
1 Start R

� run GUI

� change working directory on GUI

– quicklaunch icon>preferences>start in, type path there

– R console>file/change dir

� alternative, 2-in-1 on command prompt: go into work dir and give
command “R”

� help facilities

– start them all from typing on R console:

– help.start() – HTML help

– help(keyword), ??keyword, help.search(keyword) – sometimes needs
to be enclosed in ” ” (double quotes)

� have separate subfolders for sessions/projects!! as data and history will
be saved in unnamed .Rdata and .Rhistory files – all work objects are
saved!

� reusable code can be saved into .R script files, run them with GUI or
source(“filename.R”)

� R console...

– in editor, you can use arrow keys, up and down to browse previous
commands, left and right to go back and edit (can’t highlight and
replace but can delete and insert characters)

– .Last.value variable stores last output

– calculation only prints output, assignment saves but doesn’t print(!)

� packages

– list installed packages with library()

– access help with ?package.name

– load package with library(package.name) (attach to search path)

1

� open previous workspace: file>load workspace and find the .Rdata file;
or open the .Rdata file directly from Windows – makes available the
objects and command history with arrows (will not print console log)

� console log must be saved separately with file>save to file

2 Data structures

2.1 Symbols, operators

� objects

– in R’s head, everything is an object – variables, user defined func-
tions, etc.

– many functions, analysis etc. give back complex objects, and we
can get data out of them with more functions

– good practice: do not overclutter the workspace, as all objects are
kept in memory, as well as saved in save files!

– object attributes

* mode(): data type, character, number, logical, etc.

* length(): length

* attributes(): all other attributes

* logical function to check mode: is.character()

* coercing into given mode: as.character()

* change given attribute attr(object,attribute name)=

* class: goes beyond mode, allows for object oriented program-
ming, specific printing functions for different object types,
etc.

* temporarily remove class with unclass()

* ls() or objects() lists current objects

* delete and free up memory with rm() or remove(), list object
names to remove in argument

� special symbols

– comment: # – can be used almost anywhere, effect till end of line

2

– () is used for function arguments

– [] or [[]] is used for accessing elements of vectors, matrices etc.

– several commands in one line separated by ;

– grouping with {}
– accessing a named element/component with $

� variable and function names

– can contain a-zA-Z0-9. (dot and undesrscore)

– function names have . where most languages would have !

– R is case sensitive!

� assignment of value

– x <- expr

– expr -> x

– x = expr (not common!)

� possible values

– numbers – integer, double (=double precision floating point), com-
plex (e.g. 2-3i)

– characters and character vectors (“strings”) – C type strings, 0
terminated, has \n, \t, etc.

– logical types: TRUE, FALSE, NA (not available, missing data),
NaN (not a number, e.g. 0/0 = ??)

� logical relational operators

– <, >, <=, >= as usual

– != not equal, == is it equal

– %in% is it in the set

– is.na() is it NA – TRUE for both NA and NaN – always use this
for checking NA values!! == gives silly answers

– is.nan() – only TRUE for NaN

3

� operators on logical expressions

– & and, — or, ! negation, xor(), and use ()’s to group – all binary!

– of longer vectors, use any() and all() instead of — and &

2.2 Vectors

� most basic and common

� a variable is a 1-element vector too

� all elements of same type – numbers may be coerced into characters

� for different types, need lists – see later

� create vector

– with concatenation function c(), e.g. c(2,5,3,-2)

– algebraic series with seq()

* 4 arguments, but only 3 needed

* from: from=, or unnamed at pos 1

* to: to=, or unnamed at pos 2

* stepsize: by=

* length, total number of elements: len= or length=

– : syntax – e.g. 2:5 = all numbers from 2 to 5, shorthand for
seq(2,5,by=1) – has high precedence in order of operations

� how operators work on vectors

– operators and functions are always applied elementwise!

