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Nomenclature

Here the most important notations are gathered, although each notation is described in the text
when first used. Due to the large number of constants and notations, a few symbols might appear
in a section as for example integration constants.

Latin symbols:

a inner radius of spheres, curved beams and disks

A surface

b outer radius of spheres, curved beams and disks

Bi body force vector

Bjj dielectric constants (for e-form)

C constant of integration

Cijki material stiffness

D, Di electrical displacement

Bijk piezoelectric constants

E Young modulus, modulus of elasticity

Ei coordinates of the electrical field, negative of potential gradient
Ejj Almansi strain tensor

f distributed load at the boundary of the layers

Oijk piezoelectric constants

G shear modulus

h(r), hi thickness of radially graded disks, thickness of layers

M general notation for material parameters

(.. M elastic part of (...)

n number of layers

p pressure

Pi material dependent coefficients of temperature

q heat flow

r radial coordinate of cylindrical and spherical coordinate systems
Fmi average radius of the i-th layer

Ri radius values of layers and curved bodies

T temperature difference function, temperature field (T(r)=taps-trer)
t temperature value

tabs absolute temperature (in K)

tref reference temperature (where the stresses are zero if the body is undeformed)
(..)7 thermal part of (...)

u radial displacement

Ui coordinates of the displacement vector

Uo complementary energy per unit volume

\Y volume

V(r) stress function




Greek symbols:

a
Bii
Yij
Y
Jij

&

&ij
g

eSS 2 a™® o= >0

coefficient of linear thermal expansion
dielectric constants (for g-form)

shear strain on the ij plane

heat transfer coefficients

Kronecker delta

normal strain in the direction i

strain tensor

circumferential coordinate of spherical coordinate system
function of the Kirchoff integral transformation
thermal conductivity

Poisson’s ratio

total complementary energy

density

normal stress in the direction i

shearing stress on the ij plane

tangential coordinate of spherical and cylindrical coordinate systems
angular velocity of rotating disks




1. Introduction

As technology progresses at an ever increasing rate, the need for advanced capability materials
becomes a priority in the engineering of more complex and higher performance systems. This need
can be seen in many fields in which engineers are exploring the applications of these new engineered
materials. Pure metals are used rarely in engineering applications because of the demand of
conflicting property requirements. In many cases an application may require a material that is hard
as well as ductile. To solve this problem, metals are combined with other metals or non-metal
components to improve their material properties.

1.1. Composite and functionally graded materials

One method of producing materials with improved properties is to combine them in solid state
which is referred to as composite materials [1]. These advanced inhomogeneous materials are
made of one or more materials in solid state with distinct mechanical and chemical properties. The
composites offer excellent properties which are different from the individual constituent materials
and in most cases lighter in weight. The basic types of composite materials are particle-reinforced,
fiber-reinforced, laminated or layered structural and filled composites. The utilization of these
materials is limited because under extreme working conditions a phenomenon called delamination
[2] will occur. This process is especially problematic in high temperature environments when the
parent materials have different coefficients of linear thermal expansion.

To solve this problem, researchers in Japan in the mid 1980s created the concept of the
functionally graded material during a hypersonic space plane project where the body of the
spaceplane is exposed to very high temperature environment with huge temperature gradient. The
researchers wanted to create a material by gradually changing the material composition in order to
improve both the thermal resistance and the mechanical properties of the structural members of
the plane.

Functionally Graded Materials (FGMSs) are advanced material in which the composition and
structure gradually change resulting in a corresponding change in the properties of the material. In
functionally graded materials the sharp interfaces between the constituent materials are eliminated
[3]. It replaces this sharp interface, which is where failure can be initiated, with a gradient interface
which produces smooth transition from one material to the next [4, 5]. This solution lessens the
stress concentrations which become troublesome in a laminated composite material. At high
temperature, the smooth transition of material properties provides thermal protection, great
mechanical behaviour and structural integrity without introducing a single point for failure within
the structure. In recent years this concept has become more popular in Europe.

From the point of view of material processing methods, the functionally graded structural
components can be divided into two groups, thin and bulk functionally graded materials. Thin
functionally graded materials or surface coatings can be produced for example by vapour
deposition, plasma spraying or self-propagating high-temperature synthesis [1]. These methods
are energy intensive and produce poisonous gases as their byproducts. All the above mentioned
processes cannot be used to produce bulk functionally graded materials because they are generally
slow and energy intensive, therefore they are uneconomical.

Bulk functionally graded materials are produced using powder metallurgy technique,
centrifugal casting method, solid freeform technology [6], etc. Powder metallurgy technique is
used to produce functionally graded material through weighing and mixing of powders according
to the predesigned spatial distribution as dictated by the functional requirement, stacking and
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ramming of the premixed-powders, and finally sintering. Despite the excellent characteristics of
powdered metallurgy, there exist some limitations, for example certain shapes and features cannot
be produced. The centrifugal method is utilized to create continuous structures, where the force of
gravity is used through the spinning of the mould, which contains molten metal matrix and ceramic
powder, to form bulk functionally graded materials. One of the main problems of the centrifugal
method is the limit to which type of gradient can be produced, because the gradient is formed
through natural processes with two main components, which are the centrifugal force and the
density difference. To solve these problems, researchers are using an advanced manufacturing
method known as solid freeform (SFF) method. This is an additive manufacturing process that
offers lots of advantages that include: higher speed of production, less energy consumption,
maximum material utilization, ability to produce complex shapes and design freedom as parts are
produced directly from CAD data [7]. SFF involves five basic steps, which are the generation of
CAD data from softwares like AutoCAD, Solid Edge, etc., conversion of the CAD data to Standard
Triangulation Language (STL) file, the slicing of the STL into two- dimensional cross section
profiles, building of the component layer by layer, and lastly removal and finishing. To produce
bulk functionally graded components the laser based SFF methods are utilized generally, such as
3D printing, laser cladding based method, selective laser sintering and selective laser melting. A
big disadvantage of the solid freeform method is the poor surface quality, therefore a second
finishing operation is necessary.

