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1 Introduction, mathematics

Definition 1.1 (The greatest integer (floor) function). The greatest integer function assigns an integer
k to every real number x, that is the greatest of all integers not greater than x. In other words, k the
closest integer that isn’t greater than x. Formally:

⌊x⌋ = max{k ∈ Z | k ≤ x}, (1)

in other words, k is the unique integer such that k ≤ x < k + 1.
It is also known as the integer part or integral part function, denoted by [x].
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Definition 1.2 (The least integer (ceil) function). The least integer function assigns an integer k to
every real number x, that is the smallest of all integers not smaller than x. In other words, k the
closest integer that isn’t smaller than x. Formally:

⌈x⌉ = min{k ∈ Z | k ≥ x}, (2)

in other words, k is the unique integer such that k − 1 < x ≤ k.

Definition 1.3 (The rounding function). The rounding function assigns the closest integer k to every
real number x. If the closest integer is not unique (when the decimal part of the fraction is .5), the
greater neighbor is chosen. Formally:

Round(x) =

⌈
x+

1

2

⌉
(3)

Definition 1.4 (The fraction function or fractional part function). To every real number x, the
fraction function assigns a real number {x}, which shows how much x is greater than its integer part.
Formally,

{x} = x− ⌊x⌋. (4)

The fractional part always satisfies 0 ≤ {x} < 1.

Definition 1.5 (Whole quotient, div operation). Let a and b be integers. We define the whole quotient
(result of whole division) as

a div b :=


⌊a
b

⌋
if b ̸= 0,

not defined if b = 0.
(5)

Definition 1.6 (Whole remainder, mod operation). Let a and b be integers. We define the whole
remainder as

a mod b :=

a− (a div b) · b = a−
⌊a
b

⌋
· b, if b ̸= 0,

a if b = 0.
(6)

By convention, x mod 1 := {x}, and is defined for every real number x.

Theorem 1.7 (Number of digits). Suppose x is an integer (suppose it is given in base ten) that we
wish to write in base b, that is, in the form

x = cncn−1 . . . c1c0(b). (7)

Then the number of required digits is n+ 1 = ⌊logb x⌋+ 1.

2 Data

Definition 2.1 (Data). A (relevant) piece of information or detail used to qualify or quantify someone
or something.

Definition 2.2 (Abstract data). Abstract data is an element of a specified, feasible set. The feasible
set contains all possible values (that may be used to quantify an object and that we may use in
calculations) according to the mathematical model.

Definition 2.3 (Abstract data type). Abstract data type consists of the feasible set of abstract data
and the set of operations defined on this set.

Definition 2.4 (Data structure). A specific, complete implementation of an abstract data type,
including the implementation of the data as well operations on it.
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3 Program, algorithm

Definition 3.1 (Algorithm). A specified, step-by-step calculation method, a tool for solving compu-
tation problems.

Definition 3.2 (Recursion). An algorithm is recursive, if it calls itself with different (smaller) input.

Definition 3.3 (Divide and conquer principle). A principle of planning algorithms, that creates the
solution in the following steps:

� divide: divide the problem into independent, smaller subproblems of the same type.

� conquer: solve the subproblems, often recursively; handle a basic case separately.

� unite: combine partial solutions to solve the original big problem.

Definition 3.4 (Dynamic programming). A principle of planning algorithms. It creates a sequence
of (not independent) subproblems that build on each other and can be solved in sequence, using the
previous results. It is often used in optimization problems.

Definition 3.5 (Input size, problem size). Let A be (an implementation of) an algorithm. Let D be
the set of possible inputs, and x ∈ D a given input. We define the input size |x| as the number of bits
x is stored on, given a specific data structure. We always have |x| ∈ N.

Definition 3.6 (Time and storage requirement). Again, let A be (an implementation of) an algorithm,
D be the set of possible inputs, and x ∈ D a given input. We denote by tA(x) the time requirement
(in number of operations required) when A is run on input x. Analogously, we denote by sA(x) the
storage requirement (in number of bytes occupied in memory) when A is run on input x.

