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ABSTRACT 

This study deals with the numerical simulation of two-dimensional laminar 

incompressible Newtonian fluid flow past a circular cylinder forced to oscillate in-

line with the main stream. The effect of frequency ratio FR=f/St on the flow is 

investigated for Reynolds numbers Re=80, 120, 160 and 200 at a dimensionless 

oscillation amplitude 0.5. Computations were carried out using a thoroughly tested 

finite-difference code developed by the authors. Lift, drag and torque coefficients 

are investigated. When the time-mean values of lift and torque coefficients are 

plotted against frequency ratio, abrupt changes can be found in the curves, 

suggesting the presence of switches in the vortex structure. No jumps were 

observed in the time-mean of drag and rms values of lift, drag and torque 

coefficients plotted against the frequency ratio. Both rms and time-mean values of 

force coefficients revealed a shift toward lower frequency ratio with higher Re. 

Where vortex switches occur, a pre-and post-jump analysis is carried out. 

INTRODUCTION 

Fluid flow around an oscillating cylinder is a typical fluid-structure interaction 

problem which is widely investigated using experimental and numerical techniques. 

When a structure is exposed to wind or wave, the vortices shed from the structure 

induce a periodic load on the structure which can lead to high amplitude vibration, 

especially if the vortex shedding frequency is near the natural frequency of the 

structure and the damping is small. Underwater structures, chimneys and tall slender 

buildings are good examples of this phenomenon. This oscillation can happen 

transverse or in-line to the main stream or in both directions.  

It is sometimes argued that in-line oscillation is of no practical interest. 

However, it is important to note that in-line oscillation can lead to structural 

damage, e.g. damage to a thermometer case at the Monju fast-breeder nuclear power 

plant – leading to the shutdown of the plant – was a result of symmetrical shedding 

[1]. Wootton et al. [2] carried out an experimental investigation on the vortex-

induced motions of circular steel piles during tidal flow. This revealed large 

amplitude in-line oscillation in nature.  

Various parameters have been studied for in-line motion, among them the 

frequency ratio. This is the ratio of frequency of cylinder oscillation and the 

Strouhal number. The cylinder in in-line oscillation has been investigated 

experimentally and numerically. An experimental study for in-line oscillation by 

Cetiner and Rockwell [3] was carried out at medium Reynolds numbers (Re=405–
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2482) over a frequency ratio range of 0.44 to 3. Al-Mdallal et al. [4] investigated a 

similar frequency ratio range numerically at Re=200 at oscillation amplitude A=0.1 

and 0.3, finding abrupt changes in the vortex structure, or vortex switches. Baranyi 

et al. [5] analyzed in-line cylinder oscillations at frequency ratios 0.8 and 0.9, where 

the oscillation amplitude was varied between 0.1 and 0.7. A large number of jumps 

were identified in the time-mean values of lift and torque coefficients, indicating 

vortex switches. From these studies only scattered data are available; there is a need 

for a systematic investigation of the effect of frequency ratio on flow past a cylinder 

oscillating in-line. 

This two-dimensional numerical study aims to investigate the effect of 

frequency ratio on the flow past a circular cylinder oscillating in-line at a fixed 

oscillation amplitude value and at four Reynolds numbers (Re=80, 120, 160 and 

200). The frequency ratio range investigated is from the lower threshold value for 

lock-in to 1. 

COMPUTATIONAL METHOD 

The non-dimensional governing equations for the incompressible, constant 

property, laminar two-dimensional Newtonian fluid flow around a circular cylinder 

oscillating in-line with the main stream are the two components of the Navier-

Stokes equations written in a non-inertial system fixed to the moving cylinder, the 

continuity equation and a Poisson equation for pressure. Figure 1 shows the 

physical and computational domains, where 𝑅1 represents the cylinder surface and 

𝑅2 is the far field, where undisturbed uniform flow is assumed. Undisturbed 

velocity is assumed at 𝑅2 and no-slip boundary conditions are used for velocity on 

𝑅1; a Neumann-type boundary condition is applied for pressure both on the cylinder 

surface and on the outer surface. 