– vectors of different length are allowed, the shorter will be recycled
as many times as needed

� maths operators

– +, -, *, / as usual (division gives floating point numbers)

– power: ˆ or **

– div, whole division %/%

4

– mod, remainder %%

– has some built-in functions, such as

* elemtwise: sqrt(), sin(), cos(), tan(), log(), exp(), abs()

* “scalars”: min, max

* range=c(min,max)

* pmin, pmax: select min and max of each vector separately for
several inputs

* scalars: sum, prod, mean, var (adjusted empirical variance!),
length

� sort vector with sort()

� access and replace elements

– access with [] by index, or by name if it’s defined

– replace with vector[index] =

– can be used to add new elements too (missing in between indices
are filled with NA)

– access several elements with : or c()

– c(), or external index vector can be used to take elements out
of order as well, possibly with repetition, possibly resulting in a
longer vector than original etc.

– take everything but given elements with - : or -c()

– that’s what we use for “removal” as well (no specific function to
remove) and save as new variable/replace old

– or manually set length() shorter to cut off the end of the vector

– can also select elements by logical condition(s) with vector[(condition)]

– can select elements with sticking a logical vector in [] as well –
logical vector will be repeated as many times as needed

� combine and repeat vectors

– concatenation with c()

– rep(vector,times=2) – concatenate with itself 2 times

– rep(vector,each=2) – repeat elementwise 2 times

– paste(string1, string2, sep=) – more or less outer product of the
character vectors; default separator is space

5

2.2.1 Factors

� a factor represents a categoric variable, that is, a finite selection of
values are allowed and it’s meant for grouping rather than calculations

� a factor can be ordered or unordered – e.g. grades would be ordered,
but counties would not

� order is given by sorting, e.g. increasing numbers of alphabetical order
of strings

� convert a variable into a factor with factor() – handled differently in-
ternally, printed differently, etc.

� levels() queries the created categories/possible values of the factor

� factors and tapply(data,factor,function) allow us to split data according
to categories and make calculations

– assuming data and factor are vectors of the same length and the
same index pairs are data records

– tapply splits the data into subvectors according to factor and then
applies function to each subvector

– usage example: data contains height of students, factor contains
their sex (in the same order), and we want to calculate average
height of boys and girls separetely

– the combination of data + factor here can be thought of as a
ragged array: categories may be of different size

� create ordered factor of a vector with the function ordered() – in case
a natural ordering exists, e.g. numerical grades

� cut continuous data into categories

– cut(data,breaks), where

– either breaks=integer to determine how many categories should
be created

– or breaks=vector that contains the cut points

– optional argument: ordered result=TRUE, make the result an or-
dered factor

6

– automatic labels with the resulting intervals

� frequency table: table(factor)

� can be used for two- or more-way frequencies by passing more factor
arguments

2.2.2 Array, matrix

� similar to vectors, elements of same mode, but may have multiple in-
dices ∼ multiple dimensions, matrix is specifically 2-dim, array can be
higher dimensional

� coerce/convert a vector into e.g. an n×m matrix by defining its dimen-
sions: dim(v) = c(n,m) – v must have exactly nm elements!

� default: filled by columns(!) – matrix can have byrow=TRUE argu-
ment to fill by row

� create them: matrix(data,nrow,ncol), array(data,dim) – data is vector
(will be repeated if necessary)

� elements can be accessed with multiple indeces: v[i,j] (i≤n, j≤m)

� omitted index means “take all”, get entire rows and columns with v[i,]
and v[,j]

� we can use c() or : to select multiple rows/columns – result is an array
of all intersections of selected rows and columns

� single index (or c() or :) returns values of the underlying vector

� for a 2-dim array, a 2-column index array can be used for indexing: each
row is taken as the i,j coordinates of an element, and thus a vector of
elements can be queried or overwritten

� matrix operations

– size: nrow(), ncol()

– matrix multiplication %*% – works for matrix times vector as well

7

* for vector %*% vector, it’s ambiguous! usually taken to be
inner product; one vector can be forced to column or row
with cbind() or rbind(); but crossprod() and outer() is recom-
mended

– transpose t()

– crossprod(x,y) = t(x) %*% y, but more efficient; crossprod(x) =
crossprod(x,x)

– diag(matrix) = vector of diagonal entries; diag(vector) = generate
diagonal matrix with values of vector; diag(n) where n is number:
n×n identity matrix (!)

– solve(A,b): calculates solution x of Ax=b LEQ; solve(A) calcu-
lates inverse of A (!) – but it’s counterrecommended, inefficient

– eigenvalues: eigen(matrix), contains named variables “values” and
“vectors” in a list – get named components with $, e.g. ev =
eigen(A); evalues = ev$values

– determinant: det()

– singular value decomposition svd(A), gives a named list of “u”,
“d” and “v”

� array arithmetic

– default for the basic operators: element by element operations(!!)