Definition 3.7 (Time complexity). Again, let A be (an implementation of) an algorithm, D be the
set of possible inputs. We define the time complexity of A as

TA(n) := max
x∈D
|x|≤n

tA(x), (8)

that is, the largest possible runtime on inputs of size at most n.

Definition 3.8 (Storage complexity). Again, let A be (an implementation of) an algorithm, D be the
set of possible inputs. We define the storage complexity of A as

SA(n) := max
x∈D
|x|≤n

sA(x), (9)

that is, the largest possible storage required for inputs of size at most n.

4 Growth rates

Definition 4.1 (Growth rates, order of functions). Let f : N → R+ be a function, we may describe
its growth rate as some of the following:

1. big O notation. Se say that f(n) = O
(
g(n)

)
, “f(n) is big ‘O’ (of) g(n)”, if there exists a constant

c > 0 and a threshold n0 ∈ N such that for all n ≥ n0, f(n) ≤ c · g(n), in other words, f(n)
g(n) ≤ c,

the sequence of fractions is bounded from above.

2. small/little O notation. Se say that f(n) = o
(
g(n)

)
, “f(n) is small/little ‘O’ (of) g(n)”, if for

all constants c > 0, there exists a threshold n0 ∈ N such that for all n ≥ n0, f(n) ≤ c · g(n), in
other words, f(n)

g(n) → 0 as n→∞.
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3. big Omega notation (Knuth). Se say that f(n) = Ω
(
g(n)

)
, “f(n) is big ‘Omega’ (of) g(n)”, if

there exists a constant c > 0 and a threshold n0 ∈ N such that for all n ≥ n0, f(n) ≥ c · g(n), in
other words, f(n)

g(n) ≥ c, the sequence of fractions is bounded from below.

4. small/little Omega notation. Se say that f(n) = ω
(
g(n)

)
, “f(n) is small/little ‘Omega’ (of)

g(n)”, if for all constants c > 0, there exists a threshold n0 ∈ N such that for all n ≥ n0,

f(n) ≥ c · g(n), in other words, f(n)
g(n) →∞ as n→∞.

5. (big) Theta notation. Se say that f(n) = Θ
(
g(n)

)
, “f(n) is (big) ‘Theta’ (of) g(n)”, if there exist

constants 0 < c1 < c2 and a threshold n0 ∈ N such that for all n ≥ n0, c1 ·g(n) ≤ f(n) ≤ c2 ·g(n),
in other words, c1 ≤ f(n)

g(n) ≤ c2, the sequence of fractions is bounded.

Definition 4.2 (Some common growth rates).

constant f(n) = Θ
(
1
)

linear f(n) = Θ
(
n
)

quadratic f(n) = Θ
(
n2

)
cubic f(n) = Θ

(
n3

)
polynomial f(n) = Θ

(
nk

)
, for some k ∈ R+

logarithmic f(n) = Θ
(
log(n)

)
exponential f(n) = Θ

(
an

)
, for some a > 1

Definition 4.3 (Polynomially faster growth). We say that f : N→ R+ grows polinomially faster than
np, for p ≥ 0, if there exists ε ∈ R+ such that f(n) = Ω

(
np+ε

)
.

Definition 4.4 (Polynomially slower growth). We say that f : N → R+ grows polinomially slower
than np, for p ≥ 0, if there exists ε ∈ R+ such that f(n) = O

(
np−ε

)
.

Definition 4.5 (Recursive equation). A recursive equation is a functional equation of some unknown
function T : N→ R+, where T (n) is given in terms of one or more T (ki), with ki < n.

Theorem 4.6 (The “master” theorem). Suppose we have a recursive equation

T (n) = a · T
(n
b

)
+ f(n),

where T : N → R+ is the unknown function, f : N → R+ is a known function, a ≥ 1 and b > 1 are
known constants. (The theorem also holds with

⌊
n
b

⌋
or

⌈
n
b

⌉
in the place of n

b .)
Define p := logb(a) and the so-called test polynomial g(n) := np. Under specific conditions, we can

determine the growth rate of T (n):

1. If f(n) grows polynomially slower than g(n), then

T (n) = Θ
(
g(n)

)
. (10)

2. If f(n) = Θ
(
g(n)

)
, then

T (n) = Θ
(
g(n) · log(n)