The fabrication processes are constantly improving, the cost of powders and the overall process
expense are decreasing, therefore the application of functionally graded materials are expanding.
These advanced materials are utilized in high efficiency engine components, light weight
structures for aircraft and space industry, implants, cutting inserts, tools, numerous military
applications, etc.

1.2. Preliminaries

The dissertation deals with the steady-state thermoelastic problems of simple structural
components, such as disks, spheres and beams, which are subjected to thermal and mechanical
loadings. These components are made from inhomogeneous materials, especially functionally
graded materials and laminated composites.

A lot of books and papers deal with the thermoelastic problems of homogeneous, isotropic
materials. In the past few years many researchers dealt with the mechanics of structures made from
inhomogeneous materials, in recent years the concept and the mechanics of functionally graded
materials have become more popular in Europe.

Lots of works deal with the mechanics of functionally graded materials from various aspects.
One of the main fields of the mechanical analysis for FGMs is finite element modelling for these
materials, another areas are the stress, stability, dynamic analysis and fracture mechanics mostly
for FGM beams, plates and shells [8, 9]. There are several textbooks dealing with the analytical,
semi-analytical and numerical solutions for the thermomechanical problems of hollow spheres,
cylinders, beams and disks.

The analytical solution for the stresses and displacements in spheres and cylinders made from
functionally graded materials are given by Lutz and Zimmerman [10]. Their paper considered thick
radially graded spherical and cylindrical bodies under radial thermal loading, where the
composition of the constituent materials was linear.

The work by Tutuncu and Ozturk [11] derived closed-form analytical solutions for the stresses
in functionally graded cylindrical and spherical bodies, subjected to internal pressure alone.
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Radially varying inhomogeneous material properties are considered with a material stiffness-
matrix in which the parameters are obeying a simple power-law, furthermore the stress
distributions depends on the inhomogeneity constant. This work presents specific applications to
control the stress distribution. The paper of Obata and Noda [12] studied one-dimensional steady-
state thermal stress problem for functionally graded hollow circular cylinders and hollow spheres
by use of a perturbation approach in order to investigate the effect of the composition on stresses
and to design the optimum functionally graded hollow circular cylinder and hollow sphere, under
different assumptions of temperature distributions. The unsteady-state thermal stress of graded
circular hollow cylinders is based on the multilayered method and Green function were presented
by Kim and Noda [13].

Another general analysis of one-dimensional steady-state thermal stress problems in a hollow
thick FGM cylinder was obtained by Eslami et al. [14]. This work uses a direct method to solve
the heat conduction and Navier equations, the temperature distribution is assumed to be a function
of the radial coordinate. In a similar work (2005), Eslami et al. [15] investigated the thermal and
mechanical stresses in hollow functionally graded spheres using the same method as in [14].

Liew et al. [16] investigated the thermomechanical behavior of hollow circular cylinders made
from functionally graded material. The exact solutions are obtained by a novel limiting process
that employs the solutions of homogeneous hollow circular cylinders, with no recourse to the basic
theory or the equations of nonhomogeneous thermoelasticity with the results that thermal stresses
occur in the FGM cylinder, except in the trivial case of zero temperature and heat resistance may
be improved by the proper variation of material composition. The thermal stresses in the FGM
cylinder are governed by more factors than in the case of homogeneous materials.

Zamani N. and Rahimi [17] investigated the thermal and mechanical stresses under generalized
plane strain and plane stress assumptions, respectively. Concerning the stress analysis of
cylindrical and spherical structural elements, Tutuncu and Temel [18] presented a novel approach
to stress analysis of pressurized FGM cylinders, disks, and spheres. In this work axisymmetric
displacements and stresses in functionally graded hollow cylinders, disks and spheres subjected to
constant internal pressure were determined using plane elasticity theory and the method of
complementary functions.

The work of Nayak and Mondal [19] presented an analysis of a functionally graded thick
cylindrical vessel with radially varying properties in the form of the displacement field, strains and
associated stresses for thermal, mechanical and thermomechanical loads. This contains a reducing
method for the FGM pressure vessels to thick cylindrical bodies made of isotropic homogeneous
materials. The paper of Shao [20] presented the solution of a functionally graded hollow circular
cylinder using a multilayered approach and the theory of laminated composites. That case is
considered when the layers have finite lenght, the body is subjected to axisymmetric thermal and
mechanical loads. Furthermore the material properties are homogeneous in each layer, varying
radially between the layers and they are independent of the temperature field. The results are also
presented for a mullite-molybdenum functionally graded circular hollow cylinder. The work by
Vitucci and Mishuris [21] investigated multilayered cylinders with perfect and imperfect contact
between the isotropic homogeneous layers, and the residual stresses in ceramic layers. Arefi [22]
applied the general shell deformation theory to functionally graded cylinders shells.

You et al. [23] presented an accurate method to carry out elastic analysis of two kinds of thick
spherical pressure vessels subjected to internal pressure. In the first case a spherical body is
considered which consists of two homogeneous layers near the inner and outer surfaces of the
vessel and one functionally graded layer in the middle. The other investigated case consideres a
functionally graded sphere. In this paper the effects of the Young’s modulus of the outer and inner
layers and geometric size of the middle layer on the displacement field and on the associated
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stresses are examined. A method to obtain an almost constant circumferential stress in the spherical
vessels made of functionally graded material only is presented.

Ahmet and Tolga [24] dealt with the plane strain analytical solutions for functionally graded
elastic and elastic—plastic pressurized tubes using small deformation theory. The modulus of
elasticity and the uniaxial yield limit of the material are assumed to vary radially according to
parabolic forms. The plastic model is based on Tresca yield criterion, its flow rule and ideally
plastic material behaviour. By the suitable selection of the material parameters, the inhomogeneous
elastic-plastic solution can be reduced to a homogeneous one. Chen and Lin [25] carried out the
elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded
materials when the material parameters are varying exponentially along the radial coordinate. This
work investigates the stress distribution along the radial direction. Shao and Ma [26] presented
thermo-mechanical analysis of functionally graded hollow circular cylinders subjected to
mechanical loads and linearly increasing boundary temperature. Thermomechanical properties of
functionally graded material are temperature independent and vary continuously in the radial
direction of the cylinder. Using the Laplace transformation technique and methods for ordinary
differential equation, the solutions for the time-dependent temperature and thermomechanical
stresses are calculated, furthermore an example is presented for a molybdenum-mullite graded
cylinder in which the material properties vary exponentially along the radial coordinate.

