R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > help.start() starting httpd help server ... done If nothing happens, you should open âhttp://127.0.0.1:24922/doc/html/index.htmlâ yourself > help.search(plot) Error in help.search(plot) : argument âpatternâ must be a single character string > help.search("plot") > ?plot > 2+3 [1] 5 > a <- 2+3 > a [1] 5 > 2^3 -> b > b [1] 8 > c <- b > b <- 6 > b [1] 6 > c [1] 8 > 3.14 -> d > d [1] 3.14 > Inf [1] Inf > NaN [1] NaN > 5/0 [1] Inf > Inf-Inf [1] NaN > 2+3i [1] 2+3i > "ABC" [1] "ABC" > TRUE [1] TRUE > T [1] TRUE > FALSE [1] FALSE > F [1] FALSE > t function (x) UseMethod("t") <bytecode: 0x000001a92ebc0858> <environment: namespace:base> > TRUE & FALSE [1] FALSE > TRUE | FALSE [1] TRUE > all(T,T,F) [1] FALSE > any(T,T,F) [1] TRUE > a == b [1] FALSE > a > 2 [1] TRUE > a >= 2 [1] TRUE > a [1] 5 > a %% 2 [1] 1 > a %/% 2 [1] 2 > a [1] 5 > mode(a) [1] "numeric" > s <- "abc" > mode(s) [1] "character" > L <- T > mode(L) [1] "logical" > NAĹą Error: object 'NAĹą' not found > NA [1] NA > NULL NULL > is.numeric(a) [1] TRUE > is.numeric(s) [1] FALSE > as.numeric("123") [1] 123 > as.character(3.14) [1] "3.14" > f <- c(3,0,-2.5) > f [1] 3.0 0.0 -2.5 > g <- c(2, "abc") > g [1] "2" "abc" > 1:5 [1] 1 2 3 4 5 > 5:1 [1] 5 4 3 2 1 > seq(1,5) [1] 1 2 3 4 5 > seq(1,5,2) [1] 1 3 5 > seq(1,5,length=10) [1] 1.000000 1.444444 1.888889 2.333333 2.777778 [6] 3.222222 3.666667 4.111111 4.555556 5.000000 > seq(1,by=2,length=10) [1] 1 3 5 7 9 11 13 15 17 19 > seq(by=2,length=10,to=4) [1] -14 -12 -10 -8 -6 -4 -2 0 2 4 > ?seq > ?distributions > rnorm(10) [1] 1.0450519 1.1096217 1.6411432 -1.1841482 [5] 0.9457732 -1.1974559 2.7096923 2.3471129 [9] 0.1451879 0.9871264 > v <- 2:4 > w <- c(3,0,-2) > v; w [1] 2 3 4 [1] 3 0 -2 > v + w [1] 5 3 2 > 2 * v [1] 4 6 8 > v * w [1] 6 0 -8 > v ^w [1] 8.0000 1.0000 0.0625 > x <- c(2,-2) > v [1] 2 3 4 > x + v [1] 4 1 6 Warning message: In x + v : longer object length is not a multiple of shorter object length > y <- 1:6 > y + x [1] 3 0 5 2 7 4 > y [1] 1 2 3 4 5 6 > x [1] 2 -2 > x[1] [1] 2 > x[0] numeric(0) > y[-1] [1] 2 3 4 5 6 > y [1] 1 2 3 4 5 6 > y[8] [1] NA > y[c(1,3,4)] [1] 1 3 4 > y [1] 1 2 3 4 5 6 > y[c(1,3,4] Error: unexpected ']' in "y[c(1,3,4]" > > y[2:4] [1] 2 3 4 > y[-2:4] Error in y[-2:4] : only 0's may be mixed with negative subscripts > y[-(2:4)] [1] 1 5 6 > 2:4*2 [1] 4 6 8 > y[c(1,3,1,3)] [1] 1 3 1 3 > y[c(1,3,1,3,1,3,1,3,1,3)] [1] 1 3 1 3 1 3 1 3 1 3 > x [1] 2 -2 > y [1] 1 2 3 4 5 6 > L <- c(T,T,F,F,F,T) > y[L] [1] 1 2 6 > y[c(T,F)] [1] 1 3 5 > y > 2 [1] FALSE FALSE TRUE TRUE TRUE TRUE > y[y>2] [1] 3 4 5 6 > y[(y>2)&(y %% 2 == 1)] [1] 3 5 > A <- y > A [1] 1 2 3 4 5 6 > dim(A) NULL > dim(A) <- c(2,3) > A [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 > B <- matrix(-3:2,2,3) > B [,1] [,2] [,3] [1,] -3 -1 1 [2,] -2 0 2 > C <- matrix(-3:2,2,3,byrow=TRUE) > C [,1] [,2] [,3] [1,] -3 -2 -1 [2,] 0 1 2 > C[1,2] [1] -2 > C[1,] [1] -3 -2 -1 > C[,2] [1] -2 1 > C[1,1:2] [1] -3 -2 > C[-1,-2] [1] 0 2 > C[2] [1] 0 > C [,1] [,2] [,3] [1,] -3 -2 -1 [2,] 0 1 2 > C[6] [1] 2 > C[2,] [1] 0 1 2 > D <- matrix(1:4,2,2) > D [,1] [,2] [1,] 1 3 [2,] 2 4 > t(A) [,1] [,2] [1,] 1 2 [2,] 3 4 [3,] 5 6 > A [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 > t(A) %*% D [,1] [,2] [1,] 5 11 [2,] 11 25 [3,] 17 39 > v [1] 2 3 4 > A %*% v [,1] [1,] 31 [2,] 40 > v %*% t(A) [,1] [,2] [1,] 31 40 > w [1] 3 0 -2 > v %*% w [,1] [1,] -2 > crossprod(v,w) [,1] [1,] -2 > outer(v,w) [,1] [,2] [,3] [1,] 6 0 -4 [2,] 9 0 -6 [3,] 12 0 -8 > det(D) [1] -2 > x [1] 2 -2 > solve(D,x) [1] -7 3 > solve(D) [,1] [,2] [1,] -2 1.5 [2,] 1 -0.5 > solve(D) %*% D [,1] [,2] [1,] 1 0 [2,] 0 1 > F <- matrix(c(1,2,1,2),2,2) > F [,1] [,2] [1,] 1 1 [2,] 2 2 > det(F) [1] 0 > solve(F) Error in solve.default(F) : Lapack routine dgesv: system is exactly singular: U[2,2] = 0 > A [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 > lista <- list("abc", 23, TRUE) > lista [[1]] [1] "abc" [[2]] [1] 23 [[3]] [1] TRUE > lista[4] <- x Warning message: In lista[4] <- x : number of items to replace is not a multiple of replacement length > lista[[4]] <- x > lista [[1]] [1] "abc" [[2]] [1] 23 [[3]] [1] TRUE [[4]] [1] 2 -2 > names(lista) NULL > names(lista) <- c(str,num,logical,vekt) Error: object 'num' not found > names(lista) <- c("str","num","logical","vekt") > lista $str [1] "abc" $num [1] 23 $logical [1] TRUE $vekt [1] 2 -2 > names(lista)[3] <- NA > lista $str [1] "abc" $num [1] 23 $<NA> [1] TRUE $vekt [1] 2 -2 > names(lista)[3] <- NULL Error in names(lista)[3] <- NULL : replacement has length zero > lista $str [1] "abc" $num [1] 23 $<NA> [1] TRUE $vekt [1] 2 -2 > lista[2] $num [1] 23 > lista[[2]] [1] 23 > lista$num [1] 23 > lista$vekt[2] [1] -2 > lista$vekt [1] 2 -2 > lista[4] $vekt [1] 2 -2 > lista[4][2] $<NA> NULL > lista[[4]][2] [1] -2 > data() > iris Sepal.Length Sepal.Width Petal.Length 1 5.1 3.5 1.4 2 4.9 3.0 1.4 3 4.7 3.2 1.3 4 4.6 3.1 1.5 5 5.0 3.6 1.4 6 5.4 3.9 1.7 7 4.6 3.4 1.4 8 5.0 3.4 1.5 9 4.4 2.9 1.4 10 4.9 3.1 1.5 11 5.4 3.7 1.5 12 4.8 3.4 1.6 13 4.8 3.0 1.4 14 4.3 3.0 1.1 15 5.8 4.0 1.2 16 5.7 4.4 1.5 17 5.4 3.9 1.3 18 5.1 3.5 1.4 19 5.7 3.8 1.7 20 5.1 3.8 1.5 21 5.4 3.4 1.7 22 5.1 3.7 1.5 23 4.6 3.6 1.0 24 5.1 3.3 1.7 25 4.8 3.4 1.9 26 5.0 3.0 1.6 27 5.0 3.4 1.6 28 5.2 3.5 1.5 29 5.2 3.4 1.4 30 4.7 3.2 1.6 31 4.8 3.1 1.6 32 5.4 3.4 1.5 33 5.2 4.1 1.5 34 5.5 4.2 1.4 35 4.9 3.1 1.5 36 5.0 3.2 1.2 37 5.5 3.5 1.3 38 4.9 3.6 1.4 39 4.4 3.0 1.3 40 5.1 3.4 1.5 41 5.0 3.5 1.3 42 4.5 2.3 1.3 43 4.4 3.2 1.3 44 5.0 3.5 1.6 45 5.1 3.8 1.9 46 4.8 3.0 1.4 47 5.1 3.8 1.6 48 4.6 3.2 1.4 49 5.3 3.7 1.5 50 5.0 3.3 1.4 51 7.0 3.2 4.7 52 6.4 3.2 4.5 53 6.9 3.1 4.9 54 5.5 2.3 4.0 55 6.5 2.8 4.6 56 5.7 2.8 4.5 57 6.3 3.3 4.7 58 4.9 2.4 3.3 59 6.6 2.9 4.6 60 5.2 2.7 3.9 61 5.0 2.0 3.5 62 5.9 3.0 4.2 63 6.0 2.2 4.0 64 6.1 2.9 4.7 65 5.6 2.9 3.6 66 6.7 3.1 4.4 67 5.6 3.0 4.5 68 5.8 2.7 4.1 69 6.2 2.2 4.5 70 5.6 2.5 3.9 71 5.9 3.2 4.8 72 6.1 2.8 4.0 73 6.3 2.5 4.9 74 6.1 2.8 4.7 75 6.4 2.9 4.3 76 6.6 3.0 4.4 77 6.8 2.8 4.8 78 6.7 3.0 5.0 79 6.0 2.9 4.5 80 5.7 2.6 3.5 81 5.5 2.4 3.8 82 5.5 2.4 3.7 83 5.8 2.7 3.9 84 6.0 2.7 5.1 85 5.4 3.0 4.5 86 6.0 3.4 4.5 87 6.7 3.1 4.7 88 6.3 2.3 4.4 89 5.6 3.0 4.1 90 5.5 2.5 4.0 91 5.5 2.6 4.4 92 6.1 3.0 4.6 93 5.8 2.6 4.0 94 5.0 2.3 3.3 95 5.6 2.7 4.2 96 5.7 3.0 4.2 97 5.7 2.9 4.2 98 6.2 2.9 4.3 99 5.1 2.5 3.0 100 5.7 2.8 4.1 101 6.3 3.3 6.0 102 5.8 2.7 5.1 103 7.1 3.0 5.9 104 6.3 2.9 5.6 105 6.5 3.0 5.8 106 7.6 3.0 6.6 107 4.9 2.5 4.5 108 7.3 2.9 6.3 109 6.7 2.5 5.8 110 7.2 3.6 6.1 111 6.5 3.2 5.1 112 6.4 2.7 5.3 113 6.8 3.0 5.5 114 5.7 2.5 5.0 115 5.8 2.8 5.1 116 6.4 3.2 5.3 117 6.5 3.0 5.5 118 7.7 3.8 6.7 119 7.7 2.6 6.9 120 6.0 2.2 5.0 121 6.9 3.2 5.7 122 5.6 2.8 4.9 123 7.7 2.8 6.7 124 6.3 2.7 4.9 125 6.7 3.3 5.7 126 7.2 3.2 6.0 127 6.2 2.8 4.8 128 6.1 3.0 4.9 129 6.4 2.8 5.6 130 7.2 3.0 5.8 131 7.4 2.8 6.1 132 7.9 3.8 6.4 133 6.4 2.8 5.6 134 6.3 2.8 5.1 135 6.1 2.6 5.6 136 7.7 3.0 6.1 137 6.3 3.4 5.6 138 6.4 3.1 5.5 139 6.0 3.0 4.8 140 6.9 3.1 5.4 141 6.7 3.1 5.6 142 6.9 3.1 5.1 143 5.8 2.7 5.1 144 6.8 3.2 5.9 145 6.7 3.3 5.7 146 6.7 3.0 5.2 147 6.3 2.5 5.0 148 6.5 3.0 5.2 149 6.2 3.4 5.4 150 5.9 3.0 5.1 Petal.Width Species 1 0.2 setosa 2 0.2 setosa 3 0.2 setosa 4 0.2 setosa 5 0.2 setosa 6 0.4 setosa 7 0.3 setosa 8 0.2 setosa 9 0.2 setosa 10 0.1 setosa 11 0.2 setosa 12 0.2 setosa 13 0.1 setosa 14 0.1 setosa 15 0.2 setosa 16 0.4 setosa 17 0.4 setosa 18 0.3 setosa 19 0.3 setosa 20 0.3 setosa 21 0.2 setosa 22 0.4 setosa 23 0.2 setosa 24 0.5 setosa 25 0.2 setosa 26 0.2 setosa 27 0.4 setosa 28 0.2 setosa 29 0.2 setosa 30 0.2 setosa 31 0.2 setosa 32 0.4 setosa 33 0.1 setosa 34 0.2 setosa 35 0.2 setosa 36 0.2 setosa 37 0.2 setosa 38 0.1 setosa 39 0.2 setosa 40 0.2 setosa 41 0.3 setosa 42 0.3 setosa 43 0.2 setosa 44 0.6 setosa 45 0.4 setosa 46 0.3 setosa 47 0.2 setosa 48 0.2 setosa 49 0.2 setosa 50 0.2 setosa 51 1.4 versicolor 52 1.5 versicolor 53 1.5 versicolor 54 1.3 versicolor 55 1.5 versicolor 56 1.3 versicolor 57 1.6 versicolor 58 1.0 versicolor 59 1.3 versicolor 60 1.4 versicolor 61 1.0 versicolor 62 1.5 versicolor 63 1.0 versicolor 64 1.4 versicolor 65 1.3 versicolor 66 1.4 versicolor 67 1.5 versicolor 68 1.0 versicolor 69 1.5 versicolor 70 1.1 versicolor 71 1.8 versicolor 72 1.3 versicolor 73 1.5 versicolor 74 1.2 versicolor 75 1.3 versicolor 76 1.4 versicolor 77 1.4 versicolor 78 1.7 versicolor 79 1.5 versicolor 80 1.0 versicolor 81 1.1 versicolor 82 1.0 versicolor 83 1.2 versicolor 84 1.6 versicolor 85 1.5 versicolor 86 1.6 versicolor 87 1.5 versicolor 88 1.3 versicolor 89 1.3 versicolor 90 1.3 versicolor 91 1.2 versicolor 92 1.4 versicolor 93 1.2 versicolor 94 1.0 versicolor 