)
. (11)

3. Suppose f(n) grows polynomially faster than g(n), as well as the so-called regularity condition
holds for f , that is,

exists c < 1, c ∈ R+ and n0 ∈ N such that for all n ≥ n0, a · f
(n
b

)
≤ c · f(n). (12)

If both above conditions hold, then

T (n) = Θ
(
f(n)

)
. (13)
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4.1 Fibonacci numbers

Definition 4.7 (Fibonacci numbers). The Fibonacci numbers is a number series defined recursively
as

F0 := 0

F1 := 1

}
initial conditions

n ≥ 2 : Fn := Fn−1 + Fn−2 recursive condition

(14)

Theorem 4.8 (Binet’s formula). For any n ∈]N , element Fn of the Fibonacci series can be obtained
directly by the formula

Fn =
1√
5

(
Φn − Φ

n
)
, (15)

where

Φ =
1 +
√
5

2
≈ 1.618 Φ =

1−
√
5

2
≈ −0.618

Theorem 4.9 (Fibonacci numbers with rounding). Based on Binet’s formula, for any n ∈ N, the nth
Fibonacci number Fn can be obtained as

Fn = Round

(
1√
5
Φn

)
. (16)

5 Algorithms in number theory

5.1 Divisibility, greatest common divisor

Definition 5.1 (Divisibility). For integers d and a, we say that d (wholly) divides a and write d|a, if
there exists an integer k such that k · d = a. We may also say that d is a divisor of a or that a is a
multiple of d.

Definition 5.2 (Prime number). We call an integer p > 1 a prime if its only positive divisors are 1
and p itself.

Theorem 5.3 (Whole division with remainder). Let a ∈ Z and n ∈ Z+. Then there exist a unique
pair of q, r ∈ Z such that 0 ≤ r < n that satisfy

a = q · n+ r.

We call q the quotient and r the remainder. They are also given by q = a div n, r = a mod n.

Definition 5.4 (Common divisor). We say that d ∈ Z is a common divisor of a, b ∈ Z, if it is a divisor
of both, i.e., d|a and d|b.

Definition 5.5 (Linear combination). We say that s ∈ Z is a linear combination of a, b ∈ Z, if there
exist x, y ∈ Z such that s = x · a+ y · b. We call x and y the coefficients of the linear combination. We
denote by L(a, b) the set of all (numbers that are) linear combinations of a and b.

Theorem 5.6 (Properties of the (common) divisor). Let d ∈ Z be a common divisor of a, b ∈ Z. Then

1. |d| ≤ |a|, unless a = 0.

2. if both d|a and a|d, necessarily d = ±a.

3. d is also a divisor of any linear combination of a and b, i.e., for any s ∈ L(a, b), d|s.
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Definition 5.7 (The greatest common divisor). For a, b ∈ Z, we define their greatest common divisor
as follows:

d⋆ = gcd(a, b) :=


0, if a = b = 0,

max
d|a
d|b

d, otherwise. (17)

Definition 5.8 (Relative primes). We say that a, b ∈ Z are relative primes if gcd(a, b) = 1.

Theorem 5.9 (Elementary properties of the greatest common divisor). Let a, b ∈ Z and d⋆ = gcd(a, b).
Then

1. 1 ≤ d⋆ ≤ min{|a|, |b|} (unless a = b = 0, since then d⋆ = 0 as well).

2. gcd(a, b) = gcd(b, a) = gcd(a,−b) = gcd(|a|, |b|).

3. gcd(a, 0) = a.

4. for k ∈ Z, gcd(a, k · a) = a.

5. if d is also a common divisor of a and b and d⋆ ̸= 0, then d ≤ d⋆.

6. the greatest common divisor divides all linear combinations of a and b, i.e., d⋆|s for all s ∈ L(a, b).

Theorem 5.10 (Representation of the greatest common divisor). Let a, b ∈ Z, and suppose not both
are 0. Then their greatest common divisor is equal to their smallest positive linear combination. In
formula:

d⋆ = gcd(a, b) = min
s∈L(a,b)

s>0

s =: s⋆ = x⋆ · a+ y⋆ · b, (18)

where we also introduce the notation x⋆, y⋆ for the coefficients of s⋆.

