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ABSTRACT 

In the present study incompressible, constant property, laminar Newtonian unsteady 

fluid flow around a stationary circular cylinder is computed at different Reynolds 

numbers using a two-dimensional finite difference method. The time history of lift 

and drag coefficients are computed to produce root-mean-square (rms) and time-

mean values. The objective of this paper is to improve the accuracy of the time 

discretization and to estimate discretization errors using generalized Richardson 

extrapolation.  

INTRODUCTION 

Flow past a stationary circular cylinder is widely investigated in fluid mechanics 

[1-5]. When the vortex-shedding frequency is near the natural frequency of the body 

and the damping is low, resonance can occur which can induce high-amplitude 

oscillation. This phenomenon played a role in the collapse of the Tacoma Narrows 

Bridge in 1940. Tall slender structures can be found in everyday life, for example 

chimney stacks, silos, telephone poles or underwater structures. The noisy operation 

and vibration of heat exchangers are often caused by this phenomenon. 

In this study an in-house code based on the two-dimensional finite difference 

method (FDM) is used for the computation of low Reynolds number (Re=90–200) 

unsteady, incompressible, Newtonian constant property fluid flow past a stationary 

circular cylinder. For temporal discretization first order Eulerian method is applied. 

The objective of this paper is to improve the accuracy of the results using Richardson 

extrapolation. Richardson extrapolation is widely used for grid refinement studies 

with the aim of increasing the accuracy of the solution using computational results 

obtained from different grid sizes. These grids can be either spatial (computational 

mesh) or temporal (time step) [6–8]. 

The main objective of the present study is to carry out grid refinement 

investigations. Using an FDM code computations are carried out for three pairs of 

time steps and the rms and time-mean values of lift and drag coefficients are evaluated 

in order to examine the effect of Reynolds number and of time step. The two solutions 

for each time step pair can be combined to yield a solution with higher accuracy. The 

relative difference and normalized relative difference between the solutions are 

investigated as the first steps in estimating computational error.  
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COMPUTATIONAL METHOD 

 

The non-dimensional governing equations for the incompressible, constant property, 

laminar Newtonian fluid flow around a stationary circular cylinder are the two 

components of the equations of motion, the continuity equation and the Poisson 

equation for pressure. Figure 1 shows the physical and computational domains, where 

R1 is the dimensionless radius of the cylinder and R2 is that of the far field. No-slip 

boundary conditions are used for velocity and a Neumann-type boundary condition 

is applied for pressure both on the surface of the cylinder and on the outer surface.  
 

 
 

Figure 1 

The physical and computational domains 
 

In order to impose boundary conditions accurately and avoid inaccuracies, 

boundary-fitted coordinates are used. The physical domain is transformed into the 

rectangular computational domain applying linear mapping functions [2,3]. Due the 

properties of the mapping functions, the grid on the physical plane is very fine in the 

vicinity of the cylinder surface and coarse in the far field, but the grid is equidistant 

on the computational domain. The transformed governing equations with the 

boundary conditions are solved applying finite difference method [2]. The space 

derivatives are discretized using fourth order schemes except for the convective terms 

which are approximated by third order upwind difference schemes. The Poisson 

equation is solved using successive over-relaxation (SOR), the equation of motion is 

integrated explicitly and continuity equation is satisfied at every time step. 

During the computations lift and drag coefficients (𝐶𝐿 and 𝐶𝐷) are obtained. Both 

lift and drag coefficients can be divided into two basic parts: one is due to the shear 

stress (𝐶𝐿𝜏 and 𝐶𝐷𝜏), the other is due to pressure (𝐶𝐿𝑝 and 𝐶𝐷𝑝). From the time histories 

of these signals the time-mean (denoted by an overbar) and root-mean-square (rms) 

values are computed as  
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The dimensionless vortex shedding frequency or Strouhal number (St) can be 

obtained by taking Fast Fourier Transform (FFT) of the time history of lift [2]. 

During the computations the radius ratio R2/R1=160 and the computational grid is 

characterized by grid points 360×292 (peripheral × radial). The dimensionless time 

step (Δ𝑡) is varied between 0.001 and 0.00025. 