Nayak et al. [27] elaborated an analytical solution to obtain the radial, tangential and effective
stresses within thick spherical pressure vessels made of FGMs subjected to axisymmetric
mechanical and thermal loadings. The properties of the material for the vessel are assumed to be
graded in the radial direction based on a power-law function of the radial coordinate but the
Poisson’s ratio has constant value. With thermal boundary conditions of the third kind and steady-
state unidirectional radial heat conduction, the equilibrium equation reduces to Navier equation. A
work by Bayat, Mahdi and Torabi [28] dealt with the previously presented problem too, and
investigated the effect of the index parameter of the power-law functions on the stress distribution.

In paper by Pen, X. and Li, X. [29] the thermoelastic problem of isotropic functionally graded
disks with arbitrary radial inhomogeneity was considered. The numerical solution of the steady-
state thermoelastic problem is reduced to a solution of a Fredholm integral equation. A general
analysis of one-dimensional steady-state thermal stresses in thick cylinder made of isotropic
radially inhomogeneous elastic materials is presented by Jabbari et. al [30]. An analytical method
is used to solve the heat conduction and Navier equations in [30].

Some textbooks such as Timoshenko and Goodier [31], Solecki and Conant [32], Barber [33],
Baroumi and Ragab [34], Hetnarski and Eslami [35], Noda et. al [36] give detailed analysis of the
thermal stress problem for homogeneous isotropic elastic disk with axisymmetric temperature
field. Furthermore these books and papers [31-36] neglect the convective heat transfer on the lower
and upper plane surfaces of the disks. Numerous papers, such as [37-41], present
thermomechanical problems of functionally graded disks but the material parameters are special
functions of the radial coordinate.

Wang et al. [61] studied the dynamic problem of a multilayered piezoelectric spherical body
under symmetric loading. The superposition principle is used to divide the problem into quasi-
static and dynamic parts. Wang and Xu [42] investigated the effect of material inhomogeneity on
the electromechanical behaviors of exponentially graded piezoelectric spheres using the Frobenius
series method. The paper by Sburlati and Atashipour [43] investigated the electromechanical
problem of piezoelectric spherical bodies with functionally graded coating. The material properties
are power-law based functions of the radial coordinate. The work of Ghorbanpour et. al. [44]
presents analytical solutions for a few cases of radially graded piezoelectric spheres under
axisymmetric mechanical loading.
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As for functionally graded beams, paper [45] dealt with the two-dimensional problem of
exponentially graded beams under uniaxial tension and bending. The governing equation is
derived by means of the Airy stress function method together with the strain compatibility
equation. Sankar [46] studied a bending problem of a simply supported FGM beam based on the
theories of beams and two-dimensional elasticity. Zhong and Yu [47] obtained the general solution
for a cantilever made from functionally graded beam subjected to different kinds of loads. The
paper by Ying et al. [48] gave a two-dimensional elasticity solution for functionally graded beams
resting on elastic foundations. Wang and Liu [49] analysed a bi-material beam with graded
intermediate layer subjected to uniform loading on the upper surface. A paper by Li et al. [50]
made a stress analysis of FGM beams using effective principal axes. Papers [62-65] dealt with the
problem of bimetallic strips made from two different homogeneous components, although the
curved beams were not investigated.

1.3. Objectives

As we have seen in the previous section, analytical solutions were derived only in special cases,
for example for power-law based material properties, constant Poisson’s ratio, etc. Most of the
papers and works neglect the temperature dependency of the material properties. The aim of the
dissertation is to deal with the problems of functionally graded simple structural components made
from isotropic functionally graded materials and layered -laminated- composites subjected to
thermal and mechanical loads. | intend to derive methods for thermoelastic problems of
functionally graded materials with properties described by arbitrary spatial and temperature-
dependent functions. | will investigate stationary or steady-state thermoelastic problems. The time-
independence of the functions involved separates the analysis of the temperature field from that of
the elastic field, therefore these problems become uncoupled. As we have seen in Section 1.1 in
many cases the functionally graded structural components are built with additive methods layer by
layer, therefore we can approximate the problem of functionally graded components with methods
of layered components (we will refer to this model as multilayered approach) with finite layer
number n. Obviously when n—oo we get to the functionally graded materials. In view of this, the
objectives of the dissertation are

(a) to derive analytical methods to calculate the temperature field, displacements and stress
field within layered spherical bodies;

(b) to develop fast and accurate numerical methods for determining the temperature-,
displacement- and stress field within functionally -radially- graded spherical components,
when the material properties are arbitrary functions of the radial coordinate and
temperature;

(c) investigation of special problems of functionally graded spherical bodies, such as
incompressible or piezoelectric, radially polarized materials;

(d) to present analytical solutions for functionally graded spheres, then compare the developed
one-dimensional numerical and analytical methods to each other and to finite element
simulations;

(e) to develop analytical solutions for calculating the temperature field, displacements and
normal stresses in layered composite disks;

(f) derivation of numerical methods for rotating thin functionally graded disks with arbitrary
thickness profile when the material properties are arbitrary functions of the radial
coordinate and the temperature field, furthermore there are combined thermal and
mechanical loads on the cylindrical boundary surfaces;
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(g) to determine the thermal stresses and displacements in honhomogeneous prismatic bars
caused by mechanical and thermal loads when the cross section of the bar is an arbitrary
bounded plain domain, the material properties and the temperature field do not depend on
the axial coordinate;

(h) to deal with the problems of curved layered composite and functionally graded curved
beams subjected to special thermal and mechanical loads;

(i) to compare the developed methods to each other, to finite element solutions and to results
of the literature.