Theorem 5.11 (Description of the set of linear combinations). Let d⋆ := gcd(a, b), and the set of its
multiples M := {k · d⋆, k ∈ Z}. Then

L(a, b) ≡M.

In words: all linear combinations of a and b are multiples of d⋆, and vica versa.

Theorem 5.12 (Reduction theorem). For any a, b ∈ Z,

gcd(a, b) = gcd(a− b, b).

Theorem 5.13 (Recursion of the greatest common divisor). Let n, a ∈ Z, then

gcd(a, b) = gcd(b, a mod b).

Theorem 5.14 (Lamé). Suppose the input for the recursive Euclidean algorithm are a, b ∈ N, a ≥ b,
and suppose b < Fk+1 for some Fibonacci number (see Def 4.7). Then the number of recursive calls is
less than k.

5.2 Congruence, linear congruence equation, multiplicative inverse

Definition 5.15 (Congruence). For a, b ∈ Z and n ∈ Z, n ̸= 0, we say that a and b are congruent
modulo n and write a ≡ b mod n, if n|(a− b), or equivalently, if (a mod n) = (b mod n) (in words,
a and b have the same remainder when divided by n).

Theorem 5.16 (Operations with congruence). Let a, b, c, d, n ∈ Z, n ̸= 0, and suppose a ≡ b mod n,
c ≡ d mod n. Then

1. a± c ≡ b± d mod n
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2. a · c ≡ b · d mod n

3. if k ∈ Z such that k|a, k|b and gcd(k, n) = 1, then a
k ≡

b
k mod n.

4. for m|n, a ≡ b mod m.

Definition 5.17 (Linear congruence equation). We call the equation

a · x ≡ b mod n, (19)

with known constants a, b ∈ Z, n ∈ Z+, and unknown x ∈ Z, the linear congruence equation.

Theorem 5.18 (Solvability of the linear congruence equation). Consider the linear congruence equa-
tion (19), and let d⋆ = gcd(a, n) = x⋆ · a+ y⋆ · n.

1. If d⋆̸ |b, the linear congruence equation has no solution.

2. If d⋆|b, the linear congruence equation has infinitely many solutions, however all of them can be
obtained from a system of d⋆ many incongruent solutions in [0, n), by adding multiples of n. The
incongruent solutions are:

x0 = x⋆ · b

d⋆
mod n,

xi = x0 + i · n
d⋆

mod n

= xi−1 +
n

d⋆
mod n, for i = 1, . . . , d⋆ − 1.

(20)

Definition 5.19 (Multiplicative inverse). Let a ∈ Z, n ∈ Z+ such that gcd(n, a) = 1, and consider
the linear congruence equation

ax ≡ 1 mod n.

Given gcd(n, a) = 1, the equation has a single solution x0 in [0, n). We call this the multiplicative
inverse of a modulo n and denote x0 = a−1 mod n.

Theorem 5.20 (Fermat’s little theorem). If p is a prime number, then for all a = 1, . . . , p− 1,

ap−1 ≡ 1 mod p.

6 Dynamic sets

Definition 6.1 (Dynamic set). A dynamic set is a dataset that changes (elements are added, removed,
modified) during the run of the algorithm using it.

Definition 6.2 (Sequence). A sequence is a data structure where elements/items/records are stored in
a linear order (whether physically, or as defined by the operations of the sequence). Typical operations
are: search, insert, delete.

Definition 6.3 (Array). An array is a data structure implementing the sequence that consists of
consecutive memory bins. Each bin may store an individual data record, and is directly accessible by
its index. The array has attributes head, end, length and arraysize. It supports operations search,
insert and delete.

Definition 6.4 (Linked list). A linked list is a data structure implementing the sequence. Records
may be stored separately, but each element contains a pointer to the next, which establishes the linear
order. It has attributes head, sometimes end. It supports operations search, insert, delete.
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Definition 6.5 (Queue (data structure)). The queue is a dynamic set where insertion and deletion
may only happen at predefined points. The inserted element is the newest, and we always delete the
oldest element. Its supported operations are insert (push) and delete (pop).