Figure 1 

The physical and computational domains 

In order to impose boundary conditions accurately and to avoid numerical 

inaccuracies, boundary-fitted coordinates are used. The physical domain is 

transformed into the rectangular computational domain applying linear mapping 

functions [6]. Due to the properties of the mapping functions, the grid on the 



physical plane is very fine in the vicinity of the cylinder surface and coarse in the 

far field, but the grid is equidistant on the computational domain. The transformed 

governing equations with the boundary conditions are solved applying finite 

difference method [6]. The space derivatives are discretized using fourth order 

schemes except for the convective terms which are approximated by a third order 

upwind difference scheme. The Poisson equation is solved using successive over-

relaxation, the equation of motion is integrated explicitly and continuity equation is 

satisfied at every time step. 

During the computations the radius ratio R2/R1=160 and the computational grid 

is characterized by grid points 360×292 (peripheral × radial) and the dimensionless 

time step (Δ𝑡) is 0.0005. 

The lift and drag coefficients are defined as 
 

𝐶𝐿 =
2𝐹𝐿

𝜌𝑈∞
2 𝐷
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In equation (1) D is the diameter of the cylinder, 𝜌 is the fluid density, 𝑈∞ is the 

free-stream velocity, and 𝐹𝐿 and 𝐹𝐷 are the lift and drag per unit length of the 

cylinder, respectively. The torque coefficient is computed as [5] 
 

tq = −
1
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where 𝜓 is the polar angle and 𝜏0 is the dimensionless wall shear stress. The torque 

coefficient is positive if the torque acts in counterclockwise direction. From the 

time-histories of the signals defined in equations (1) and (2) the time-mean (mean) 

and root-mean-square (rms) values are computed as 
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In this study low-Reynolds-number-flow (Re=U∞D/ν=80, 120, 160, 200) around 

a cylinder oscillated mechanically in streamwise direction is analyzed. The cylinder 

displacement is defined as 
 

𝑥(𝑡) = 𝐴 cos(2𝜋𝑓𝑡) , (4) 
 

where 𝐴 and 𝑓 are the dimensionless oscillation amplitude and frequency, 

respectively. Instead of the frequency of cylinder oscillation f the frequency ratio 

FR = 𝑓/St will be used as an independent variable, where St (called Strouhal 

number) is the dimensionless vortex shedding frequency from a stationary cylinder 

at the same Reynolds number. St values are taken from [7]. For the present 

investigation the amplitude of cylinder oscillation is fixed at A=0.5. This value 

ensures a relatively wide frequency ratio FR within which the vortex shedding 

frequency synchronizes with the cylinder motion (a phenomenon called lock-in). 

Since only locked-in cases are investigated in this study, it is important to determine 

the threshold values of FR for lock-in at the Reynolds numbers investigated.  

 



COMPUTATIONAL RESULTS 
 

Computations were carried out for four Reynolds numbers of Re=80, 120, 160 and 

200 at a dimensionless oscillation amplitude of A=0.5 while FR was varied. Figure 

2 shows the time-mean values of the lift and torque coefficients against FR for the 

four Re values investigated. It can be seen that there are a large number of jumps in 

the curves. In all cases, the solution switches between two so-called state curves [6]; 

the number and location of jumps varies. The two state curves in each set of curves, 

for lift coefficient and torque, are mirror images of each other. This, coupled with 

the existence of a critical frequency ratio values beyond which the pair of curves 

appears, strongly suggests pitchfork bifurcation [8]. There are two attractors in this 

non-linear system, each with a basin of attraction. If the sets of parameters are near 

to the boundary separating the two basins of attractions, then even a tiny change in a 

single parameter might be sufficient to change the attractor [8]. 
 

  

a) Re=80, 120 b) Re=160, 200 

  
 

c) Re=80, 120 
 

d) Re=160, 200 
 

Figure 2 

Time-mean value of lift and torque coefficients against frequency ratio 
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It can be seen in Fig. 2 that with increasing Re the locked-in domain shifts 

towards smaller FR values. The location of jumps in CL,mean and tqmean are the same 

at identical Reynolds numbers. It can also be observed that the signs of CL,mean and  

tqmean are always opposite to each other. 