 

GENERALIZED RICHARDSON EXTRAPOLATION 

 

The main drawback of our code is that it uses first order Euler method for time 

discretization, which is accurate only if small Δ𝑡 is used. The main objective of this 

paper is to increase the computational accuracy and to approximate the discretization 

error. Richardson extrapolation or its generalized version is widely used for these 

purposes [6-8]. Two solutions in series representations belonging to two different 

time steps Δ𝑡1 and Δ𝑡2 can be written as 

 

𝑓1 = 𝑓𝑒𝑥𝑎𝑐𝑡 + 𝑔𝑝(Δ𝑡1)𝑝 + ℴ[(Δ𝑡1)𝑝+1], 

 

(2) 

 

𝑓2 = 𝑓𝑒𝑥𝑎𝑐𝑡 + 𝑔𝑝(Δ𝑡2)𝑝 + ℴ[(Δ𝑡2)𝑝+1], (3) 

 

where 𝑓1 and 𝑓2 are the numerical approximations of the exact solution 𝑓𝑒𝑥𝑎𝑐𝑡. In 

equations (2) and (3) 𝑔𝑝 is the pth order error term coefficient and ℴ[(Δt)𝑝+1] 

represents the higher-order terms that will be neglected. The time step reference is 

denoted by ∆𝑡1 and the ratio of the two time steps 𝑟 = ∆𝑡1 ∆𝑡2⁄  is called the 

refinement ratio. In the case of the original Richardson extrapolation, r=2 and the 

method is also generalized for cases r≠2. The feasible limits of the non-dimensional 

time step 𝛥𝑡 are between 0.00025 and 0.001. Below this excessive computational 

time would be needed, and above this the SOR method diverges. We decided to use 

pairs of time steps within these limits, giving us a practical choice for the refinement 

ratio of 𝑟 = ∆𝑡1 ∆𝑡2⁄ = 1.4. Three reference time steps ∆𝑡1 were chosen in order to 

investigate the effect of time step on the solution (Table 1).  

 

Table 1 

The applied time step values 
 

Notation  104×∆𝑡1  (reference) 104×∆𝑡2  

I 10.0 7.14286 

II 5.0 3.57143 

III 3.5 2.5 

 

The most difficult task in numerical studies is to estimate the discretization error. 

If the computational grid is refined and the spacing tends to zero, the relative 

difference 

 

𝜀[%] =
𝑓2 − 𝑓1

𝑓1

100 (4) 



between two “neighboring” solutions decreases. If the relative difference approaches 

zero while the spacing tends to zero, the solution is said to be asymptotic [8].  

Dropping the higher-order terms in equations (2) and (3) and solving them for the 

exact solution fexact yields  

 

𝑓𝑒𝑥𝑎𝑐𝑡 ≅ 𝑓2 +
𝑓2 − 𝑓1

𝑟𝑝 − 1
, (5) 

 

the solution of the generalized Richardson extrapolation. Temporal discretization is 

first-order accurate, therefore p=1. Substituting p=1 and r=1.4 into equation (5),  

 

𝑓𝑒𝑥𝑎𝑐𝑡 ≅ 3.5𝑓2 − 2.5𝑓1. (6) 

 

COMPUTATIONAL RESULTS 

 

We carried out computations for the three reference time steps (see ∆𝑡1 values in 

Table 1) at five Re values. Applying (6) for each pair of results, higher-order solutions 

can be reached (see Figure 2a) which practically collapse into a single curve. The 

relative differences ε between the extrapolated St values and those reported in [5] are 

shown in Figure 2b). As can be seen, the agreement is excellent, with the maximum 

relative difference of 0.128% indicating that our results are reliable. It can also be 

observed that the relative difference depends on Reynolds number: it increases until 

Re reaches 130, then decreases. 

 

  
a) Extrapolated Strouhal numbers 

 

b) Relative differences in St (our data 

and [5]) 

 

Figure 2 

The results of the extrapolation 

 

For further increasing the accuracy, three time steps are used and Richardson 

extrapolation is repeated using the extrapolated values. However, in our case this led 
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to only marginal improvement, meaning the extra computational effort was not 

justified. This was probably because the SOR method allows only small time steps. 

Next, the relative difference between each pair of time steps (the reference and its 

finer version are shown in Table 1) was calculated at different Reynolds numbers and 

plotted in Figure 3. This allows us to investigate how the relative difference changes 

with Reynolds number for the rms values of lift and drag (𝐶𝐿 and 𝐶𝐷) and the portion 

due to shear stress (𝐶𝐿𝜏 and 𝐶𝐷𝜏). 
 

  
a)  𝐶𝐿𝑟𝑚𝑠 

 

b) 𝐶𝐷𝑟𝑚𝑠 

 

  

c) 𝐶𝐿𝜏𝑟𝑚𝑠 d) 𝐶𝐷𝜏𝑟𝑚𝑠 

Figure 3 

The computed relative differences (ε)  
 

It can be seen in Figure 3 that the discretization error is lower for lower ∆𝑡1, as 

expected. In addition, the relative difference ε for 𝐶𝐿𝜏𝑟𝑚𝑠 and 𝐶𝐷𝜏𝑟𝑚𝑠 (Figures 3c) and 

3d)) decreases up to Re=130, and then increase with Re. The slope of the curves 

differ. The relative differences for 𝐶𝐷𝑟𝑚𝑠 and 𝐶𝐿𝑟𝑚𝑠 (Figures 3a and 3b) decrease 

monotonously, and no extreme values can be observed. One possible reason could be 
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that the role of shear stresses increases with increasing Reynolds number. This 

requires further investigation.  

