1 Start R

e run GUI
e change working directory on GUI

— quicklaunch icon>preferences>start in, type path there
— R console>file/change dir

e alternative, 2-in-1 on command prompt: go into work dir and give
command “R”

e help facilities

— start them all from typing on R console:
— help.start() — HTML help
— help(keyword), ?7keyword, help.search(keyword) — sometimes needs

to be enclosed in 7 7 (double quotes)

e have separate subfolders for sessions/projects!! as data and history will
be saved in unnamed .Rdata and .Rhistory files — all work objects are
saved!

e reusable code can be saved into .R script files, run them with GUI or
source(“filename.R”)

e R console...

— in editor, you can use arrow keys, up and down to browse previous
commands, left and right to go back and edit (can’t highlight and
replace but can delete and insert characters)

— .Last.value variable stores last output

— calculation only prints output, assignment saves but doesn’t print(!)
e packages

— list installed packages with library/()
— access help with ?package.name

— load package with library(package.name) (attach to search path)

e open previous workspace: file>load workspace and find the .Rdata file;
or open the .Rdata file directly from Windows — makes available the
objects and command history with arrows (will not print console log)

e console log must be saved separately with file>save to file

2 Data

structures

2.1 Symbols, operators

e objects

— in R’s head, everything is an object — variables, user defined func-
tions, etc.

— many functions, analysis etc. give back complex objects, and we
can get data out of them with more functions

— good practice: do not overclutter the workspace, as all objects are
kept in memory, as well as saved in save files!

— object attributes

ES

ES

ES

x

mode(): data type, character, number, logical, etc.
length(): length

attributes(): all other attributes

logical function to check mode: is.character()
coercing into given mode: as.character()

change given attribute attr(object,attribute name)=

class: goes beyond mode, allows for object oriented program-
ming, specific printing functions for different object types,
etc.

temporarily remove class with unclass()

Is() or objects() lists current objects

delete and free up memory with rm() or remove(), list object
names to remove in argument

e special symbols

— comment: # — can be used almost anywhere, effect till end of line

— () is used for function arguments

— []or [[]] is used for accessing elements of vectors, matrices etc.
— several commands in one line separated by ;
— grouping with {}

— accessing a named element/component with $
e variable and function names

— can contain a-zA-Z0-9._ (dot and undesrscore)
— function names have . where most languages would have _ !

— R is case sensitivel!
e assignment of value

— X <- expr
— expr -> X
— x = expr (not common!)
e possible values
— numbers — integer, double (=double precision floating point), com-
plex (e.g. 2-3i)

— characters and character vectors (“strings”) — C type strings, 0
terminated, has \n, \t, etc.

— logical types: TRUE, FALSE, NA (not available, missing data),
NaN (not a number, e.g. 0/0 = 77)

e logical relational operators

— <, >, <=, >= as usual
— !=not equal, == is it equal
— %in% is it in the set

— is.na() is it NA — TRUE for both NA and NaN — always use this
for checking NA values!! == gives silly answers

— is.nan() — only TRUE for NaN

3

e operators on logical expressions

— & and, — or, | negation, xor(), and use ()’s to group — all binary!

— of longer vectors, use any() and all() instead of — and &

2.2 Vectors

e most basic and common

e a variable is a 1-element vector too

e all elements of same type — numbers may be coerced into characters
e for different types, need lists — see later

e create vector

— with concatenation function c(), e.g. ¢(2,5,3,-2)
— algebraic series with seq()

* 4 arguments, but only 3 needed
% from: from=; or unnamed at pos 1

* to: to=, or unnamed at pos 2

*

stepsize: by=

*

length, total number of elements: len= or length=
— : syntax — e.g. 2:5 = all numbers from 2 to 5, shorthand for
seq(2,5,by=1) — has high precedence in order of operations

e how operators work on vectors

— operators and functions are always applied elementwise!
— vectors of different length are allowed, the shorter will be recycled
as many times as needed

e maths operators

— +, -, *, / as usual (division gives floating point numbers)

— power: ~ or **

— div, whole division % /%

— mod, remainder %%
— has some built-in functions, such as
* elemtwise: sqrt(), sin(), cos(), tan(), log(), exp(), abs()
x “scalars”: min, max
* range=c(min,max)
* pmin, pmax: select min and max of each vector separately for
several inputs

* scalars: sum, prod, mean, var (adjusted empirical variance!),
length

e sort vector with sort()
e access and replace elements

— access with [] by index, or by name if it’s defined
— replace with vector[index] =

— can be used to add new elements too (missing in between indices
are filled with NA)

— access several elements with : or ¢()

— ¢(), or external index vector can be used to take elements out
of order as well, possibly with repetition, possibly resulting in a
longer vector than original etc.