In Fig. 3 the vorticity contours at Re=80 and 200 are shown at a particular 

switching point when CL,mean changes from the positive to negative sign. These 

vorticity contour snapshots are taken at the upstream-most position of the cylinder 

for both Re. Blue means negative vorticity (rotating in clockwise direction) and red 

positive vorticity (counterclockwise). It can be seen that  

(1) the flow patterns before (Figs. 3a and 3c) and after (Figs. 3b and 3d) the 

vortex switching point are practically mirror images of each other;  

(2) with increasing Reynolds number the angle of inclination of the vortex row 

increases.  

 

  

 

a) Re=80; t=189.608; FR =0.8225 b) Re=80; t=189.0335; FR=0.825 

  

c) Re=200; t=169.098; FR=0.71875 d) Re=200; t=168.8045; FR=0.72  

 

Figure 3 

Vorticity contours before and after vortex switch at Re=80 and 200 

 

 

When the flow becomes periodic a limit cycle curve of two periodic signals can 

be plotted. In Fig. 4a limit cycle curves (x,𝐶𝐿) are shown for Re=200 for FR values 

before (red, lower curve) and after (blue, upper curve) a vortex switch. The two 

curves appear to be mirror images of each other. This is confirmed by Fig. 4b, 

where the pre-switch limit cycle curve is (x,𝐶𝐿) and the post-switch curve is (x,-𝐶𝐿). 

As can be seen in Fig. 4b, the two curves are practically identical. This is an 

indication of pitchfork bifurcation [8]. 

 



  
a) (x,CL) for pre- and post-switch FR 

values 

b) (x,CL) for pre-switch and (x,-CL) for 

post-switch FR values 

 

Figure 4 

Limit cycles at Re=200 

red – FR=0.71875; blue – FR=0.72 

 

Let us see now the time-mean and rms values of drag against FR shown in Fig. 

5, where no abrupt jumps can be observed. It can be seen in Fig. 5a that the lower 

FR threshold for the lock-in phenomenon shifts to smaller FR values with 

increasing Reynolds numbers and that the peak time-mean drag value increases with 

Re, as expected. Figure 5b shows that the rms of drag increases with FR and 

basically with Re as well (except for below FR around 0.74, where the rms value is 

larger for Re=160 than for Re=200).  

 

  
a) Time mean of drag coefficient b) Rms of drag coefficient 

 

Figure 5 

Time-mean and rms values of drag coefficient against frequency ratio 

 

Figures 6a and 6b show the rms values of lift and torque coefficients against FR. 

No jumps are found and rms values shift up with increasing Re, except for the rms 

of torque coefficient for Re=200. As can be seen, none of the rms value curves have 
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jumps, meaning that vortex switches affect the time mean of lift and torque but have 

no effect on any rms curves or on the time mean of drag.  

 

  
a) Rms of lift coefficient b) Rms of torque coefficient 

 

Figure 6 

Rms values of lift and torque coefficients against frequency ratio 

 

CONCLUSIONS 

 

This study deals with the numerical simulation of a two-dimensional 

incompressible, laminar Newtonian fluid flow around a circular cylinder 

mechanically oscillated in-line with the main flow. The objective is to clarify the 

effect of frequency ratio on the flow at Reynolds numbers Re=80, 120, 160 and 200 

and at a fixed dimensionless oscillation amplitude of 0.5. Time-mean and rms 

values of force coefficients were plotted against frequency ratio f/St. It was found 

that: 

 

 with increasing Reynolds number, the general trend was for both time-mean 

and rms curves to shift to smaller frequency ratio values, thus the lower 

threshold values for lock-in shift to smaller frequency ratio values with Re;  

 jumps between two solutions were found for all Re numbers for the time 

mean of lift and torque, indicating switches in the vortex structure; 

 post-switch solutions are mirror images of pre-switch solutions, as shown by 

both vorticity contours and limit cycle curves. 
 

In this study only one oscillation amplitude was investigated, due to the huge 

amount of computational work needed. Further investigation on the effect of 

frequency ratio at other oscillation amplitude values would be useful. 
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