at position x. It is the time derivative of
the displacement of the particle,

23

v(r) = =,
(@) = 5,
which is the derivative of the wave function with respect to time at fixed position. Taking the
square of eq. (389) and using the expression for the speed of wave propagation, ¢ = E/p, we find
that

(412)

E
v(z)? = —e(z)?, (413)
P
which proves that ug(z) = u,(x). Thus the total energy density is twice the kinetic, or potential

energy density.

5.6.3 Energy density current for longitudinal harmonic waves

For waves propagating in more than one dimension, the transmitted power density is the energy
current transmitted across a unit area normal to the direction of the wave propagation. The
intensity of the wave is the average power density over one period in time. We can explicitly
compute the intensity of a harmonic wave from the total energy density transported by the wave.
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Consider a longitudinal harmonic wave described by Eq. (404) and for simplicity, choose ¢ = 0.
The kinetic energy density is

1
ug(z) = ipAsz cos? (wt — k), (414)
and the potential energy density is
1
up(x) = iEAQk2 cos? (wt — k). (415)

Using ¢ = w/k = v/ E/p, we see explicitly that u, = uy. Then the energy density current is
j = uc = 2upc = pA®w? cos? (wt — kx) (416)

and the intensity (of a harmonic wave) is
1 T 1,
(j) = T/t jt)dt = §cpA w®. (417)

5.7 Standing waves

Let us now imagine two harmonic waves of the same amplitude and frequency moving in opposite
directions, &1 (x,t) = Asin(wt—kx), &a(x,t) = Asin(wt+kx+A¢) where Ag is the phase difference.
The resulting wave is

E(x,t) =& (x,t) + & (x,t) = 2Asin(wt + Ad/2) cos(kx + A¢p/2) . (418)

We see that the dependence on time and position is factored. The particles of the medium oscillate
in the same phase at every point of the medium. Such a wave pattern is called standing wave. The
amplitudes of these oscillations vary with position. There are certain points, called nodes, where
the displacement is always zero. Between the nodes, there are antinodes, where the displacement
oscillates with the largest amplitude. Since the nodes never move, therefore, energy is not trans-
ported through those points, so energy is also standing in the string, although it alternates between
vibrational kinetic energy and elastic potential energy.

From practical point of view, there are two interesting cases. Let us imagine a string with one
fixed end. If a traveling wave arrives at the fixed end of the string, then it returns with a phase
shift of A¢ = m, which is the only way of ensuring the fixed position and energy conservation. Then
the superposition of the incoming and reflected waves is £(z,t) = 2A cos(wt) sin(kx). The position
of antinodes is determined by the condition kz = (2n + 1)7, where n is a positive integer. Thus,
the antinodes are at z = (2n + 1)%, they are separated one-half wavelengths apart. The nodes are
between antinodes at x = n%

If a longitudinal wave arrives at the unfixed end of the medium, then it returns with phase
shift A¢ = 0, which is the only way of ensuring energy and momentum conservation. Then the
superposition of the incoming and reflected waves is {(z,t) = 2Asin(wt) cos(kx), which restricts
the position of nodes to # = (2n + 1)3, and that of the antinodes to z = n3. Thus we see that
standing waves cannot have arbitrary frequency.

Next, consider a string with fixed ends at x = 0 and = L. The string will have some damping
as it is stretched by traveling waves, but assume the damping is very small. Suppose that at the
x = 0 fixed end a sinusoidal force is applied that drives the string up and down in the y-direction
with a small amplitude at some frequency v. In this situation, the driving force produces a right-
traveling wave. That wave reflects off the right fixed end and travels back to the left, reflects again
off the left fixed end and travels back to the right, and so on. Eventually, a steady state is reached
where the string has identical right- and left-traveling waves as in the infinite-length case and the
power dissipated by damping in the string equals the power supplied by the driving force so the
waves have constant amplitude. Since L is given, the boundary condition restricts the wavelength
of the standing waves to,

A
L= 5m n=123,.. (419)
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Waves can only form standing waves on this string if they have a wavelength that satisfies this
relationship with L. If waves travel with speed c along the string, then equivalently the frequency
of the standing waves is restricted to

cn

ﬁ7

Up = n=123,.. (420)
The standing wave with n = 1 oscillates at the fundamental frequency and has a wavelength that
is twice the length of the string. Higher integer values of n correspond to modes of oscillation called
higher harmonics or overtones. Any standing wave on the string will have n + 1 nodes including
the fixed ends and n anti-nodes.