The text of the dissertation is organized into seven chapters. After the introduction and the
overview of the literature, the basic concepts and equations of thermoelasticity are presented in
Chapter 2. In Chapters 3 and 4 several methods are derived to deal with the thermoelastic problem
of layered composite and functionally graded spherical bodies, objectives (a)-(d). Chapter 3
presents analytical methods for composite and radially graded spheres, while Chapter 4 focuses
on numerical methods for functionally graded spherical bodies. Chapter 5 contains a few
thermoelastic problems of thin radially graded disks (e)-(f). Objectives (g), (h) and (i) are presented
in Chapter 6. The dissertation closes with a brief summary and the list of the most important
theoretical results, i.e., the theses.
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2. Basics of thermoelasticity

In this chapter the basic equations are presented for the thermoelastic problems which will be
investigated in the next chapters.

2.1. Displacement and strain tensors

Consider an elastic body in its original undeformed configuration described in the coordinate
system (g1, g2, g3) fixed to the body [35]. A point P of the body has the coordinates g; (i = 1, 2, 3)
in this system (Fig. 2.1), after the loading, point P is deformed and moved to a new position Q.
Along with the body, the original coordinate system is transformed into the deformed
configuration (x1, X2, x3). The coordinates of the point Q in the deformed coordinates are xi, (i=1,
2, 3). It is assumed that the change and deformation of the body is continuous and the point
transformation is one-to-one.

(undeformed  (Q3)
configuration)  x,

deformed
configuration

AN *9

Figure 2.1. The displacement vector.

Let us confine ourselves to the rectangular Cartesian coordinates, and assume that the law of
coordinate transformation between the original and the deformed coordinates and its inverse
transformation law are known and given as

X = X(9,,9,,9,), (2.1.1)
9 =G (X, X5, %) . (2.1.2)
From these equations we get
OX;
5. (2.13)
0g.
dg; = —-dx,. 2.1.4
g| an k ( )
The differentials of position vector in the original and deformed configurations are
dr, =g,dg;, (2.1.5)
dr = a,dx;, (2.1.6)

where gi and ai are the unit vectors in the original and deformed coordinates, respectively. Here
the summation conventions are valid. The differentials of line elements in the original and the
deformed coordinates are



dS§ =dr, -dr, =g, -9,dg,dg; = 5;dg,dg;, (2.1.7)

dS? =dr-dr =a, -a,dxdx; = 5;dxdx;. (2.1.8)
The substitution of Egs. (2.1.3), (2.1.4) into Egs. (2.1.7), (2.1.8) gives
- 0g;
ds? = 5, % ax, i g, (2.1.9)
OX, oX
: OX,
ds? = 5, X g, Lidg,. (2.1.10)
a9, 99,
With the combination of Egs. (2.1.7)-(2.1.10) we get
ds? —ds? = (@, —s, %%jdxkdx,, (2.1.11)
OX, OX,
OX; OX;
dSZ—dSOZ :Ké‘ija—gka—g:—é‘lidgkdgl. (2112)

Let ejj and E;jj denote the Green strain tensor in terms of the strains in the original coordinates and
the Almansi strain tensor in terms of the strains in the deformed coordinates, respectively as

. OX, .0
€q :1 é‘i'%i_é‘kl v By :1 S _@%& ' (2.1.13)
2\ " og, o9, 2 ' OX, OX,
The displacement vector u is defined as
u=r-r,, U=x-0;. (2.1.14)
The relation for the Almansi strain tensor is
1({du; éu. ou, ou
E =2 2L+ k% | 2.1.15
! 2£8xi ox; O, 8ij ( )

For the infinitesimal theory of elasticity the displacement gradient ux,iis small, so that the quadratic
term in Egs. (2.1.15) may be neglected and strain tensors ejj and Ej; are both reduced to the linear
form as

1{ ou, ou 1
e =E. +=| =X [=Z(u.. +u..). 2.1.16
! ! 2{8xi GXJ} 2< H "’) ( )
In terms of the Oxyz conventional Cartesian coordinate system, the six strain-displacement
relations reduce to

ou au, ou

— — X — — — —
EnTE T T T8y TE, = ,

X Yooy

gooL, _ifou oun 1 1fou, ou) 1 _1(5Ux+%j
2= =5y T ax T2 T ol ey T T2 o xS
In equations (2.1.17) uy, uy and u, denote the components of the displacement vector in the

direction of x, y and z, respectively. Here we note that the strain tensor &ijj is symmetric. In Orgz
cylindrical coordinate system the strain-displacement relations are

(2.1.17)
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ou, 1(du, ou,
&=, ¢&,=~ — tu 1 €, = '
or 7 r\op 0z

1éu, ou, u, 1éu, ou ou, du
P 4+ 2 — + + —Z

“rop o v 7" Yop @™ wm ar

(2.1.18)

Vo

where ur, U, and u; are the components of the displacement vector. In Orp3 spherical coordinate
system the strain-displacement relations can be written in the following forms:

ou
gr:%,ggzl(%Jrurj,g:_l —~ +u,sing+u,cosd |,

or r{ o9 ? rsing| op
_Eau”raﬁ u, 1 aur+6u¢, u,

_ Y L 2.1.19
7o =Y o9 ar 17 rsinddp or r ( )

ou
7/9:1 .1 au9+ ? _u cosd ||,
“ rlsingodp (08 7

where ur, U, and ug are the components of the displacement vector in the current coordinate system.