Definition 6.6 (Stack (data structure)). The stack is a dynamic set where insertion and deletion may
only happen at predefined points. We always remove the latest inserted element. Supported operations
are push (insert) and pop (remove).

Definition 6.7 (Hash table). The hash table is a dynamic set, but not a sequence. The table is
allocated a continuous chunk of memory, and rows are accessible directly by index. Data records are
assigned a row according to the so-called hash function of the key field. It supports operations search,
insert and delete.

Definition 6.8 (Conflict (in hash table)). If the hash function assigns the same value/row to two
data records with different keys, we call it a conflict.

Definition 6.9 (Open address hash table). The hash function takes two variables, the key k and the
index of the trial t = 0, 1, . . . , N − 1. The sequence h(k, 0), h(k, 1), . . . , h(k,N − 1) is called the search
sequence, and must contain all row indices i = 0, 1, . . . , N − 1 in some order.

Definition 6.10 (Cluster (in hash table)). A group of consecutive occupied rows in a hash table is
called a cluster. The size of the cluster is the number of the rows in question.

7 Selection problem and sorting

Definition 7.1 (The “selection problem”). Suppose a set A of n different numbers, and a rank
1 ≤ k ≤ n are given. The task is to find the kth smallest element, that is, element x ∈ A so that
exactly k − 1 elements of A are smaller than x.

Definition 7.2 (Median). The median of a dataset (of numbers) is the middle element of the (in-
creasingly) sorted dataset. If the dataset has an odd number n = 2k + 1 of elements, the median has
rank k + 1 in the sorted set. If the dataset has an even number n = 2k of elements, there are two
middle elements, rank k and k + 1. (We call them the lower and the upper median.)

Definition 7.3 (Descartes-product). For sets A and B, we define their Descarted-product as the set

A×B = {(a, b), a ∈ A, b ∈ B}

containing all possible ordered pairs of elements.

Definition 7.4 (Relation). Let A be a set. A relation on set A is a subset ϱ ⊆ A×A (ϱ is the Greek
letter “rho”). We say that a, b ∈ A are in ϱ-relation if (a, b) ∈ ϱ, and for short write aϱb.

Definition 7.5 (Order relation (ordering)). We say that the relation ϱ ⊆ a × A is an order relation
(ordering) on A if:

a) it is reflexive: aϱa for all a ∈ A,

b) it is transitive: if aϱb and bϱc, then also aϱc,

c) it is antisymmetric: if aϱb and bϱa, then a = b.

We say that ϱ is a complete or linear ordering, if on top of the above, also

d⋆) at least one of aϱb and bϱb holds for any a, b,∈ A.

Definition 7.6 (Some properties that may be applied to sort algorithms).
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a) sort in place: the result replaces the original data, extra storage use is at most O(1).

b) adaptivity : the algorithm is able to exploit any pre-existing order among the keys (and reduce
its runtime accordingly).

c) stability : preserve original order of records with the same sorting key.

d) comparison-based : the algorithm is based on comparing keys to other keys (as opposed to group-
ing keys by their values).

Theorem 7.7 (Runtime and important properties of common sorting algorithms).

algorithm time complexity storage requirements remarks

insertion sort O(n2) sort in place

selection sort O(n2) sort in place many comparisons, but
few elements moved

bubble sort O(n2) sort in place

quicksort O(n log(n)) ∼ O(n2) sort in place

merge sort O(n log(n)) O(n) can be used for externally
stored data

counting sort/binsort O(n+m) O(n+m) not comparison-based! m
is the number of possible
values

Theorem 7.8 (Lower bound on comparison-based sorting). No comparison-based sorting algorithm
can reach time complexity below Ω(n log(n)).

Theorem 7.9 (Stirling’s formula). For n ≥ 3, the factorial satisfies:

nn

en
< n! <

(n+ 1)n+1

en
.

8 Graphs

8.1 Huffman code

Definition 8.1 (Code (encoding)). Each character is given a (different) bit sequence, called its code.

Definition 8.2 (Prefix code). A code that may have varying code lengths, but no code is a continuation
of another.