— take everything but given elements with - : or -c()

— that’s what we use for “removal” as well (no specific function to
remove) and save as new variable/replace old

— or manually set length() shorter to cut off the end of the vector
— can also select elements by logical condition(s) with vector[(condition)]

— can select elements with sticking a logical vector in [| as well —
logical vector will be repeated as many times as needed

e combine and repeat vectors

— concatenation with c()
— rep(vector,times=2) — concatenate with itself 2 times
— rep(vector,each=2) — repeat elementwise 2 times

— paste(stringl, string2, sep=) — more or less outer product of the
character vectors; default separator is space

2.2.1 Factors

e a factor represents a categoric variable, that is, a finite selection of
values are allowed and it’s meant for grouping rather than calculations

e a factor can be ordered or unordered — e.g. grades would be ordered,
but counties would not

e order is given by sorting, e.g. increasing numbers of alphabetical order
of strings

e convert a variable into a factor with factor() — handled differently in-
ternally, printed differently, etc.

e levels() queries the created categories/possible values of the factor

e factors and tapply(data,factor,function) allow us to split data according
to categories and make calculations

— assuming data and factor are vectors of the same length and the
same index pairs are data records

— tapply splits the data into subvectors according to factor and then
applies function to each subvector

— usage example: data contains height of students, factor contains
their sex (in the same order), and we want to calculate average
height of boys and girls separetely

— the combination of data + factor here can be thought of as a

ragged array: categories may be of different size

e create ordered factor of a vector with the function ordered() — in case
a natural ordering exists, e.g. numerical grades

e cut continuous data into categories

— cut(data,breaks), where

— either breaks=integer to determine how many categories should
be created

— or breaks=vector that contains the cut points

— optional argument: ordered result=TRUE, make the result an or-
dered factor

— automatic labels with the resulting intervals
e frequency table: table(factor)
e can be used for two- or more-way frequencies by passing more factor
arguments
2.2.2 Array, matrix

e similar to vectors, elements of same mode, but may have multiple in-
dices ~ multiple dimensions, matrix is specifically 2-dim, array can be
higher dimensional

e coerce/convert a vector into e.g. an nxm matrix by defining its dimen-
sions: dim(v) = ¢(n,m) — v must have exactly nm elements!

e default: filled by columns(!) — matrix can have byrow=TRUE argu-
ment to fill by row

e create them: matrix(data,nrow,ncol), array(data,dim) — data is vector
(will be repeated if necessary)

e clements can be accessed with multiple indeces: v[i,j] (i<n, j<m)

e omitted index means “take all”, get entire rows and columns with v/[i,]
and v[]]

e we can use ¢() or : to select multiple rows/columns — result is an array
of all intersections of selected rows and columns

e single index (or ¢() or :) returns values of the underlying vector

e for a 2-dim array, a 2-column index array can be used for indexing: each
row is taken as the i,j coordinates of an element, and thus a vector of
elements can be queried or overwritten

e matrix operations

— size: nrow(), ncol()

— matrix multiplication %*% — works for matrix times vector as well

* for vector %*% vector, it’s ambiguous! usually taken to be
inner product; one vector can be forced to column or row
with cbind() or rbind(); but crossprod() and outer() is recom-
mended

— transpose t()

— crossprod(x,y) = t(x) %*% y, but more efficient; crossprod(x) =
crossprod(x,x)

— diag(matrix) = vector of diagonal entries; diag(vector) = generate
diagonal matrix with values of vector; diag(n) where n is number:
nxn identity matrix (!)