Let us consider the same string of length L, but this time it is only fixed at x = 0. At z = L,
the string is free to move in the y-direction. Since at « = L the string is not fixed, L should be an
anti-node. If we consider the same string of length L where non of the edges are fixed, then both
x =0 and x = L are anti nodes.

5.8 Multi-dimensional waves

If the propagation of waves occur in more than one dimension, for instance, waves on the surface of
a lake, or sound in the air, there are points in the medium that can be connected by a continuous
line (in 2 dimensions) or surface (in three dimensions) and the particles in these points are in the
same state of motion. These are called wavefronts. Wavefronts can have many shapes. A point
source at the center of the wave causes circular or spherical wavefronts. Such a wave is called a
spherical wave. A stick at the center causes a plane wave in two dimensions, the three dimensional
analogue is produced by the periodic motion of a plane at the center of the wave. The wave
function of multi-dimensional waves have as many spatial arguments as the number of dimensions.
However, in the case of spherical waves the dependence on the spatial coordinates is reduced to
the dependence on r, the distance from the point source,

E(zyy, ... t) =&(rt). (421)

Similarly, in the case of a plane wave, the dependence on the spatial coordinates is reduced to the

distance from the source in the coordinate that is perpendicular to the plane and is the direction
of propagation,

(x,y, ... t) =&(x,t). (422)

Propagation of sound wave in the air is an example for a three-dimensional longitudinal spherical

wave. Let us assume a sound speaker as a source of longitudinal spherical sound waves which has

a constant power, Py. The energy density current is related to the constant power of the source as

Py=jP4rr? o (R = (B dmr? (423)

where r is the radial distance from the source. Let us substitute the expression obtained previously
for the average energy density current (j(E)> = %cpA%.)z into the above equation

<P0> = %CpA2w247rr2 — A(r)= \/ <P0> _ \/ <P0> 1 _ @7 Ay = <P0> (424)

2mepw?r? 2mepw? r r 2mepw?’

where the amplitude A(r) of the wave function &(r,t) = A(r)sin(wt — kr) should depend on the
radial distance.

5.9 Wave phenomena

In Nature waves move in more than one dimensions usually, such as the ripples on the surface of a
lake. Studying those ripples systematically, we can observe three phenomena that are characteristic
to waves only, thus their observation signals the presence of wave motion.

A plane wave is a kind of wave whose value varies only in one spatial direction. That is, its
value is constant on a plane that is perpendicular to that direction or in other word wave fronts
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(surfaces with constant phase) are planes. Although plane waves are multi-dimensional waves but
they have an interesting property, namely their amplitude does not depend on the distance from
the source. Thus, they are ideal to consider various types of wave phenomena fo example in a in a
ripple tank

5.9.1 Interference

If two or more waves combine at a particular point, they are said to interfere. The resultant
waveform depends on the relative phases of the interfering waves. Consider two harmonic waves
moving into the same direction with the same amplitude and frequency, & (z,t) = Asin(wt — kx +
@i), i = 1,2. The resulting wave is

E(z,t) = & (x, t) + &z, t) = 2A cos Agsin(wt — kz + ¢') (425)

where ) )
Ag = §(¢1 - $2), ¢ = §(¢1 + ¢2). (426)

Thus we see that if the waves meet in phase, then the amplitudes add up, we call this constructive
interference. If the waves meet with a phase difference close to 7, then the resulting amplitude
is very small, which we call destructive interference. In order that the resulting wave pattern be
constant in time, the interfering waves must have the same phase difference at a given point of
space. Such waves are called coherent waves.

Thus when traveling waves, originating from different wave centers, meet they interfere each
other. The interference produces stationary wave patterns if the combining waves are coherent.
For instance, in a ripple tank, two vibrating prongs create two patterns of circular ripples. If the
prongs vibrate simultaneously, then the phase difference at any fixed point on the surface will be
a constant in time, and depend only on the difference in path that the two rays need to travel
from the two centers to reach that point. Thus the combining spherical waves produce a pattern
of maxima and minima in the waves. The positions of these are along hyperboles (the position of
points in the plane for that the difference in distance from two fixed points is a constant). If we
view the wave pattern at a fixed distance from the line of the two centers, we observe alternating
sequence of maxima and minima. This kind of interference pattern is also a signal of the presence
of (coherent) waves.