2.2. Constitutive law and equilibrium equations

In the classical theory of linear thermoelasticity the components of the strain tensor are linear
functions of the components of the stress tensor and the components of the strain tensor due to the
mechanical load and temperature change, that is [35]

g =& +& (2.2.1)
where &M and &’ denote the elastic and thermal strain tensors. The thermal strain due to
temperature change is

.
&j = a(tabs — L )5

i - (2.2.2)
Here a cubic element was considered whose temperature is raised from the reference temperature
tret at which strains and thermal stresses are zero, to the absolute temperature value taps. The sides
of the element are free from tractions, « is the coefficient of linear thermal expansion. The relation
(2.2.2) represents a property of an isotropic body, in which a temperature change t—trer results in
no change of shear angles, the only result being a change of volume of the element. The elastic
strain tensor is linearly proportional to the stress tensor oij as

1 1%
5i:'v| :E(Gij _1+Vakk5ijJa (2.2.3)

where G is shear modulus, v is the Poisson’s ratio. Eq. (2.2.3) is known as the constitutive law of
linear elasticity or Hooke’s law. The constitutive equation of linear thermoelasticity is

1 1%
8ij = E(O'” —makké‘ljj+ a(tabs _tref )é‘u y (2.2.4)

for the stress tensor we get
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o, =ZG[5” - v2 (gkk_l"'_va(tabs—tmf )jaij] (2.2.5)

—ZV 1%
Let us consider an elastic body with body force B. The motion equation can be expressed as
o, + B, = pl;, (2.2.6)

where the mass density is denoted by p, U is the acceleration vector. The equilibrium equations
(G, =0) for Oxyz Cartesian coordinate system are

oo, Ot 0

. SR, A TXZ+BX:O,
OX oy 0z
aTyx+aay+aTyZ+B =0 2.2.7
ox oy oz (22.7)
0
0Tu + 8y o0, +B,=0.
OX oy oz

In Orgz cylindrical and Orpd spherical coordinate systems the equilibrium equations can be
written as

r

0
60 +1 Tr(p+6z-r2 +l(o-r_o- )+Br:0,
or rop oz r v

or 100 Ot 2
or + = P + pz +_z'r + B = O, 2.2.8
or rop oz r " ° ( )

0
aT“+1 Teraaer}TerrBZ:O’
o rop o0 r

and

0
5Gr+157r3+ 1 Trgo +1(20r_o-3_o' +Tr900519)+ Br=01
or r o9 rsing dp r v
87,'3 1803 1 aTg¢, 1

ry - +— += - cos$+3r,, |+B, =0, 2.2.9
oa rod rsing op r[(% %) Tg] ? (2.29)

or +182’w3+ 1 Jo,

or

or r 09 rsing op

+%(213¢, cos9+3r,,)+B, =0.

2.3. Complementary energy

The practical solution of many structural problems is often obtained by one of various energy
methods. The complementary energy is valid for finite strain and material nonlinearity. For small-
strain problems this method is very effective, however for finite strains where the stresses couple
with the displacements the complementary energy methods are difficult to use [51], [52].

The strain energy per unit volume can be expressed as
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1
UO = E(gxdx +19yo-y +gzaz +}/xyz-xy +7yzfyz +7/XZTXZ) ] (2.3_1)

with Hooke’s law we get

o'=%(()—§ +O_>2/ +Uzz)+%(f§y +7, "H—;)_%(o-xo_y +t0.0y +O_XO_Z) . (232)

The complementary energy per unit volume Uo for thermoelastic problems can be expressed as
Uy=U,+aT (0, +0, +0,), (2.3.3)

then the total complementary energy can be determined as

IT, (O'X,O'y,az,rxy,rxz,rzy)=IUOdV . (2.3.4)
\Y

From Up we get the stress and strain components as

oy, oy, ou, oy, oy, ou,
E :—,(C,‘ :_’822_’ X = y XZ: y Z: . 235
* oo, ’ 60'y oo Py or 4 or Yy or ( )

X z Xy Xz yz

According to Eq. (2.3.4) the complementary energy can be expressed as
I, = I{%[af +0; +0; —ZV(O'XGy +o0,0, +0,0, )+ 20 +v)(zy, +75, + 75 J+aT (o, +0, +O'Z)}dV , (2.3.6)
\

assuming that there are no prescribed surface displacements or the prescribed surface
displacements vanish. The theorem of minimum of complementary energy states that among all
the sets of admissible stresses ox, ay, 0z, 7xy, Txy, Ty Which satisfy all the equilibrium equations and
the prescribed stress boundary conditions, the set of actual stress components makes the functional

HC(O'X,O'y,O'Z,T Z'XZ,TZy) an absolute minimum [51], [52].

Xy!

2.4. Functions of the material properties

Within the functionally graded material the volume fraction of the constituent materials gradually
varies in the gradiation direction thus the effective properties of FGMs change along this direction.
Since functionally graded structures are most commonly used in high temperature environment
where significant changes in mechanical properties of the constituent materials are to be expected
[53], [54], it is essential to take into consideration this temperature-dependency for accurate
prediction of the mechanical response. Thus, the effective Young’s modulus Ey, Poisson’s ratio vx,
coefficient of linear thermal expansion of and thermal conductivity s are assumed to be
temperature-dependent.

There are several method to calculate these effective properties, such as the Mori—Tanaka
scheme [55] for regions of the graded microstructure which have a well-defined continuous matrix
and a discontinuous particulate phase or the self-consistent method [53] which assumes that each
reinforcement inclusion is embedded in a continuum material and does not distinguish between
matrix and reinforcement phases.

In many cases the effective material parameters can be expressed as a nonlinear functions of the
temperature field [53], [56]:

-18-



M(T)=P,(P,T *+1+PT +P,T2+PT?). (2.4.1)

In Eq. (2.4.1) M(T) denotes the function of the considered effective material property (E, v, o and
1), Po, P-1, P1, P2 and P3 are material dependent coefficients of temperature T [K]. Using these
results we can present functions for the temperature- and position-dependent functionally graded
material properties of disks, spherical bodies and plates [53]:

M, (r,T) =[M,(T) =M, (M)][K]" +M,(T),
27—h (2.4.2)

where for example: K (r) = -2 or K™ (z) =

b-a 2h

furthermore, indices 1 and 2 denote the constituent materials, mostly metal and ceramic

components, a and b denote the inner and outer radii of the spherical body, h is the thickness of

the plate, z is the thickness coordinate and m is the volume fraction of the FGM. The effect of the
power index m is shown in Fig. 2.2 in the case of two constituent materials.