95 1.3 versicolor 96 1.2 versicolor 97 1.3 versicolor 98 1.3 versicolor 99 1.1 versicolor 100 1.3 versicolor 101 2.5 virginica 102 1.9 virginica 103 2.1 virginica 104 1.8 virginica 105 2.2 virginica 106 2.1 virginica 107 1.7 virginica 108 1.8 virginica 109 1.8 virginica 110 2.5 virginica 111 2.0 virginica 112 1.9 virginica 113 2.1 virginica 114 2.0 virginica 115 2.4 virginica 116 2.3 virginica 117 1.8 virginica 118 2.2 virginica 119 2.3 virginica 120 1.5 virginica 121 2.3 virginica 122 2.0 virginica 123 2.0 virginica 124 1.8 virginica 125 2.1 virginica 126 1.8 virginica 127 1.8 virginica 128 1.8 virginica 129 2.1 virginica 130 1.6 virginica 131 1.9 virginica 132 2.0 virginica 133 2.2 virginica 134 1.5 virginica 135 1.4 virginica 136 2.3 virginica 137 2.4 virginica 138 1.8 virginica 139 1.8 virginica 140 2.1 virginica 141 2.4 virginica 142 2.3 virginica 143 1.9 virginica 144 2.3 virginica 145 2.5 virginica 146 2.3 virginica 147 1.9 virginica 148 2.0 virginica 149 2.3 virginica 150 1.8 virginica > ?iris > head(iris) Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.1 3.5 1.4 0.2 2 4.9 3.0 1.4 0.2 3 4.7 3.2 1.3 0.2 4 4.6 3.1 1.5 0.2 5 5.0 3.6 1.4 0.2 6 5.4 3.9 1.7 0.4 Species 1 setosa 2 setosa 3 setosa 4 setosa 5 setosa 6 setosa > edit(iris) Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.1 3.5 1.4 0.2 2 4.9 3.0 1.4 0.2 3 4.7 3.2 1.3 0.2 4 4.6 3.1 1.5 0.2 5 5.0 3.6 1.4 0.2 6 5.4 3.9 1.7 0.4 7 4.6 3.4 1.4 0.3 8 5.0 3.4 1.5 0.2 9 4.4 2.9 1.4 0.2 10 4.9 3.1 1.5 0.1 11 5.4 3.7 1.5 0.2 12 4.8 3.4 1.6 0.2 13 4.8 3.0 1.4 0.1 14 4.3 3.0 1.1 0.1 15 5.8 4.0 1.2 0.2 16 5.7 4.4 1.5 0.4 17 5.4 3.9 1.3 0.4 18 5.1 3.5 1.4 0.3 19 5.7 3.8 1.7 0.3 20 5.1 3.8 1.5 0.3 21 5.4 3.4 1.7 0.2 22 5.1 3.7 1.5 0.4 23 4.6 3.6 1.0 0.2 24 5.1 3.3 1.7 0.5 25 4.8 3.4 1.9 0.2 26 5.0 3.0 1.6 0.2 27 5.0 3.4 1.6 0.4 28 5.2 3.5 1.5 0.2 29 5.2 3.4 1.4 0.2 30 4.7 3.2 1.6 0.2 31 4.8 3.1 1.6 0.2 32 5.4 3.4 1.5 0.4 33 5.2 4.1 1.5 0.1 34 5.5 4.2 1.4 0.2 35 4.9 3.1 1.5 0.2 36 5.0 3.2 1.2 0.2 37 5.5 3.5 1.3 0.2 38 4.9 3.6 1.4 0.1 39 4.4 3.0 1.3 0.2 40 5.1 3.4 1.5 0.2 41 5.0 3.5 1.3 0.3 42 4.5 2.3 1.3 0.3 43 4.4 3.2 1.3 0.2 44 5.0 3.5 1.6 0.6 45 5.1 3.8 1.9 0.4 46 4.8 3.0 1.4 0.3 47 5.1 3.8 1.6 0.2 48 4.6 3.2 1.4 0.2 49 5.3 3.7 1.5 0.2 50 5.0 3.3 1.4 0.2 51 7.0 3.2 4.7 1.4 52 6.4 3.2 4.5 1.5 53 6.9 3.1 4.9 1.5 54 5.5 2.3 4.0 1.3 55 6.5 2.8 4.6 1.5 56 5.7 2.8 4.5 1.3 57 6.3 3.3 4.7 1.6 58 4.9 2.4 3.3 1.0 59 6.6 2.9 4.6 1.3 60 5.2 2.7 3.9 1.4 61 5.0 2.0 3.5 1.0 62 5.9 3.0 4.2 1.5 63 6.0 2.2 4.0 1.0 64 6.1 2.9 4.7 1.4 65 5.6 2.9 3.6 1.3 66 6.7 3.1 4.4 1.4 67 5.6 3.0 4.5 1.5 68 5.8 2.7 4.1 1.0 69 6.2 2.2 4.5 1.5 70 5.6 2.5 3.9 1.1 71 5.9 3.2 4.8 1.8 72 6.1 2.8 4.0 1.3 73 6.3 2.5 4.9 1.5 74 6.1 2.8 4.7 1.2 75 6.4 2.9 4.3 1.3 76 6.6 3.0 4.4 1.4 77 6.8 2.8 4.8 1.4 78 6.7 3.0 5.0 1.7 79 6.0 2.9 4.5 1.5 80 5.7 2.6 3.5 1.0 81 5.5 2.4 3.8 1.1 82 5.5 2.4 3.7 1.0 83 5.8 2.7 3.9 1.2 84 6.0 2.7 5.1 1.6 85 5.4 3.0 4.5 1.5 86 6.0 3.4 4.5 1.6 87 6.7 3.1 4.7 1.5 88 6.3 2.3 4.4 1.3 89 5.6 3.0 4.1 1.3 90 5.5 2.5 4.0 1.3 91 5.5 2.6 4.4 1.2 92 6.1 3.0 4.6 1.4 93 5.8 2.6 4.0 1.2 94 5.0 2.3 3.3 1.0 95 5.6 2.7 4.2 1.3 96 5.7 3.0 4.2 1.2 97 5.7 2.9 4.2 1.3 98 6.2 2.9 4.3 1.3 99 5.1 2.5 3.0 1.1 100 5.7 2.8 4.1 1.3 101 6.3 3.3 6.0 2.5 102 5.8 2.7 5.1 1.9 103 7.1 3.0 5.9 2.1 104 6.3 2.9 5.6 1.8 105 6.5 3.0 5.8 2.2 106 7.6 3.0 6.6 2.1 107 4.9 2.5 4.5 1.7 108 7.3 2.9 6.3 1.8 109 6.7 2.5 5.8 1.8 110 7.2 3.6 6.1 2.5 111 6.5 3.2 5.1 2.0 112 6.4 2.7 5.3 1.9 113 6.8 3.0 5.5 2.1 114 5.7 2.5 5.0 2.0 115 5.8 2.8 5.1 2.4 116 6.4 3.2 5.3 2.3 117 6.5 3.0 5.5 1.8 118 7.7 3.8 6.7 2.2 119 7.7 2.6 6.9 2.3 120 6.0 2.2 5.0 1.5 121 6.9 3.2 5.7 2.3 122 5.6 2.8 4.9 2.0 123 7.7 2.8 6.7 2.0 124 6.3 2.7 4.9 1.8 125 6.7 3.3 5.7 2.1 126 7.2 3.2 6.0 1.8 127 6.2 2.8 4.8 1.8 128 6.1 3.0 4.9 1.8 129 6.4 2.8 5.6 2.1 130 7.2 3.0 5.8 1.6 131 7.4 2.8 6.1 1.9 132 7.9 3.8 6.4 2.0 133 6.4 2.8 5.6 2.2 134 6.3 2.8 5.1 1.5 135 6.1 2.6 5.6 1.4 136 7.7 3.0 6.1 2.3 137 6.3 3.4 5.6 2.4 138 6.4 3.1 5.5 1.8 139 6.0 3.0 4.8 1.8 140 6.9 3.1 5.4 2.1 141 6.7 3.1 5.6 2.4 142 6.9 3.1 5.1 2.3 143 5.8 2.7 5.1 1.9 144 6.8 3.2 5.9 2.3 145 6.7 3.3 5.7 2.5 146 6.7 3.0 5.2 2.3 147 6.3 2.5 5.0 1.9 148 6.5 3.0 5.2 2.0 149 6.2 3.4 5.4 2.3 150 5.9 3.0 5.1 1.8 Species 1 setosa 2 setosa 3 setosa 4 setosa 5 setosa 6 setosa 7 setosa 8 setosa 9 setosa 10 setosa 11 setosa 12 setosa 13 setosa 