8.2 Introduction to graphs

Definition 8.3 (Graph (simple, undirected graph)). A graph is a pair G = (V,E), where V is a finite
set called the vertices, and E is a finite set of unordered pairs e = {u, v} from V , called the edges.

Definition 8.4 (Directed graph (digraph)). A directed graph is a pair G = (V,E), where V is a finite
set and E is a set of ordered pairs e = (u, v) of V (E ⊆ V × V ).

Definition 8.5 (Weighted graph (network)). A graph (directed or undirected) becomes a weighted
graph or network, when we assign a number, called weight, to each of its edges.

Definition 8.6 (Walk, trail, path; circuit, cycle).

� A walk in a graph is a sequence of connecting edges: (v0, v1), (v1, v2), (v2, v3), . . . , (vn−1, vn). It
is possible to repeat both vertices and edges.
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� A trail is a special walk where no edges are repeated, but vertices may be repeated.

� A path is a special trail where no vertices are repeated.

� A circuit is a closed trail: that ends in the same vertex where it started.

� A cycle is a closed path: the end vertex is the same as the start vertex.

Definition 8.7 (Length of a path). In a weighted graph, the length of a path is the sum of weights
of all edges alongside the path. Formally, if G = (V,E) and w : E → R, and P = (e1, e2, . . . , ek),

w(P ) :=
∑k

i=1 w(ek).

Definition 8.8 (Neighbor).
� In an undirected graph, we say that vertices u and v are neighbors if {u, v} ∈ E.
� In a directed graph, v is an out-neighbor of u if (u, v) ∈ E, and an in-neighbor of u if (v, u) ∈ E.
Together, we may refer to in- and out-neighbors simply as neighbors.

Definition 8.9 (Adjacency matrix).

� For a directed graph on n vertices, the adjacency matrix Adj is an n × n matrix, both its rows
and columns indexed by the vertices. Its entries are

Au,v =

1, if (u, v) ∈ E,

0, otherwise.

� For a weighted, directed graph on n vertices, the adjacency matrix Adj is an n× n matrix, both
its rows and columns indexed by the vertices. Its entries are

Au,v =

w(u, v), if (u, v) ∈ E,

NIL, otherwise.

Definition 8.10 (Shortest path and distance). In a weighted graph G = (V,E), consider all paths Pi

from u to v. The distance between u and v is the (weighted) length of the shortest path:

δ(u, v) :=

mini{w(Pi)} if at least one path Pi exists,

∞ otherwise.

Any path Pi with length δ(u, v) is a shortest path.

Definition 8.11 (Negative cycle). In a directed, weighted graph, a negative cycle is a directed cycle
with negative total weight.

Theorem 8.12 (Some properties of algorithms for finding shortest paths in graphs).

Property
Bellman-Ford
algorithm

Dijkstra algorithm
Floyd-Warshall
algorithm

aim shortest paths from a single source
shortest paths between
all vertex pairs

assumptions

directed, weighted graph

no negative cycle
non-negative edge
weights

no negative cycle

graph imple-
mentation

edge list (or neighbor
list)

neighbor lists adjacency matrix

runtime O
(
|V | · |E|

)
O
(
|E| · log(|V |)

)
O
(
|V |3

)
storage
requirement

O
(
|V |

)
O
(
|V |

)
O
(
|V |2

)
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9 Algorithms
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Algorithm 1 Extended Euclidean algorithm (recursive version)

1: EXT EUCL REC(a,b,@d,@x,@y)
2: // INPUT: a, b ∈ N, a ≥ b
3: // OUTPUT: d = gcd(a, b)
4: // OUTPUT: x, y ∈ Z coefficients of linear combination d = x · a+ y · b
5: IF b > 0 THEN
6: q ←

⌊
a
b

⌋
7: r ← a− b · q
8: (d,x old,y old) ← EXT EUCL REC(b,r,@d,@x,@y)
9: x ← y old

10: y ← x old - y old · q
11: ELSE
12: d ← a
13: x ← 1
14: y ← 0

15: RETURN(d,x,y)

Algorithm 2 Modular exponentiation

1: MOD EXP(a,b,n,@c)
2: // INPUT: a, b, n ∈ Z // Suppose b is given in binary: b = bkbk−1 . . . b1b0(2).