5.9.2 Diffraction

Let us first produce plane waves in a ripple tank. The direction of the wave motion is at right
angle to the wavefront. A line normal to the wavefronts, indicating the direction of motion of the
waves, is called a ray. In the case of plane waves the rays are parallel lines (provided the medium
is of uniform density, which is fulfilled in a ripple tank). If the wave center is a single point than
we produce circular waves, the rays are straight lines again, but they are along the radii of a circle.
If we put a wall with a slit on it into the tank such that it is perpendicular to the rays, than we
expect that the rays falling on the wall get stopped, while the rays falling on the slit propagate
without any change. However, what we observe is that the rays near the edge of the slit get bended
towards the wall and enter into regions that are obstructed by the wall. In fact if the slit is narrow
as compared to the wavelength, the observed wave pattern after the slit is a spherical wave as if
the wave center were pointlike at the position of the slit. This phenomenon, the spreading of waves
as it passes through a slit, is called diffraction.

5.9.3 Reflection, refraction

Reflection is the change in direction of a wavefront at an interface between two different media so
that the wavefront returns into the medium from which it originated. The law of reflection says
that for specular reflection the angle o at which the wave is incident on the surface equals the
angle o’ at which it is reflected, thus o = o’.
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Refraction is the change in direction of a wave passing from one medium to another or from a
gradual change in the medium. Refraction follows Snell’s law, which states that, for a given pair
of media, the ratio of the sines of the angle of incidence «; and angle of refraction as is equal to
the ratio of phase velocities (v1/v2) in the two media, or equivalently, to the indices of refraction
(n2/n1) of the two media,

sin g 1 ng

- = — = — =N921 (427)
S111 (X9 (%] n

5.9.4 Huygens and Huygens-Fresnel principle

Christian Huygens Dutch physicist constructed a simple principle for understanding diffraction.
According to this principle we can tell where a given wavefront will be at any time in the future if
we know its present position:

All points on a wavefront can be considered as point sources for the production of
spherical secondary wavelets. After a time ¢ the new position of a wavefront is the
surface tangent to these secondary wavelets.

Huygens’ principle is not useful for explaining interference of waves, but it can be altered easily
as done by Augustin Fresnel:

All points on a wavefront can be considered as point sources for the production of
spherical secondary wavelets. After a time ¢ the new wave pattern is an interference of
these secondary wavelets.

5.10 Doppler effect

The Doppler effect (or the Doppler shift) is the change in frequency of a wave in relation to
an observer who is moving relative to the wave source. It is named after the Austrian physicist
Christian Doppler, who described the phenomenon in 1842. A common example of Doppler shift is
the change of pitch heard when a vehicle sounding a horn approaches and recedes from an observer.
Compared to the emitted frequency, the received frequency is higher during the approach, identical
at the instant of passing by, and lower during the recession. For waves that propagate in a medium,
such as sound waves, the velocity of the observer and of the source are relative to the medium in
which the waves are transmitted. The total Doppler effect may therefore result from motion of the
source, motion of the observer, or motion of the medium. The latter case, i.e., the motion of the
medium is not considered here.

Let as assume a moving observer with the velocity v and a stationary source emitting waves
with an actual frequency v. In this case, the wavelength keeps constant, but due to the motion, the
rate at which the observer receives waves and hence the transmission velocity of the wave (with
respect to the observer) is changed. This yields change in the observed frequency v/,

/=GBt (122) (12 =

where c is the velocity of the wave.

Let us assume that the observer is stationary relative to the medium and a moving source is
emitting waves with an actual frequency v. In this case, the wavelength is changed, the transmission
velocity of the wave keeps constant (note that the transmission velocity of the wave does not depend
on the velocity of the source), then the observer detects waves with a frequency v’ given by

=v (429)
where T is the time period of the wave.
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5.11 Physical characterisation of perception of sound

A most important type of waves are the three dimensional longitudinal waves of frequency between
16 and 20000 Hz, which are called sound waves. Let us consider sound waves in a narrow tube of
cross sectional area A, aligned with the x axis. A harmonic sound wave in this tube are described by
a wave function &(x, y, 2,t) = &y sin(wt — kz). We know that the change in pressure in a compressed
volume of gas is proportional to the relative change in volume,
AV
Ap=—K—o, 430

p 7 (430)
Imagine now a small part of the air of length Ax at position x in the tube. The relative change of
the volume of the air belonging to Ax is

AAE(x,t)

AAx (431)