1.00 —
—
_—— _—

N\
\\3
\9
\
A
N\
\
\
\

volume fraction

alb b
5

radial coordinate

Figure 2.2. The effect of the power index m to the volume fraction.

2.5. Piezoelectric material behaviour

A piezoelectric material responds to an electric potential gradient by straining, while stress
causes an electric potential gradient in the material. This means that the piezoelectric effect is the
coupling of stress and electric field in these materials. Lets define an electric enthalpy function H
as [57], [58]

1 1
H(E, <) = ECijklgijgkI — E’B‘j EE; —eu&Ee (2.5.1)
where the relations of the strain tensor € and the electric tensor E to the displacement field u and
electric potential ¢ are

1
E.. :E(ul,J +uj,i)’ Ei :_¢,i , (252)

]

and the constitutive equations ,in the so-called e-form, can be derived from the electric enthalpy
as
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oH

iy =% = Cijklgkl — €ij E,,
Zl‘ji (2.5.3)
Di ZE = eijké‘jk + B“EJ

In these last terms the notation Cij denotes the material stiffness measured by constant electric
field, eij are piezoelectric constants and Bjj =g are the dielectric constants. Furthermore the
coupled equations for a piezoelectric linear medium can be expressed in g-form as

&j = SijaOia + Gnij Dnn » (25.4)

E = —OiikT ik +/3ij Dj J (2'5'5)
where Sijw are the material compliances defined at zero electrical displacement and gijk are
piezoelectric constants. It is useful to introduce the compressed notation [58] for these quantities.
Due to the material symmetry, these equations take shorter forms.
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3. Thermoelastic problems of layered composite and functionally
graded spherical pressure vessels

In this chapter analytical solutions are presented for four cases of thermoelastic problems of
spherical bodies. We consider one-dimensional thermoelastic problems of spherical bodies made
from laminated composite and functionally graded materials which are subjected to axisymmetric
thermal and mechanical loads on the inner and outer boundary surfaces. The hollow spherical body
Is subjected to unidirectional steady-state heat conduction with third- and first kind thermal and
stress boundary conditions on the boundary surfaces. For multilayered spherical pressure vessels
two analytical solutions are formulated. These methods can be used to determine the displacements
and stress field of functionally graded spherical pressure vessels with arbitrary radial coordinate
and temperature-dependent material properties. Further analytical solutions are derived for two
cases of functionally graded materials. In the first case the material parameters are special
functions of the radial coordinate -except the Poisson’s ratio- and additionally the coefficient of
linear thermal expansion is temperature-dependent. In the second case an analytical solution is
derived via stress functions when the material properties are specific power-law functions of the
radial coordinate. The analytical solutions presented in this chapter will be used to verify the
accuracy of the developed numerical methods.

3.1. Multilayered spherical bodies

This section investigates a one-dimensional thermoelastic problem of a hollow layered spherical
body. The geometry of the spherical body can be seen in Fig. 3.1, where the inner radius of the
sphere is Ry, the outer radius is Rn+1and n is the number of layers. The layers of the spherical
structural component are assumed to be perfectly bonded and made of homogeneous, isotropic
materials, furthermore a spherical coordinate system Or¢d is used.

Figure 3.1. The three-dimensional sketch of the hollow layered sphere.

Thermal boundary conditions of first kind are prescribed on the inner and outer spherical
surfaces. These temperature values are given, they are assumed to be constant, non-time-
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dependent and denoted by t; and th+1. It follows that the temperature field is the function of the
radial coordinate T=T(r). The uniformly distributed mechanical loading exerted on the inner
boundary surface is denoted by p:=-f1, as we can see in Fig. 3.2, while -gn=p2 is the pressure which
acts on the outer curved boundary surface.

It is assumed that the radial stresses, the heatflow and the temperature are all continuous
functions of the radial coordinate. Our aim is to determine the displacement field and normal
stresses within the spherical component.

At first we deal with the determination of the temperature field T=T(r)=tans(r)-trer. Figure 3.2 shows
the cross section and the loadings of the i-th layer.

Figure 3.2. The cross section of the i-th layer of the sphere.

We assume that the temperature field is a continuous function of the radial coordinate thus we

have from the equation of heat conduction [59, 60]
R, R .
Gy :Ti(Ri+1) :Ti+1(Ri+1) ' Ti(r) = ti - (ti+1 _ti)(l_?)ﬁ’ Ri sr< Ri+1’ 1=12,..,n, (3.1.1)
i N
where the temperature field of the i-th spherical layer is denoted by Ti(r). We consider the case
when the radial heatflow is constant, the temperatures of the inner and outer boundary surfaces are
given:
RR., 1

(N =At, —t)— = o 1
6, (r) =4t ')Rm—Ri S, i=l.n, (3.1.2)

4, (Ri..) =d.,(R.,), i=1..,n-1, (3.1.3)

where Zi is the thermal conductivity. The surface temperature of the adjacent layers are equal
therefore we get the following equations [59]:

_ﬂi RiRi+l ti + 2’1 RiRi+1 +/1'|+1 Ri+1Ri+2 ti+1+ _ﬂ1+1 Ri+1Ri+2 ti+2 =0. (314)
R Rl R R 1 Ri+2_Ri+l

i+1 Ri+1 - Ri

i+2 i+

From Egs. (2.1.19) and (2.2.4) the radial and tangential normal strains e, &, and the stress-strain
relations of a homogeneous sphere in one-dimensional problems can be presented as [52], [60]:
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ou u
E= =8 =T (3.1.5)
o, (r)= WE].—ZV)[(l_ v)e +2ve, —(1+ v)aT(r)], (3.1.6)
o,(r)=0o,(r)= WEl—Zv)[VE' +&,—(1+ v)aT(r)], (3.1.7)

where u=u(r) is the radial displacement field, v is the Poisson’s ratio, E is the Young modulus, «
is the coefficient of linear thermal expansion, or(r) is the radial normal stress and o,(r) is the
tangential normal stress of the spherical body. According to the Navier equation, let the
displacement field for the i-th layer of the multilayered body be defined as

ui(r)=Cir+%+Ui(r), (3.1.8)

where Cj and D; are integration constants, Ui(r) has the following form [52] ,[60]:

Ui(r )—“: ir—lsz(p)pde, i=1..n. (3.1.9)

With the combination of Egs. (3.1.5), (3.1.6), (3.1.8) and (3.1.9) the expression of the radial
stress for the i-th layer can be calculated as

E, 2E. 1
(nN=C——-D,——=—+S,/(n), 3.1.10
O-n() I1—2V I1+Vi r3 I() ( )
—20,E; 1 |
S =" % jT(p)pde i=1..n, (3.1.11)
and the tangential normal stress is
E E 1 Ea.T(r) Ea, 1 ¢ )

o.(r)=C—-D ———-—- T do,i=1..,n (3.1.