— solve(A,b): calculates solution x of Ax=b LEQ); solve(A) calcu-
lates inverse of A (!) — but it’s counterrecommended, inefficient

— eigenvalues: eigen(matrix), contains named variables “values” and
“vectors” in a list — get named components with $, e.g. ev =
eigen(A); evalues = ev$values

— determinant: det()
— singular value decomposition svd(A), gives a named list of “u”,
(Cd?? and “V”

e array arithmetic

— default for the basic operators: element by element operations(!!)
— outer product: A %0% B, outer(A,B,”*”), more generally outer(A,B,function)

— generalized transpose: for array, aperm(array,permutation) shuf-
fles the dimensions according to permutation (which must be per-
mutation of number of dimensions)

e concatenate matrices and arrays

— chind(arrl,arr2) concatenates them as consisting of column vec-
tors, side by side — they must have same number of rows

— rbind() analogously with row vectors

— ¢() strips back data into vector form to concatenate!

3

3.1

3.2

List, data frame

List

list: vector-like object, but elements need not be of same mode, and
they may be named (think Python dictionary)

elements can always be referred to by number
elements may even be lists — recursive type

create list with list(namel=element1,unnamed element,...) (similar to
c() except for the names)

refer to single elements (only the dictionary value!) by list[[index]] or
list[[’name”]] or list$name — in list[[’name”]] syntax, "name” can be
read from a character vector

the [] syntax also works, but with different effect — e.g. brings the
elements name (dictionary key) with it

if an element is a list/vector/array, add another [index| to access its
sub-elements

names(list) is an overwritable attribute of the list containing the ele-
ment names

concatenate lists with c(), result is list again

Data frame

data frame (mode data.frame) is a crossover between matrix and list

well suited to record experiment data, measurement/data type per col-
umn and experiement per row

its columns are vectors, aka must be the same type (may contain NAs),
and they may be named

rows may be named, by default indexed by positive integers

data frames are built column by column, data sources may be:

vectors, factors

matrices

other data frames

lists — of named vectors/factors

can use several, but sizes must match (vector/factor lengths and
nomber of rows in matrixes)

maximal information is inherited (e.g. column names from source
data frame)

create with data.frame(list of sources,name=vector,...)

optional argument for naming rows: row.names=

default NULL, rows are automatically numbered
single column index or column name to take row names from

vector of numbers or character vectors to use

e coerce another structure into data frame with as.data.frame()

little namespace trickery

having to type my.data.frame$column.name gets tedious

attach(”my.data.frame”) adds my.data.frame to the search path
of looking for variables — aka it’s enough to type column.name to
read the variable (for writing, we still need $!)

detach(”my.data.frame”) removes it from the search path to “hide”
the variables/columns again

can also attach lists to make named components visible
check search path with search()
detach() works with position number as well

Is(position number) lists variable names in the given namespace

e accessing elements and modifying data frames

access columns with my.data.frame$column.name or with index

access rows with my.data.frame|index,|

10

— access single elements with double index — can use index or row/column
name too

— can always add new column with my.data.frame$new.column.name

— can redefine column with same syntax, e.g. turn vector into factor
— add new rows:

+ my.data.frame[index,] or my.data.frame[”row.name” | = list(...)

*

the comma is important, as a single index number will give
back column instead of row!

% if existing index or "row.name” is given, the row is overwritten
O

x if “row.name” is new, attached at the bottom

« if index is well out of range, extra rows with NAvalues are
created

— graphically edit data frame like a spreadsheet with fix(my.data.frame)
or edit(my.data.frame) — can modify values, add columns, add
rows, etc. — difference: fix edits the original, while edit doesn’t
change the original, just returns a modified copy

— remove rows or columns: use indexing seen before at vectors/lists
to select parts of the data frame, which can be saved as new data
frame (or overwrite the old)

e external sources of data
— read data from (suitably formatted) external file into a data frame

with read.table(”source.data”)

* assuming a data frame format in the source file as well: first
row is column headers, first element missing, other rows have
row name as first element

% otherwise with optional argument header=TRUE just assume
no row names but first row contains column headers

— many datasets come with R itself, as predefined data frame ob-
jects!

— data() command lists all available

11

— 7name.of.dataset opens online help with explanation of sample
size, variables and interpretation

— or use fix()/edit() to take a look
— even more datasets available from other R packages

* load with data(dataset.name, package="package.name”)

« or load/attach package with libary(package.name), then its
dataset(s) become available

12