Taking the limit Az — 0, we find that the change of pressure due to the sound wave at position x

is
0
Ap(x,t) = —na—g(x, t) = kk&g cos(wt — kzx) . (432)
r
Hence the pressure variation at each position is also harmonic, but its phase is shifted by 90°
with respect to the oscillation of the particles. The speed of the longitudinal wave is ¢ = \/k/p,

therefore,
Ap(z,t) = pckéy cos(wt — k) . (433)

The maximum change in pressure is called the pressure amplitude and is given by Ap,, = pc?k&.
We see that sound waves can be described by either displacement waves or pressure waves. However,
multidimensional displacement waves add like vectors, while pressure waves add like scalars. It is
usually preferable to describe sound waves as pressure waves. Moreover, our ear also detect pressure
change not displacement.

The maximum pressure variation that the ear can tolerate is about 28 Pa, while the faintest
sound that can be heard has a pressure amplitude of 2.8 - 10~° Pa (both values at 1000 Hz, because
these depend on the frequency). We can compute the corresponding displacement amplitudes:

max ApTrL -5 min —11
max — 2k ~10°m, oA~ 107 m, (434)

where we used ¢k = 2mve ~ 2.1 Mm/s?. The value of £in
about one tenth of the atomic diameter!

Sound waves are characterized by their (i) intensity, (ii) pitch and (iii) tone. The sources of sound
are vibrating strings, air columns or membranes. If a vibrating system is capable of vibrating at
frequencies 11 < v < v3..., then 14 is called the fundamental frequency and the higher frequencies
are the overtones. If the overtones are all integer multiples of the fundamental frequency, such as
in the case of a vibrating string, then the overtones are called harmonics. When several frequencies
are heard simultaneously, a pleasant sensation occurs when the ratio of the frequencies are ratios
of small whole numbers, for instance 3:2, or 5:4. In designing musical instruments it is crucial to
find the proper shape so that the overtones are harmonics.

We can express the intensity (related to loudness) as a function of the pressure amplitude,

. 1 (Apm)2
I'={j)= 2 e (435)

is especially interesting because it is

A natural question is how to characterize the loudness of a sound. In other words how to re-
late the actual change in a physical stimulus and the perceived change which can be done by
using the Weber—Fechner laws. The Weber—Fechner laws are two related hypotheses in the field of
psychophysics, known as Weber’s law and Fechner’s law. Both laws relate to human perception,
more specifically the relation between the actual change in a physical stimulus and the perceived
change. This includes stimuli to all senses: vision, hearing, taste, touch, and smell. According to
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Weber—Fechner laws, the perceived loudness/brightness is proportional to logarithm of the actual
intensity measured with an accurate nonhuman instrument, i.e., the relationship between stimulus
and perception is logarithmic.

Thus, in order to characterize the loudness of a sound it is more useful to introduce the sound
level via

I
SL=10dBlog;y 7. (436)
0

where Iy = 10712 W /m?, which is the threshold of human hearing. The corresponding sound level
is 0dB. At the threshold of pain I =1 W/m?, or SL = 120dB

5.12 Relativistic kinematics

The light travels with finite velocity. This statement can be and should be clarified or falsified
by experimental tests. The first considerable attempt for such experimental test was done by
Olaf Rhomer and it is based on astrophysical observation. Ole Christensen Romer was a Danish
astronomer who, in 1676, made the first quantitative measurements of the speed of light. Romer
compared the duration of Io’s orbits as Earth moved towards Jupiter and as Earth moved away from
Jupiter. Romer’s view that the velocity of light was finite was not fully accepted until measurements
of the so-called aberration of light were made by James Bradley in 1727. The first terrestrial
measurement of the speed of light was done by Hippolyte Fizeau in 1849 when he projected a pulsed
beam of light onto a distant mirror. Fizeau determined the speed of light between an intense light
source and a mirror about 8 km distant. The light source was interrupted by a rotating cogwheel
with 720 notches that could be rotated at a variable speed of up to hundreds of times a second.
Fizeau adjusted the rotation speed of the cogwheel until light passing through one notch of the
cogwheel would be completely eclipsed by the adjacent tooth. Spinning the cogwheel at 3, 5 and 7
times this basic rotation rate also resulted in eclipsing of the reflected light by the cogwheel teeth
next in line. Given the rotational speed of the wheel and the distance between the wheel and the
mirror, Fizeau was able to calculate a value of 315000 kmn/s for the speed of light.