14 setosa 15 setosa 16 setosa 17 setosa 18 setosa 19 setosa 20 setosa 21 setosa 22 setosa 23 setosa 24 setosa 25 setosa 26 setosa 27 setosa 28 setosa 29 setosa 30 setosa 31 setosa 32 setosa 33 setosa 34 setosa 35 setosa 36 setosa 37 setosa 38 setosa 39 setosa 40 setosa 41 setosa 42 setosa 43 setosa 44 setosa 45 setosa 46 setosa 47 setosa 48 setosa 49 setosa 50 setosa 51 versicolor 52 versicolor 53 versicolor 54 versicolor 55 versicolor 56 versicolor 57 versicolor 58 versicolor 59 versicolor 60 versicolor 61 versicolor 62 versicolor 63 versicolor 64 versicolor 65 versicolor 66 versicolor 67 versicolor 68 versicolor 69 versicolor 70 versicolor 71 versicolor 72 versicolor 73 versicolor 74 versicolor 75 versicolor 76 versicolor 77 versicolor 78 versicolor 79 versicolor 80 versicolor 81 versicolor 82 versicolor 83 versicolor 84 versicolor 85 versicolor 86 versicolor 87 versicolor 88 versicolor 89 versicolor 90 versicolor 91 versicolor 92 versicolor 93 versicolor 94 versicolor 95 versicolor 96 versicolor 97 versicolor 98 versicolor 99 versicolor 100 versicolor 101 virginica 102 virginica 103 virginica 104 virginica 105 virginica 106 virginica 107 virginica 108 virginica 109 virginica 110 virginica 111 virginica 112 virginica 113 virginica 114 virginica 115 virginica 116 virginica 117 virginica 118 virginica 119 virginica 120 virginica 121 virginica 122 virginica 123 virginica 124 virginica 125 virginica 126 virginica 127 virginica 128 virginica 129 virginica 130 virginica 131 virginica 132 virginica 133 virginica 134 virginica 135 virginica 136 virginica 137 virginica 138 virginica 139 virginica 140 virginica 141 virginica 142 virginica 143 virginica 144 virginica 145 virginica 146 virginica 147 virginica 148 virginica 149 virginica 150 virginica > iris[2,3] [1] 1.4 > iris[2] Sepal.Width 1 3.5 2 3.0 3 3.2 4 3.1 5 3.6 6 3.9 7 3.4 8 3.4 9 2.9 10 3.1 11 3.7 12 3.4 13 3.0 14 3.0 15 4.0 16 4.4 17 3.9 18 3.5 19 3.8 20 3.8 21 3.4 22 3.7 23 3.6 24 3.3 25 3.4 26 3.0 27 3.4 28 3.5 29 3.4 30 3.2 31 3.1 32 3.4 33 4.1 34 4.2 35 3.1 36 3.2 37 3.5 38 3.6 39 3.0 40 3.4 41 3.5 42 2.3 43 3.2 44 3.5 45 3.8 46 3.0 47 3.8 48 3.2 49 3.7 50 3.3 51 3.2 52 3.2 53 3.1 54 2.3 55 2.8 56 2.8 57 3.3 58 2.4 59 2.9 60 2.7 61 2.0 62 3.0 63 2.2 64 2.9 65 2.9 66 3.1 67 3.0 68 2.7 69 2.2 70 2.5 71 3.2 72 2.8 73 2.5 74 2.8 75 2.9 76 3.0 77 2.8 78 3.0 79 2.9 80 2.6 81 2.4 82 2.4 83 2.7 84 2.7 85 3.0 86 3.4 87 3.1 88 2.3 89 3.0 90 2.5 91 2.6 92 3.0 93 2.6 94 2.3 95 2.7 96 3.0 97 2.9 98 2.9 99 2.5 100 2.8 101 3.3 102 2.7 103 3.0 104 2.9 105 3.0 106 3.0 107 2.5 108 2.9 109 2.5 110 3.6 111 3.2 112 2.7 113 3.0 114 2.5 115 2.8 116 3.2 117 3.0 118 3.8 119 2.6 120 2.2 121 3.2 122 2.8 123 2.8 124 2.7 125 3.3 126 3.2 127 2.8 128 3.0 129 2.8 130 3.0 131 2.8 132 3.8 133 2.8 134 2.8 135 2.6 136 3.0 137 3.4 138 3.1 139 3.0 140 3.1 141 3.1 142 3.1 143 2.7 144 3.2 145 3.3 146 3.0 147 2.5 148 3.0 149 3.4 150 3.0 > iris[2,] Sepal.Length Sepal.Width Petal.Length Petal.Width Species 2 4.9 3 1.4 0.2 setosa > iris$Species [1] setosa setosa setosa setosa setosa [6] setosa setosa setosa setosa setosa [11] setosa setosa setosa setosa setosa [16] setosa setosa setosa setosa setosa [21] setosa setosa setosa setosa setosa [26] setosa setosa setosa setosa setosa [31] setosa setosa setosa setosa setosa [36] setosa setosa setosa setosa setosa [41] setosa setosa setosa setosa setosa [46] setosa setosa setosa setosa setosa [51] versicolor versicolor versicolor versicolor versicolor [56] versicolor versicolor versicolor versicolor versicolor [61] versicolor versicolor versicolor versicolor versicolor [66] versicolor versicolor versicolor versicolor versicolor [71] versicolor versicolor versicolor versicolor versicolor [76] versicolor versicolor versicolor versicolor versicolor [81] versicolor versicolor versicolor versicolor versicolor [86] versicolor versicolor versicolor versicolor versicolor [91] versicolor versicolor versicolor versicolor versicolor [96] versicolor versicolor versicolor versicolor versicolor [101] virginica virginica virginica virginica virginica [106] virginica virginica virginica virginica virginica [111] virginica virginica virginica virginica virginica [116] virginica virginica virginica virginica virginica [121] virginica virginica virginica virginica virginica [126] virginica virginica virginica virginica