– outer product: A %o% B, outer(A,B,”*”), more generally outer(A,B,function)

– generalized transpose: for array, aperm(array,permutation) shuf-
fles the dimensions according to permutation (which must be per-
mutation of number of dimensions)

� concatenate matrices and arrays

– cbind(arr1,arr2) concatenates them as consisting of column vec-
tors, side by side – they must have same number of rows

– rbind() analogously with row vectors

– c() strips back data into vector form to concatenate!

8

3 List, data frame

3.1 List

� list: vector-like object, but elements need not be of same mode, and
they may be named (think Python dictionary)

� elements can always be referred to by number

� elements may even be lists – recursive type

� create list with list(name1=element1,unnamed element,...) (similar to
c() except for the names)

� refer to single elements (only the dictionary value!) by list[[index]] or
list[[”name”]] or list$name – in list[[”name”]] syntax, ”name” can be
read from a character vector

� the [] syntax also works, but with different effect – e.g. brings the
elements name (dictionary key) with it

� if an element is a list/vector/array, add another [index] to access its
sub-elements

� names(list) is an overwritable attribute of the list containing the ele-
ment names

� concatenate lists with c(), result is list again

3.2 Data frame

� data frame (mode data.frame) is a crossover between matrix and list

� well suited to record experiment data, measurement/data type per col-
umn and experiement per row

� its columns are vectors, aka must be the same type (may contain NAs),
and they may be named

� rows may be named, by default indexed by positive integers

� data frames are built column by column, data sources may be:

9

– vectors, factors

– matrices

– other data frames

– lists – of named vectors/factors

– can use several, but sizes must match (vector/factor lengths and
nomber of rows in matrixes)

– maximal information is inherited (e.g. column names from source
data frame)

� create with data.frame(list of sources,name=vector,...)

� optional argument for naming rows: row.names=

– default NULL, rows are automatically numbered

– single column index or column name to take row names from

– vector of numbers or character vectors to use

� coerce another structure into data frame with as.data.frame()

� little namespace trickery

– having to type my.data.frame$column.name gets tedious

– attach(”my.data.frame”) adds my.data.frame to the search path
of looking for variables – aka it’s enough to type column.name to
read the variable (for writing, we still need $!)

– detach(”my.data.frame”) removes it from the search path to “hide”
the variables/columns again

– can also attach lists to make named components visible

– check search path with search()

– detach() works with position number as well

– ls(position number) lists variable names in the given namespace

� accessing elements and modifying data frames

– access columns with my.data.frame$column.name or with index

– access rows with my.data.frame[index,]

10

– access single elements with double index – can use index or row/column
name too

– can always add new column with my.data.frame$new.column.name
=

– can redefine column with same syntax, e.g. turn vector into factor

– add new rows:

* my.data.frame[index,] or my.data.frame[”row.name”,] = list(...)

* the comma is important, as a single index number will give
back column instead of row!

* if existing index or ”row.name” is given, the row is overwritten
(!)

* if ”row.name” is new, attached at the bottom

* if index is well out of range, extra rows with NAvalues are
created

– graphically edit data frame like a spreadsheet with fix(my.data.frame)
or edit(my.data.frame) – can modify values, add columns, add
rows, etc. – difference: fix edits the original, while edit doesn’t
change the original, just returns a modified copy

– remove rows or columns: use indexing seen before at vectors/lists
to select parts of the data frame, which can be saved as new data
frame (or overwrite the old)

� external sources of data

– read data from (suitably formatted) external file into a data frame
with read.table(”source.data”)

* assuming a data frame format in the source file as well: first
row is column headers, first element missing, other rows have
row name as first element

* otherwise with optional argument header=TRUE just assume
no row names but first row contains column headers

– many datasets come with R itself, as predefined data frame ob-
jects!

– data() command lists all available

11

– ?name.of.dataset opens online help with explanation of sample
size, variables and interpretation

– or use fix()/edit() to take a look

– even more datasets available from other R packages

* load with data(dataset.name, package=”package.name”)

* or load/attach package with libary(package.name), then its
dataset(s) become available

12