5.12.1 Principle of relativity

Light is known to show wave properties and it was also known that it is a transverse wave, one
may speculate or assume a supposed medium permeating space (aether) in which the transverse
light wave propagates. The Michelson—Morley experiment was an attempt to detect the existence
of the luminiferous aether, a supposed medium permeating space that was thought to be the
carrier of light waves. The experiment was performed between April and July 1887 by American
physicists Albert A. Michelson and Edward W. Morley. The experiment compared the speed of
light in perpendicular directions in an attempt to detect the relative motion of matter through
the stationary luminiferous aether ("aether wind"). The result was negative, in that Michelson and
Morley found no significant difference between the speed of light in the direction of movement
through the presumed aether, and the speed at right angles. This result is generally considered to
be the first strong evidence against the then-prevalent aether theory, and initiated a line of research
that eventually led to special relativity, which rules out a stationary aether.

The principle of relativity is the requirement that the equations describing the laws of physics
have the same form in all admissible frames of reference. Special principle of relativity tells us
that if a system of coordinates K is chosen so that, in relation to it, physical laws hold good in
their simplest form, the same laws hold good in relation to any other system of coordinates K’
moving in uniform translation relatively to K. In order words, Einstein determined that the laws
of physics are the same for all non-accelerating observers, and that the speed of light in a vacuum
was independent of the motion of all observers. This requires the modification of the Galilean
transformation which is used to transform between the coordinates of two reference frames which
differ only by constant relative motion within the constructs of Newtonian physics.
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5.12.2 Lorentz transformation

Let us consider two events: one is the emission of a light pulse and the second one is its detection at
some distance Az, measured in an inertial reference frame V. Both events are assumed to be along
the x axis. The time needed for light to travel this distance is At = Ax/c. The coordinate difference
of the same pair of events in another reference frame V' traveling with speed v in the x direction is
Az = cAt', where we used the second postulate. According to the Galilean transformation, these
coordinate differences are related,

Az = Az’ + At Az = Az — vAt.

Assuming that time elapses at the same rate in the two frames, At = At’, which coincides with
our common sense, dividing the equations with At, we obtain

c=c+w, c=c—v,

which are contradicting equations for v # 0. So the Galilean transformation of coordinates con-
tradicts to our second postulate. This is not surprising because we have already discussed that
the Galilean addition of velocities is also in contradiction with the constancy of speed of light. We
would like to modifiy the Galilean transformations such that the following four requirements are
kept:

1. The new transformation rules should also be symmetric in interchanging the reference frames.
2. The speed of light should be the same in both frames.

3. In the limit of small v (8, = v/c — 0) the new transformation rules assume the form of the
Galilean transformations, which were found valid at small v.

4. Event pairs that occur at the same position and time in V' must happen at the same position
and time in V', too.

A simple extension of the transformation rules is
Az = y(v)(Az' +vAl), Az’ = y(v)(Ax — vAt) (437)

where v(v) is a dimensionless function of v. This form satisfies the first condition. Using the second
postulate (hence the second conition is automatically satsified), we have At = Az’ /¢, At = Ax/c,
and the product of the two equations gives

Ax Az’ = y(v)* (A2 + B,Ax")(Az — B,Az) = y(v)? Az Ax'(1 — 57).

Therefore, v(v) = v, = (1 — 82)~'/2 where 8, = v/c. Knowing 7,, we can deduce the transfor-
maition properties of time. For instance, from the first equation of (437) we find

At =1 (% - Am’) =1 (% AT ’yvat)) (438)
S [At 1 ( - %Am))} (439)
=7, (At — B,22) . (440)

Starting from the second equation of (437) and following the same steps, we can derive the inverse
relation,

/

which clearly obeys the first condition. These transformation rules are called Lorentz transforma-
tions, and can be summarized in an even more symmetric form:

Az = v, (Az" 4 BoeAt), Az’ =, (Az — BycAt), (441)
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cAt = v, (cAt' + B,Ax"),  cAt = v, (cAt — B,Ax). (442)

In the limit of small v, 8, — 0 and v, — 1 and we recover the Galilean transformations which
shows that the third condition is satisfied. The first and the fourth conditions are trivially satisfied
(because the transformation is linear, homogeneous and symmetric) and the second condition can
be verified as

Az
c'ZA—x,,:%(Ax_vif): (E;ZE :c—zzcc—v:c. (443)
Aty (At —vSE)  (1-557) e CTV

We note that under this transformation (called Lorentz boost in the 2 direction) the other space-
components remain unchanged, Ay’ = Ay, Az’ = Az.
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