virginica [131] virginica virginica virginica virginica virginica [136] virginica virginica virginica virginica virginica [141] virginica virginica virginica virginica virginica [146] virginica virginica virginica virginica virginica Levels: setosa versicolor virginica > mode(iris$Species) [1] "numeric" > class(iris$Species) [1] "factor" > names(iris) [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" [5] "Species" > row.names(iris) [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" [10] "10" "11" "12" "13" "14" "15" "16" "17" "18" [19] "19" "20" "21" "22" "23" "24" "25" "26" "27" [28] "28" "29" "30" "31" "32" "33" "34" "35" "36" [37] "37" "38" "39" "40" "41" "42" "43" "44" "45" [46] "46" "47" "48" "49" "50" "51" "52" "53" "54" [55] "55" "56" "57" "58" "59" "60" "61" "62" "63" [64] "64" "65" "66" "67" "68" "69" "70" "71" "72" [73] "73" "74" "75" "76" "77" "78" "79" "80" "81" [82] "82" "83" "84" "85" "86" "87" "88" "89" "90" [91] "91" "92" "93" "94" "95" "96" "97" "98" "99" [100] "100" "101" "102" "103" "104" "105" "106" "107" "108" [109] "109" "110" "111" "112" "113" "114" "115" "116" "117" [118] "118" "119" "120" "121" "122" "123" "124" "125" "126" [127] "127" "128" "129" "130" "131" "132" "133" "134" "135" [136] "136" "137" "138" "139" "140" "141" "142" "143" "144" [145] "145" "146" "147" "148" "149" "150" > mode(iris$Sepal.Width) [1] "numeric" > iris[2:5,c(1,3,5)] Sepal.Length Petal.Length Species 2 4.9 1.4 setosa 3 4.7 1.3 setosa 4 4.6 1.5 setosa 5 5.0 1.4 setosa > iris2 <- iris[5:10,] > iris2 Sepal.Length Sepal.Width Petal.Length Petal.Width Species 5 5.0 3.6 1.4 0.2 setosa 6 5.4 3.9 1.7 0.4 setosa 7 4.6 3.4 1.4 0.3 setosa 8 5.0 3.4 1.5 0.2 setosa 9 4.4 2.9 1.4 0.2 setosa 10 4.9 3.1 1.5 0.1 setosa > iris2[2,] Sepal.Length Sepal.Width Petal.Length Petal.Width Species 6 5.4 3.9 1.7 0.4 setosa > iris2["6",] Sepal.Length Sepal.Width Petal.Length Petal.Width Species 6 5.4 3.9 1.7 0.4 setosa > x <- rnorm(10) > y <- rnorm(10) > runif[10] Error in runif[10] : object of type 'closure' is not subsettable > runif(10) [1] 0.6792710 0.7309148 0.5484440 0.8403378 0.8734246 [6] 0.6797834 0.2015283 0.5208646 0.4451908 0.1930728 > round(1 + runif(10)) [1] 2 1 2 2 1 1 2 2 2 2 > .Last.value [1] 2 1 2 2 1 1 2 2 2 2 > .Last.value -> halmaz > pontok <- data.frame(xkoord = x, ykoord = y, halmaz = halmaz) > pontok xkoord ykoord halmaz 1 0.1829699 0.3702491 2 2 0.3649382 -0.7408059 1 3 -0.2073121 -0.6979016 2 4 -1.7441663 -0.4389299 2 5 1.3119190 1.7016581 1 6 0.9769963 1.6276354 1 7 0.6187861 0.6406041 2 8 0.2507825 -1.3344828 2 9 1.6436978 -0.9704997 2 10 -0.8417565 -0.3048665 2 > pontok[1] xkoord 1 0.1829699 2 0.3649382 3 -0.2073121 4 -1.7441663 5 1.3119190 6 0.9769963 7 0.6187861 8 0.2507825 9 1.6436978 10 -0.8417565 > pontok$xkoord [1] 0.1829699 0.3649382 -0.2073121 -1.7441663 1.3119190 [6] 0.9769963 0.6187861 0.2507825 1.6436978 -0.8417565 > pontok$tav <- sqrt(pontok$xkoord^2+pontok$ykoord^2) > pontok xkoord ykoord halmaz tav 1 0.1829699 0.3702491 2 0.4129920 2 0.3649382 -0.7408059 1 0.8258167 3 -0.2073121 -0.6979016 2 0.7280419 4 -1.7441663 -0.4389299 2 1.7985482 5 1.3119190 1.7016581 1 2.1486674 6 0.9769963 1.6276354 1 1.8983463 7 0.6187861 0.6406041 2 0.8906569 8 0.2507825 -1.3344828 2 1.3578425 9 1.6436978 -0.9704997 2 1.9088248 10 -0.8417565 -0.3048665 2 0.8952640 > class(pontok$halmaz) [1] "numeric" > pontok$halmaz <- factor(pontok$halmaz) > class(pontok$halmaz) [1] "factor" > pontok$halmaz [1] 2 1 2 2 1 1 2 2 2 2 Levels: 1 2 > halmaz [1] 2 1 2 2 1 1 2 2 2 2 > class(halmaz) [1] "numeric" > plot(halmaz) > plot(pontok$halmaz) > mean(pontok$tav) [1] 1.2865 > length(pontok$tav) [1] 10 > sum(pontok$tav) [1] 12.865 > tapply(pontok$tav,pontok$halmaz,mean) 1 2 1.624277 1.141739 > ls() [1] "a" "A" "b" "B" "c" "C" [7] "d" "D" "f" "F" "g" "halmaz" [13] "iris2" "L" "lista" "pontok" "s" "v" [19] "w" "x" "y" > rm(A,B,g,f,F) > ls() [1] "a" "b" "c" "C" "d" "D" [7] "halmaz" "iris2" "L" "lista" "pontok" "s" [13] "v" "w" "x" "y" > pontok$koord NULL > pontok$xkoord [1] 0.1829699 0.3649382 -0.2073121 -1.7441663 1.3119190 [6] 0.9769963 0.6187861 0.2507825 1.6436978 -0.8417565 > attach(pontok) The following object is masked _by_ .GlobalEnv: halmaz > xkoord [1] 0.1829699 0.3649382 -0.2073121 -1.7441663 1.3119190 [6] 0.9769963 0.6187861 0.2507825 1.6436978 -0.8417565 > plot(xkoord,ykoord) > pontok xkoord ykoord halmaz tav 1 0.1829699 0.3702491 2 0.4129920 2 0.3649382 -0.7408059 1 0.8258167 3 -0.2073121 -0.6979016 2 0.7280419 4 -1.7441663 -0.4389299 2 1.7985482 5 1.3119190 1.7016581 1 2.1486674 6 0.9769963 1.6276354 1 1.8983463 7 0.6187861 0.6406041 2 0.8906569 8 0.2507825 -1.3344828 2 1.3578425 9 1.6436978 -0.9704997 2 1.9088248 10 -0.8417565 -0.3048665 2 0.8952640 > xkoord <- rnorm(10) + 2 > xkoord [1] 1.3251152 0.8270475 -0.4877544 3.9717239 1.3021074 [6] 2.1701846 2.4353841 4.1954699 1.8175215 1.3981023 > pontok$xkoord [1] 0.1829699 0.3649382 -0.2073121 -1.7441663 1.3119190 [6] 0.9769963 0.6187861 0.2507825 1.6436978 -0.8417565 > ls() [1] "a" "b" "c" "C" "d" "D" [7] "halmaz" "iris2" "L" "lista" "pontok" "s" [13] "v" "w" "x" "xkoord" "y" > ykoord [1] 0.3702491 -0.7408059 -0.6979016 -0.4389299 1.7016581 [6] 1.6276354 0.6406041 -1.3344828 -0.9704997 -0.3048665 > detach(pontok) > ykoord Error: object 'ykoord' not found > pontok$ykoord [1] 0.3702491 -0.7408059 -0.6979016 -0.4389299 1.7016581 [6] 1.6276354 0.6406041 -1.3344828 -0.9704997 -0.3048665 > attach(pontok) The following objects are masked _by_ .GlobalEnv: halmaz, xkoord > xkoord [1] 1.3251152 0.8270475 -0.4877544 3.9717239 1.3021074 [6] 2.1701846 2.4353841 4.1954699 1.8175215 1.3981023 > pontok$xkoord [1] 0.1829699 0.3649382 -0.2073121 -1.7441663 1.3119190 [6] 0.9769963 0.6187861 0.2507825 1.6436978 -0.8417565 > detach(pontok) > rm(xkoord,halmaz) > attach(pontok) > plot(xkoord,ykoord) > plot(xkoord,ykoord,col="red") > ?colors > colors() [1] "white" "aliceblue" [3] "antiquewhite" "antiquewhite1" [5] "antiquewhite2" "antiquewhite3" [7] "antiquewhite4" "aquamarine" [9] "aquamarine1" "aquamarine2" [11] "aquamarine3" "aquamarine4" [13] "azure" "azure1" [15] "azure2" "azure3" [17] "azure4" "beige" [19] "bisque" "bisque1" [21] "bisque2" "bisque3" [23] "bisque4" "black" [25] "blanchedalmond" "blue" [27] "blue1" "blue2" [29] "blue3" "blue4" [31] "blueviolet" "brown" [33] "brown1" "brown2" [35] "brown3" "brown4" [37] "burlywood" "burlywood1" [39] "burlywood2" "burlywood3" [41] "burlywood4" "cadetblue" [43] "cadetblue1" "cadetblue2" [45] "cadetblue3" "cadetblue4" [47] "chartreuse" "chartreuse1" [49] "chartreuse2" "chartreuse3" [51] "chartreuse4" "chocolate" [53] "chocolate1" "chocolate2" [55] "chocolate3" "chocolate4" [57] "coral" "coral1" [59] "coral2" "coral3" [61] "coral4" "cornflowerblue" [63] "cornsilk" "cornsilk1" [65] "cornsilk2" "cornsilk3" [67] "cornsilk4" "cyan" [69] "cyan1" "cyan2" [71] "cyan3" "cyan4" [73] "darkblue" "darkcyan" [75] "darkgoldenrod" "darkgoldenrod1" [77] "darkgoldenrod2" "darkgoldenrod3" [79] "darkgoldenrod4" "darkgray" [81] "darkgreen" "darkgrey" [83] "darkkhaki" "darkmagenta" [85] "darkolivegreen" "darkolivegreen1" [87] "darkolivegreen2" "darkolivegreen3" [89] "darkolivegreen4" "darkorange" [91] "darkorange1" "darkorange2" [93] "darkorange3" "darkorange4" [95] "darkorchid" "darkorchid1" [97] "darkorchid2" "darkorchid3" [99] "darkorchid4" "darkred" [101] "darksalmon" "darkseagreen" [103] "darkseagreen1" "darkseagreen2" [105] "darkseagreen3" "darkseagreen4" [107] "darkslateblue" "darkslategray" [109] "darkslategray1" "darkslategray2" [111] "darkslategray3" "darkslategray4" [113] "darkslategrey" "darkturquoise" [115] "darkviolet" "deeppink" [117] "deeppink1" "deeppink2" [119] "deeppink3" "deeppink4" [121] "deepskyblue" "deepskyblue1" [123] "deepskyblue2" "deepskyblue3" [125] "deepskyblue4" "dimgray" [127] "dimgrey" "dodgerblue" [129] "dodgerblue1" "dodgerblue2" [131] "dodgerblue3" "dodgerblue4" [133] "firebrick" "firebrick1" [135] "firebrick2" "firebrick3" [137] "firebrick4" "floralwhite" [139] "forestgreen" "gainsboro" [141] "ghostwhite" "gold" [143] "gold1" "gold2" [145] "gold3" "gold4" [147] "goldenrod" "goldenrod1" [149] "goldenrod2" "goldenrod3" [151] "goldenrod4" "gray" [153] "gray0" "gray1" [155] "gray2" "gray3" [157] "gray4" "gray5" [159] "gray6" "gray7" [161] "gray8" "gray9" [163] "gray10" "gray11" [165] "gray12" "gray13" [167] "gray14" "gray15" [169] "gray16" "gray17" [171] "gray18" "gray19" [173] "gray20" "gray21" [175] "gray22" "gray23" [177] "gray24" "gray25" [179] "gray26" "gray27" [181] "gray28" "gray29" [183] "gray30" "gray31" [185] "gray32" "gray33" [187] "gray34" "gray35" [189] "gray36" "gray37" [191] "gray38" "gray39" [193] "gray40" "gray41" [195] "gray42" "gray43" [197] "gray44" "gray45" [199] "gray46" "gray47" [201] "gray48" "gray49" [203] "gray50" "gray51" [205] "gray52" "gray53" [207] "gray54" "gray55" [209] "gray56" "gray57" [211] "gray58" "gray59" [213] "gray60" "gray61" [215] "gray62" "gray63" [217] "gray64" "gray65" [219] "gray66" "gray67" [221] "gray68" "gray69" [223] "gray70" "gray71" [225] "gray72" "gray73" [227] "gray74" "gray75" [229] "gray76" "gray77" [231] "gray78" "gray79" [233] "gray80" "gray81" [235] "gray82" "gray83" [237] "gray84" "gray85" [239] "gray86" "gray87" [241] "gray88" "gray89" [243] "gray90" "gray91" [245] "gray92" "gray93" [247] "gray94" "gray95" [249] "gray96" "gray97" [251] "gray98" "gray99" [253] "gray100" "green" [255] "green1" "green2" [257] "green3" "green4" [259] "greenyellow" "grey" [261] "grey0" "grey1" [263] "grey2" "grey3" [265] "grey4" "grey5" [267] "grey6" "grey7" [269] "grey8" "grey9" [271] "grey10" "grey11" [273] "grey12" "grey13" [275] "grey14" "grey15" [277] "grey16" "grey17" [279] "grey18" "grey19" [281] "grey20" "grey21" [283] "grey22" "grey23" [285] "grey24" "grey25" [287] "grey26" "grey27" [289] "grey28" "grey29" [291] "grey30" "grey31" [293] "grey32" "grey33" [295] "grey34" "grey35" [297] "grey36" "grey37" [299] "grey38" "grey39" [301] "grey40" "grey41" [303] "grey42" "grey43" [305] "grey44" "grey45" [307] "grey46" "grey47" [309] "grey48" "grey49" [311] "grey50" "grey51" [313] "grey52" "grey53" [315] "grey54" "grey55" [317] "grey56" "grey57" [319] "grey58" "grey59" [321] "grey60" "grey61" [323] "grey62" "grey63" [325] "grey64" "grey65" [327] "grey66" "grey67" [329] "grey68" "grey69" [331] "grey70" "grey71" [333] "grey72" "grey73" [335] "grey74" "grey75" [337] "grey76" "grey77" [339] "grey78" "grey79" [341] "grey80" "grey81" [343] "grey82" "grey83" [345] "grey84" "grey85" [347] "grey86" "grey87" [349] "grey88" "grey89" [351] "grey90" "grey91" [353] "grey92" "grey93" [355] "grey94" "grey95" [357] "grey96" "grey97" [359] "grey98" "grey99" [361] "grey100" "honeydew" [363] "honeydew1" "honeydew2" [365] "honeydew3" "honeydew4" [367] "hotpink" "hotpink1" [369] "hotpink2" "hotpink3" [371] "hotpink4" "indianred" [373] "indianred1" "indianred2" [375] "indianred3" "indianred4" [377] "ivory" "ivory1" [379] "ivory2" "ivory3" [381] "ivory4" "khaki" [383] "khaki1" "khaki2" [385] "khaki3" "khaki4" [387] "lavender" "lavenderblush" [389] "lavenderblush1" "lavenderblush2" [391] "lavenderblush3" "lavenderblush4" [393] "lawngreen" "lemonchiffon" [395] "lemonchiffon1" "lemonchiffon2" [397] "lemonchiffon3" "lemonchiffon4" [399] "lightblue" "lightblue1" [401] "lightblue2" "lightblue3" [403] "lightblue4" "lightcoral" [405] "lightcyan" "lightcyan1" [407] "lightcyan2" "lightcyan3" [409] "lightcyan4" "lightgoldenrod" [411] "lightgoldenrod1" "lightgoldenrod2" [413] "lightgoldenrod3" "lightgoldenrod4" [415] "lightgoldenrodyellow" "lightgray" [417] "lightgreen" "lightgrey" [419] "lightpink" "lightpink1" [421] "lightpink2" "lightpink3" [423] "lightpink4" "lightsalmon" [425] "lightsalmon1" "lightsalmon2" [427] "lightsalmon3" "lightsalmon4" [429] "lightseagreen" "lightskyblue" [431] "lightskyblue1" "lightskyblue2" [433] "lightskyblue3" "lightskyblue4" [435] "lightslateblue" "lightslategray" [437] "lightslategrey" "lightsteelblue" [439] "lightsteelblue1" "lightsteelblue2" [441] "lightsteelblue3" "lightsteelblue4" [443] "lightyellow" "lightyellow1" [445] "lightyellow2" "lightyellow3" [447] "lightyellow4" "limegreen" [449] "linen" "magenta" [451] "magenta1" "magenta2" [453] "magenta3" "magenta4" [455] "maroon" "maroon1" [457] "maroon2" "maroon3" [459] "maroon4" "mediumaquamarine" [461] "mediumblue" "mediumorchid" [463] "mediumorchid1" "mediumorchid2" [465] "mediumorchid3" "mediumorchid4" [467] "mediumpurple" "mediumpurple1" [469] "mediumpurple2" "mediumpurple3" [471] "mediumpurple4" "mediumseagreen" [473] "mediumslateblue" "mediumspringgreen" [475] "mediumturquoise" "mediumvioletred" [477] "midnightblue" "mintcream" [479] "mistyrose" "mistyrose1" [481] "mistyrose2" "mistyrose3" [483] "mistyrose4" "moccasin" [485] "navajowhite" "navajowhite1" [487] "navajowhite2" "navajowhite3" [489] "navajowhite4" "navy" [491] "navyblue" "oldlace" [493] "olivedrab" "olivedrab1" [495] "olivedrab2" "olivedrab3" [497] "olivedrab4" "orange" [499] "orange1" "orange2" [501] "orange3" "orange4