As can be seen in Figure 3, the scale of ε differs somewhat for the rms values 

investigated, making comparisons difficult. To be able to compare relative 

differences for different flow properties it seems reasonable to introduce the 

normalized relative difference (𝜀𝑛𝑜𝑟𝑚), defined as the absolute value of the ratio of 

relative differences for the same quantity belonging to time step references ∆𝑡1 and 

∆𝑡1 = 0.001 (the largest time step reference) at the same Re 
 

𝜀𝑛𝑜𝑟𝑚(𝑅𝑒𝑖 , Δ𝑡1) = |
𝜀(𝑅𝑒𝑖 , Δ𝑡1)

𝜀(𝑅𝑒𝑖 , Δ𝑡1 = 0.001)
|. (7) 

 

The values of 𝜀𝑛𝑜𝑟𝑚 are in the range of [0,1] if the extrapolated solution is more 

accurate for the ∆𝑡1 value than for ∆𝑡1 = 0.001. If 𝜀𝑛𝑜𝑟𝑚 > 1, Richardson 

extrapolation does not lead to improved accuracy.  

Figure 4 shows the 𝜀𝑛𝑜𝑟𝑚 of the rms values of lift and drag coefficients against Re 

for two distinct time step reference values of Δ𝑡1 = 0.00035 (see Fig. 4a) and Δ𝑡1 =
0.0005 (See Fig. 4b). From the figure we can see that  

(1) the 𝜀𝑛𝑜𝑟𝑚 values are smaller for the smaller ∆𝑡1 value (finer time step), as 

expected;  

(2) the total rms of lift and drag coefficients approach each other more closely as 

Re increases, and this is also true for the portion due to shear stress (𝐶𝐿𝜏 and 

𝐶𝐷𝜏);  

(3) the difference in 𝜀𝑛𝑜𝑟𝑚 for 𝐶𝐿 and 𝐶𝐿𝜏 and that for 𝐶𝐷 and 𝐶𝐷𝜏 increases with 

Re, indicating that pressure (the other portion of the total rms) increases with 

Re; and  

(4) all of the 𝜀𝑛𝑜𝑟𝑚 values calculated were well below 1, meaning that the 

Richardson extrapolation improved the accuracy of the solution. 

 

  
a) Δ𝑡1 = 0.00035 b) Δ𝑡1 = 0.0005 

 

Figure 4 

Comparison of 𝜀𝑛𝑜𝑟𝑚 for rms of lift and drag 
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CONCLUSIONS 

 

This paper deals with the numerical simulation of a two-dimensional incompressible, 

constant property, laminar Newtonian fluid flow around a stationary circular cylinder, 

where the main objective is to increase the accuracy of time discretization and the 

estimation of the discretization errors using generalized Richardson extrapolation. 

Relative differences and normalized relative differences 𝜀𝑛𝑜𝑟𝑚 are used for 

approximating the discretization errors. Computational results are in good agreement 

with those in the literature. For the normalized relative difference, it was found that  

 the 𝜀𝑛𝑜𝑟𝑚 values are smallest for the smallest reference time step value ∆𝑡1;  

 as Re increases, the total rms of lift and drag coefficients approach each other 

more closely, and the same is true for the portion of rms due to shear stress 

(𝐶𝐿𝜏 and 𝐶𝐷𝜏);  

 as Re increases, the difference in 𝜀𝑛𝑜𝑟𝑚 for 𝐶𝐿 and 𝐶𝐿𝜏  and that for 𝐶𝐷 and 𝐶𝐷𝜏 

also increases. From this, it seems that the role of pressure (the other portion 

of the total rms) increases with Re;  

 The discretization error depends on the Reynolds number.  

Using generalized Richardson extrapolation, we succeeded in increasing the 

accuracy of the solution (all 𝜀𝑛𝑜𝑟𝑚 values were well below 1). Further investigation 

is needed to determine whether the increased accuracy compensates for the increased 

computational cost of carrying out computations with two different time steps.  
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