3: // OUTPUT: c = (ab mod n) ∈ Z
4: c← 1
5: FOR i ← k DOWNTO 0 DO
6: c← c2 mod n
7: IF bi = 1 THEN
8: c← c · a mod n
9: RETURN(c)
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Algorithm 3 Generation of RSA keys

1: GEN RSA KEYS(p,q,e,@P,@S)
2: // INPUT: p,q primes, e ≥ 3 small odd integer
3: // OUTPUT: P private key and S secret key, if they exist
4: n← pq
5: f ← (p− 1)(q − 1)
6: IF gcd(e, f) ̸= 1 THEN
7: RETURN(“Keys don’t exist.”) // Or P ← NULL, S ← NULL, RETURN(P,S)

8: d← e−1 mod f // X ← SOLVER LCE(e,1,f,@X), d← X0

9: P ← (e,n)
10: S ← (d,n)
11: RETURN(P,S)

Algorithm 4 Linear search in array

1: LIN SEARCH(A,k,@x)
2: // INPUT: A array, k key to be found
3: // OUTPUT: x: index of a record that key[Ax] = k, or 0 if no such record exists
4: IF length[A] = 0 THEN
5: x ← 0
6: ELSE
7: x ← head[A]
8: WHILE x ≤ end[A] AND key[Ax] ̸= k DO // For this to not give “out of bound” type

errors, we assume the operation AND is implemented efficiently, that is, if the first condition fails,
AND is already false, and the second condition is not even checked.

9: INC(x)

10: IF x > end[A] THEN // The while loop stopped either because we have found x such that
key[Ax] = k, or because x > end[A].

11: x ← 0
12: RETURN(x)
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Algorithm 5 Binary search in ordered array, iterative version

1: BIN SEARCH IT(A,k,@x)
2: // INPUT: array A, key k to search
3: // OUTPUT: x index so that key[Ax]=k or 0 if no such record is found
4: IF length[A] = 0 THEN
5: x ← 0
6: RETURN(x)

7: a ← head[A]
8: b ← end[A] // These are the first and last index of the subsequence we are still searching.
9: WHILE a ≤ b DO

10: c ←
⌊
a+b
2

⌋
// calculate midpoint

11: IF key[Ac] = k THEN
12: x ← c
13: RETURN(x)
14: ELSE IF k < key[Ac] THEN
15: b ← c− 1 // search in first half
16: ELSE // necessarily key[Ac] < k
17: a ← c+ 1 // search in second half

18: x ← 0 // If we did not return yet, k was not found.
19: RETURN(x)

Algorithm 6 Delete from doubly linked list

1: LL DEL(L,x)
2: // INPUT: L linked list, x (non-NIL) pointer of an element to delete
3: IF x ̸= NIL THEN
4: y ← prev[x]
5: z ← next[x]
6: IF y = NIL THEN
7: head[L] ← z
8: ELSE
9: next[y] ← z

10: IF z = NIL THEN
11: end[L] ← y
12: ELSE
13: prev[z] ← y

14: RETURN()
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Algorithm 7 Operations (push and pop) in queue, with linked list implementation

1: QUEUE PUSH LL(Q,x)
2: // INPUT: Q singly linked list for storing the queue, x pointer of new element
3: y ← end[Q]
4: IF y ̸= NIL THEN
5: next[y] ← x

6: next[x] ← NIL
7: end[Q] ← x
8: RETURN()

9: QUEUE POP LL(Q,@x)
10: // INPUT: Q singly linked list for storing the queue
11: // OUTPUT: x pointer of the first element, or NIL if the queue is empty
12: x ← head[Q]
13: IF x ̸= NIL THEN
14: head[Q] ← next[x]

15: RETURN(x)

Algorithm 8 Search in open address hash table

1: SEARCH(T,k,@i)
2: // INPUT: T hash table, k key
3: // OUTPUT: i index so that key[Ti] = k or NIL
4: t← 0
5: i ← h0(k)
6: s ← 1 + (k mod (N − 1)) // h1 function, stepsize – for double hash
7: WHILE t ≤ N − 1 AND (status[Ti] = D OR (status[Ti] = O AND key[Ti] ̸= k)) DO
8: INC(t)
9: i← h(k, t) // general form, to be replaced