" [503] "orangered" "orangered1" [505] "orangered2" "orangered3" [507] "orangered4" "orchid" [509] "orchid1" "orchid2" [511] "orchid3" "orchid4" [513] "palegoldenrod" "palegreen" [515] "palegreen1" "palegreen2" [517] "palegreen3" "palegreen4" [519] "paleturquoise" "paleturquoise1" [521] "paleturquoise2" "paleturquoise3" [523] "paleturquoise4" "palevioletred" [525] "palevioletred1" "palevioletred2" [527] "palevioletred3" "palevioletred4" [529] "papayawhip" "peachpuff" [531] "peachpuff1" "peachpuff2" [533] "peachpuff3" "peachpuff4" [535] "peru" "pink" [537] "pink1" "pink2" [539] "pink3" "pink4" [541] "plum" "plum1" [543] "plum2" "plum3" [545] "plum4" "powderblue" [547] "purple" "purple1" [549] "purple2" "purple3" [551] "purple4" "red" [553] "red1" "red2" [555] "red3" "red4" [557] "rosybrown" "rosybrown1" [559] "rosybrown2" "rosybrown3" [561] "rosybrown4" "royalblue" [563] "royalblue1" "royalblue2" [565] "royalblue3" "royalblue4" [567] "saddlebrown" "salmon" [569] "salmon1" "salmon2" [571] "salmon3" "salmon4" [573] "sandybrown" "seagreen" [575] "seagreen1" "seagreen2" [577] "seagreen3" "seagreen4" [579] "seashell" "seashell1" [581] "seashell2" "seashell3" [583] "seashell4" "sienna" [585] "sienna1" "sienna2" [587] "sienna3" "sienna4" [589] "skyblue" "skyblue1" [591] "skyblue2" "skyblue3" [593] "skyblue4" "slateblue" [595] "slateblue1" "slateblue2" [597] "slateblue3" "slateblue4" [599] "slategray" "slategray1" [601] "slategray2" "slategray3" [603] "slategray4" "slategrey" [605] "snow" "snow1" [607] "snow2" "snow3" [609] "snow4" "springgreen" [611] "springgreen1" "springgreen2" [613] "springgreen3" "springgreen4" [615] "steelblue" "steelblue1" [617] "steelblue2" "steelblue3" [619] "steelblue4" "tan" [621] "tan1" "tan2" [623] "tan3" "tan4" [625] "thistle" "thistle1" [627] "thistle2" "thistle3" [629] "thistle4" "tomato" [631] "tomato1" "tomato2" [633] "tomato3" "tomato4" [635] "turquoise" "turquoise1" [637] "turquoise2" "turquoise3" [639] "turquoise4" "violet" [641] "violetred" "violetred1" [643] "violetred2" "violetred3" [645] "violetred4" "wheat" [647] "wheat1" "wheat2" [649] "wheat3" "wheat4" [651] "whitesmoke" "yellow" [653] "yellow1" "yellow2" [655] "yellow3" "yellow4" [657] "yellowgreen" > plot(xkoord,ykoord,col=3) > plot(1:12,1:12,col=1:12) > plot(xkoord,ykoord,col=halmaz) > plot(xkoord,ykoord,pch="+") > plot(xkoord,ykoord,pch=4) > plot(1:12,1:12,pch=1:12) > plot(xkoord,ykoord,pch=halmaz) Error in plot.xy(xy, type, ...) : invalid plotting symbol > plot(xkoord,ykoord,pch=halmaz+2) Warning message: In Ops.factor(halmaz, 2) : â+â not meaningful for factors > plot(xkoord,ykoord,pch=as.numeric(halmaz)) > plot(xkoord,ykoord,pch=as.numeric(halmaz),col=halmaz) > pontok xkoord ykoord halmaz tav 1 0.1829699 0.3702491 2 0.4129920 2 0.3649382 -0.7408059 1 0.8258167 3 -0.2073121 -0.6979016 2 0.7280419 4 -1.7441663 -0.4389299 2 1.7985482 5 1.3119190 1.7016581 1 2.1486674 6 0.9769963 1.6276354 1 1.8983463 7 0.6187861 0.6406041 2 0.8906569 8 0.2507825 -1.3344828 2 1.3578425 9 1.6436978 -0.9704997 2 1.9088248 10 -0.8417565 -0.3048665 2 0.8952640 > pontok[12,] <- list(rnorm(1),rnorm(1),2) > pontok xkoord ykoord halmaz tav 1 0.1829699 0.3702491 2 0.4129920 2 0.3649382 -0.7408059 1 0.8258167 3 -0.2073121 -0.6979016 2 0.7280419 4 -1.7441663 -0.4389299 2 1.7985482 5 1.3119190 1.7016581 1 2.1486674 6 0.9769963 1.6276354 1 1.8983463 7 0.6187861 0.6406041 2 0.8906569 8 0.2507825 -1.3344828 2 1.3578425 9 1.6436978 -0.9704997 2 1.9088248 10 -0.8417565 -0.3048665 2 0.8952640 11 NA NA <NA> NA 12 0.1595688 1.8862897 2 0.1595688 > pontok[14,] <- 1 > pontok xkoord ykoord halmaz tav 1 0.1829699 0.3702491 2 0.4129920 2 0.3649382 -0.7408059 1 0.8258167 3 -0.2073121 -0.6979016 2 0.7280419 4 -1.7441663 -0.4389299 2 1.7985482 5 1.3119190 1.7016581 1 2.1486674 6 0.9769963 1.6276354 1 1.8983463 7 0.6187861 0.6406041 2 0.8906569 8 0.2507825 -1.3344828 2 1.3578425 9 1.6436978 -0.9704997 2 1.9088248 10 -0.8417565 -0.3048665 2 0.8952640 11 NA NA <NA> NA 12 0.1595688 1.8862897 2 0.1595688 13 NA NA <NA> NA 14 1.0000000 1.0000000 1 1.0000000 > pontok[6] <- pontok$xkoord Error in `[<-.data.frame`(`*tmp*`, 6, value = c(0.182969913021711, 0.364938174325596, : new columns would leave holes after existing columns > x <- 3 > y <- 4 > x+y [1] 7 > save.image("C:\\Users\\aa002221\\Documents\\R\\elso\\.RData") >