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1 Mathematics introduction

Exercise 1.1 (Floor, ceil, round and fractional part). Complete the table:

x −4 −3.8 −3.5 −3.2 −3 3 3.2 3.5 3.8 4

⌊x⌋
⌈x⌉

Round(x)

{x}

Exercise 1.2 (Floor, ceil, round and fractional part functions). Plot the floor, ceil, round and frac-
tional part functions!

Exercise 1.3 (div and mod operations). Calculate ±12 div ±5 and ±12 mod ±5 for all possible
combination of signs!

2 Number representations

Exercise 2.1 (Number in different bases). Each row should contain the same number in different
bases.

a) Complete the table!
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base

2 3 4 8 10 12 16

10110110

120102

30201

7421

2024

8A4B

5F03

b) Complete the table!

base

2 3 4 8 10 12 16

101110.011

12012.12

302.01

742.15

2024.25

8A4B.36

5F03.84

Exercise 2.2 (Number of digits). Using the theorem on the number of digits, without making the
conversion, predict how many digits a number requires in a different base!

a) Complete the table!

number of digits

base

2 10 16

number

22

1010

1616

b) A number is 34 digits in base two. How many digits is it in base sixteen? Can we generalize a
rule?

c) A number is 9 digits in base sixteen. How many digits is it in base two? Can we generalize a
rule?

Exercise 2.3 (Floating point numbers). a) Represent the following (base ten) numbers as single
precision floating point numbers! What are the resulting hexadecimal bytes?

1387.1875 − 1208.6875 625.90625

b) The following hexadecimal bytes represent single precision floating point numbers. What are the
numbers (in base ten)?

C4 69 26 00 44 5B 0E 00 C4 BE 9A 00
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3 Recursion

Exercise 3.1 (Factorial 1). For n ∈ Z+, we define n factorial, n! := 1 ·2 · . . . ·n, the product of positive
integers up to n. Alternatively, we can use a recursive definition

n! =

(n− 1)! · n, if n > 1,

1, if n = 1.

Suppose we have a procedure that calculates the factorial based on the recursive formula, and it was
initially called to calculate 7!. How does the stack evolve during the run and calculation? What is the
largest depth? How many recursive calls are made?

Exercise 3.2 (Factorial 2). More generally, let us define the product of consecutive numbers from
m ≤ n ∈ Z+ as

P (m,n) :=


m, if m = n,

P

(
m,

⌊
m+ n

2

⌋)
· P

(⌊
m+ n

2

⌋
+ 1, n

)
, if m < n.

Suppose we have a procedure that can calculate P (m,n) based on this recursion, and it is called to
calculate 7! = P (1, 7). How does the stack evolve during the run and calculation? What is the largest
depth? How many recursive calls are made?

Exercise 3.3 (Binomial coefficient). For k ≤ n ∈ N, the binomial coefficient “n choose k” is defined
recursively as

(
n

k

)
:=


1, if k = 0,

1, if k = n,(
n− 1

k − 1

)
+

(
n− 1

k

)
, if 0 < k < n.

Suppose we have a procedure that calculates binomnk based on this recursion, and it is called to
calculate

(
7
3

)
. How does the stack evolve during the run and calculation? What is the largest depth?

How many recursive calls are made?

Exercise 3.4 (Fibonacci). The Fibonacci numbers, for indices n ∈ N, are defined recursively as

F (n) :=


0, if n = 0,

1, if n = 1,

F (n− 2) + F (n− 1), if n > 1.

Suppose we have a procedure that calculates F (n) based on this recursion, and it is called to calculate
F (7). How does the stack evolve during the run and calculation? What is the largest depth? How
many recursive calls are made?

4 Order symbols and the “master” theorem

Exercise 4.1 (Relations between order symbols). Prove the following statements:

a) If f(n) = o
(
g(n)

)
, then also f(n) = O

(
g(n)

)
.

b) Is part a) reversible? Why, or why not?

c) If f(n) = ω
(
g(n)

)
, then also f(n) = Ω

(
g(n)

)
.
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d) Is part c) reversible? Why or why not?

e) If f(n) = O
(
g(n)

)
and f(n) = Ω

(
g(n)

)
, then f(n) = Θ

(
g(n)

)
.

f) Is part e) reversible? Why or why not?

Exercise 4.2 (Order symbols). Are the following statements true?

a) 2n2 + 3n = O(n2)

b) 2n2 + 3n = o(n2)

c) 2n2 + 3n = O(n3)

d) 2n2 + 3n = O(n)

e) 2n2 + 3n = Ω(n2)

f) 2n2 + 3n = ω(n2)

g) 2n2 + 3n = Ω(n3)

h) 2n2 + 3n = Ω(n)

i) 2n2 + 3n = Θ(n2)

Exercise 4.3 (Order symbols 2). Are the following statements true?

a) log(n) = O(n)

b) log(n) = o(n)

c) log(n) = O(nε) for any or all ε ∈ R+

d) log(n) = o(nε) for any or all ε ∈ R+

e) log(n) = Ω(nε) for any or all ε ∈ R+

f) log(n) = ω(nε) for any or all ε ∈ R+

g) Is log(n) polynomially faster growing than 1 = n0?

h) Is log(n) polynomially slower growing than n?

Exercise 4.4 (“Master” theorem). Consider the following, recursively defined functions. Can we
determine their growth order using the master theorem? If yes, what is their growth order?

a) T (n) = 2 · T
(⌊

n
2

⌋)
+ log(n)

b) T (n) = 2 · T
(⌊

n
2

⌋)
+ 2n+ 3

c) T (n) = 2 · T
(⌊

n
2

⌋)
+ n · log(n)

d) T (n) = 2 · T
(⌊

n
2

⌋)
+ n3/2
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