10: i ← i+ c // linear trial, with general stepsize c
11: i ← i+ t // quadratic trial, specific case
12: i ← i+ s // double hash

13: IF t = N or status[Ti] = F THEN // key k was not found
14: i ← NIL

// Otherwise we have found i such that key[Ti] = k.
15: RETURN(i)
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Algorithm 9 Partition algorithm

1: PARTITION(@A,a,b,x,@q)
2: // INPUT: A: array, a and b: first and last index of the interval to partition, x: the pivot, an

element of A, within the index interval [a, b].
3: // OUTPUT: A array partitioned, “small” ≤ x elements on the left, “large” ≥ x elements on the

right; q boundary of the partition: index of the rightmost “small” element // Aa, . . . , Aq ≤ x,
Aq+1, . . . , Ab ≥ x.

4: i← a− 1 // Pointer sweeping from left, searching “large” elements that do not fit on the left.
5: j ← b + 1 // Pointer sweeping from right, searching “small” elements that do not fit on the

right.
6: WHILE TRUE DO // We may write i < j, but the effect is the same, we quit the loop on the

RETURN command anyways.
7: REPEAT
8: INC(i)
9: UNTIL Ai ≥ x

10: REPEAT
11: DEC(j)
12: UNTIL Aj ≤ x
13: IF i < j THEN
14: swap Ai ↔ Aj

15: ELSE // i ≥ j means the partition is complete.
16: q ← j // q = j is the rightmost “small” element
17: RETURN(A,q) // We reach this state sooner or later.

18: RETURN() // In fact superfluous.
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Algorithm 10 The merge algorithm

1: MERGE(A,B,@C)
2: // INPUT: sorted sequences A and B
3: // OUTPUT: sorted union C, length[C] = length[A]+length[B]
4: length[C] ← length[A]+length[B]
5: i← 1 // Index in A.
6: j ← 1 // Index in B.
7: k ← 1 // Index in C.
8: WHILE i ≤ length[A] AND j ≤ length[B] DO
9: IF Ai ≤ Bj THEN

10: Ck ← Ai

11: INC(i)
12: INC(k)
13: ELSE
14: Ck ← Bj

15: INC(j)
16: INC(k)

17: WHILE i ≤ length[A] DO
18: Ck ← Ai

19: INC(i)
20: INC(k)

21: WHILE j ≤ length[B] DO
22: Ck ← Bj

23: INC(j)
24: INC(k)

25: RETURN(C)

Algorithm 11 Common subroutines for single source shortest paths algorithms

1: INITIALIZE SP SS(G,s,@d,@π)
2: // INPUT: graph G and source s
3: // OUTPUT: d: vector of distance estimates, π vector of parents
4: FOR EACH v ∈ V DO
5: d[v]←∞
6: π(v)← NIL

7: d[s]← 0
8: RETURN(d,π)

9: UPDATE SP SS(u, v,@d,@π)
10: // INPUT: edge e = (u, v) to update with
11: // OUTPUT: d, π: distance estimate and parent array updated
12: IF d[u] + w(u, v) < d[v] THEN
13: d[v]← d[u] + w(u, v)
14: π(v)← u

15: RETURN(d,π)

16



Algorithm 12 Bellman-Ford algorithm

1: BELLMAN FORD(G,w, s,bool,@d,@π)
2: // INPUT: G directed graph, w weight function, s source
3: // OUTPUT: d: vector od distance estimates, π: vector of parents, bool: is the result valid, TRUE

or FALSE
4: d,π ← INITIALIZE SP SS(G,s)
5: FOR i ← 1 TO |V | − 1 DO
6: FOR EACH e = (u, v) ∈ E DO
7: d,π ← UPDATE SP SS(u, v)

8: FOR EACH e = (u, v) ∈ E DO // Check for negative cycle.
9: IF d[u] + w(u, v) < d[v] THEN

10: RETURN(FALSE)

11: RETURN(TRUE,d,π)
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