(") '1-2v,  'l+vr® 1-v, 1 I (Plerdp, (3.1.12)

i R;

The following values of the displacement field and radial stresses will be used for the equations
of the i-th layer:

u(R)=n, uR,)=m, o,(R)="1, o;(R.)=0. (3.1.13)
Using Eqgs. (3.1.13), the unknown integration constants of Egs. (3.1.8-3.1.12) can be calculated as
C =k,m +k, f, —k,U.(R)-k,S,(R), (3.1.14)
D. =k;m, —k,; f, —k;U;(R) +k,;S;(R)), (3.1.15)
where
" _ 2 1-2y - (l—2vi)(1+vi)1 « — Ri1+v, K, =R%,, i=1..n.(3.1.16)

T3y

"U3R 1-v, 7 3E(1-v)

From Egs. (3.1.14-3.1.16) and (3.1.8-3.1.11) the expressions of the radial normal stress and radial
displacement for the i-th layer can be obtained:
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o, (r) = Ky (nNm; + Ky () f; + Ky (NU (Ry) + K, (NS;(R) + S;(r),
u;(r)=L;(nm + L, (r) f, + L (NU,;(R) + L,; (r)S;(R;) +U,(r),

where
B
1-2v, "

E,

Kli (r) =
K3| (r) =

Ly(r) =

ity

A
1_2 1i
rk,; + 3' L (r)=rk, —

1 2E E
—kK;, Ky(r)=—=2—

v 3i 2|() 1—2Vi
1 2E

P l+v

E,

3I K4|( )_ 1_2

i ’Lsi(r):_rkli __32|'

2i

1 2E

r1+

1 2E
r 1+,

2i

Ly (r) =

k

4

Ky;
—rk,, +r—.

—K,;,

For the i-th layer of the spherlcal body the following matrix equation can be derived:

_ I‘li (Ri+1)
I‘2i (Ri+l)

Ky(Roy) — Koy (R,,p) R

1
I‘Zi (Ri+1)
K2i (Ri+l)

)

L2 (RH—l)

_ L3i (Ri+1)
I‘2i (Ri+l)

K3|(R|+1) K2|(R|+l)||:3§|;Hl;

Jis ST
g Gy Gy LM

|

L2i (Ri+1)
_ I‘4i (Ri+l)
I‘2i (Ri+l)

5]

K4| (R|+l) K2| (R|+1) 4I

1

B I‘2i (Ri+1)
_ K2i (Ri+1)
I‘2i (Ri+l)

0
B
1 1

o
I_2| (R|+1)

Ui(R)
&(R)}

(Ri+1)
Si(Riy)

(3.1.17)
(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)

(3.1.22)

By the whole multilayered spherical body the following notations and fitting conditions will be

used for the discrete values:
U (Ri+1) =

U (R.) =U.,, 0,(Ry)=0,.(R,)—>0 =

|+1’

i=1..n-1,

(3.1.23)

furthermore f1 and gn are given. For the whole geometry the next system of equations can be
derived for the displacement values u; as basic variables:

- P, 11 Glll Gllz
0 G;l G%z - Glzl
0 |=]0 Gzzl
__ p2 i L 0 0

From Egs. (3.1.24) and (3.1.25) the unknown displacement values u;i (i=

0 0 0
~G2 0 0
Gzzz _6131 _6132 0
0 0 Gy
f=G-u+h.

n
G22_ L

h
h; - hl2

h22 _hl3 ]

(3.1.24)

(3.1.25)

1,...,n+1) can be

calculated, and then, using Eg. (3.1.17-3.1.21) the radial normal stresses can be evaluated.
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3.2. Multilayered model of spherical bodies with temperature-dependent
material properties

This section presents an analytical solution for the axisymmetric thermoelastic problem of
multilayered composite spherical bodies under combined mechanical and thermal loads -similarly
to Section 3.1, furthermore this method can be used as a numerical method to approximate the
thermoelastic problem of functionally graded spherical vessels with a thermomechanical problem
of multilayered spherical bodies (Fig. 3.3) where the temperature dependency of the material
parameters is taken into account.

The constant pressure is denoted by p2 which acts on the outer curved boundary surface while
the uniformly distributed mechanical loading exerted on the inner surface is denoted by pi1. The
layers are perfectly bonded, which means that the radial stresses and displacement, the heatflow
and the temperature are all continuous functions of the radial coordinate r, furthermore the material
properties are position- and temperature-dependent.

Figure 3.3. The multilayered model.

In this model the layers are made of isotropic homogeneous materials and are perfectly bonded,
the material properties are constants within the layers but varying radially between them. The more
layers are considered the more accurate the computations are, by FGMSs n—o.

Both the boundary conditions and the field equations [52], [60] are linear therefore the
superposition principle can be used. This means that we can add the stresses and displacements
caused by mechanical loads to the thermal stresses and displacements in order to solve this coupled

problem. A spherical coordinate system Org9 is used for our models.

3.2.1. Approximation of the material properties

We need to approximate the material properties and compute their discrete values for the different
homogeneous layers. When the material parameters are arbitrary functions of the radial coordinate,
the material properties for the i-th layer are calculated in our current model as (Fig. 3.4)

R +R

Ry = E =E(r=Ry), v =v(r =Ry). @ = a(r =Ry), 4 = Ar =Ry).i=1....n.(32.)
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Material property
M(r)

Figure 3.4. The approximation for the functions of the material properties.

In case of radial coordinate- and temperature-dependent material properties E(r,T(r)), a(r,T(r)) and
v(r,T(r)), the computation of their discrete values for the different quasi-homogeneous layers of
the multilayered spherical model require another formulae. We can assign the following material
property values for the spherical layers:

tmi =T(r = Rmi)’ Ei = E(r = Rmi’T :tmi)' Vi = V(r: Rmi'T =tmi)’czi =a(r = I:Qmi’T :tmi)' (322)

This means that we will approximate the arbitrary functions of the functionally graded material
parameters with multi-stepped functions. To build the approximation function from the n step we
can use for example the Heaviside function. Figure 3.5 indicates the sketch of the i-th layer of the
multilayered spherical body. The constant mechanical loads exerted on the inner and outer surfaces
of the i-th layer are denoted by fi and fi+1, respectively. The temperatures on the boundary surfaces
are ti and ti+1.

9=0
\ i-th |ay;}"{
s
— [ 4
It I
"'.?/\‘r,{,\\,? \ QL«“// :'"
/~.\ 'm,/\\tw % ¢ ‘\
b /EE(rRr”\®

—

Figure 3.5. The sketch of the i-th layer with the mechanical and thermal loadings.

3.2.2. Determination of the temperature field

In this subsection two cases will be investigated. These models can be used to approximate the
temperature field in a radially graded spherical body. At first, the thermal conductivity depends
only on the radial coordinate and there are prescribed thermal boundary condition of the third kind
at the inner and outer surfaces, in our second problem thermal boundary conditions of the first
kind are considered but the material parameters depend on the temperature and radial coordinate.
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An analytical solution for the temperature field can be derived when the distribution of the
thermal conductivity has special form. An example can be found in [27, 28] for power-law function
dependent thermal conductivity.

Case 1. When the thermal conductivity of the functionally graded sphere depends only on the
radial coordinate, the temperature dependency is negligible, the differential equation for the
temperature field and its solution have the following forms:

1 d dT(I‘)

Using the equations of the thermal boundary conditions of third kind on the inner and outer
surfaces we get the unknown constants of Eq. (3.2.3):

_ g (teZ _tel) A= telylﬂ“(b) Dl,b +te1717/2|ab +t927/2ﬂ’(a) Dl,a
71/1(b) D, b T 7/172|ab + 7/21(a) D, a 7ll(b) D, bt 7172|ab + 72/1(3-) Dl,a

where y, and y. are the heat transfer coefficients of the inner and outer curved boundary surfaces,
te: and te. are the temperatures of the surrounding environment, furthermore

dl - 1
Dis ?M (p%(p))dp }d”“‘b’
dlf 1 8 1
D =—|[| ——— dr|, . 1y = [| ==— do.
' drh(pzﬂ(p)jdp} (esr 1 !(p ﬂ(p)Jdp

We will approximate the temperature field of the FGM sphere using the multilayered method
in order to avoid the integration in Egs. (3.2.5). We will consider a layered spherical body with n
layer and each of them has its own temperature field Ti(r). The first and the n-th layer have mixed
thermal boundary conditions (of first kind and third kind) on the inner and outer surfaces.

dT, (r)

 (3.2.4)

(3.2.5)

T(R)=t, A(R)

r=R, AT (3.2.6)

r=R., (e2 n+1) (327)

n+l

T.(R,)=t, A(R )t dT (r)

The other layers have thermal boundary conditions of the first kind on both spherical surfaces.
Using the previously presented boundary conditions we get the temperature fields for the different
layers as

2 [
T,(r) = —AtLR, +tu R — it R1R 7RRy (tg ty) 1, (3.2.8)
-AR, +71R1 -nRR, _%R +nR-nRR, r
2

Tn(r)— ﬂ“ntan teZRn+17/2+72tan+lR 7/2R Rn+1(te2 t) l (329)

-A&R =7, n+1"'7/2Rn+1R ﬂhRn V2 n+1"'7/2Rn+1R r

R R. .

Ti(r): (|+1 t)(l——)ﬁ |:2,...,n. (3210)

We assume that the radial heatflow is constant and the surface temperatures of the osculant
layers are equal.

t.,=T(R,)=T.(R,),1=L..,n qR.,)=0,R,), i=L..n-1, (3.2.11)
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6, (r) = AR MR (ta—t,) 1 —q (= AR Ryt ) .%, (3.2.12)

—AR, +71R1 7RR, r? -4, R 72R§+1+72Rn+1R
RR 1 .
ql(l’) = qn_l(r) = qi(r) = ﬂﬁ(tm - i) R ! _HlR —, | :2,...,n—2. (3.2.13)

The unknown boundary temperatures of the spherical layers can be calculated from Egs.
(3.2.12) and (3.2.13). Substituting these values into Egs. (3.2.8-3.2.10) then summarizing the
results we get the temperature field of multilayered vessel.

Case 2. Then that case will be investigated when the thermal conductivity A(T,r) is temperature-
and radial coordinate-dependent. We will approximate the temperature field of the functionally
graded sphere for a temperature field of a multilayered spherical body with n quasi-homogeneous
layers whose thermal conductivities depend only on temperature.

A(M)=A(r=R_.T), i=1..n. (3.2.14)

mi !

For this case the nonlinear differential equation for the temperature field of the i-th layer Ti(r) has
the following form:

1d 2dT.(r)
——| A(T(r ' 0, R<r<R,, i=1..n. 2.
L O 0, R iR, ist @215
Using the Kirchoff integral transformation, this problem becomes linear
i d| ,do
) — , r 0. 3.2.16
6= zdr[ dr} (32.16)

From the thermal boundary conditions of first kind, the solution for the temperature field within
the i-th layer can be derived in the following implicit form:

Ii(&)dg Ti(&)d& RR_ (%—1},i=1,...,n. (3.2.17)

We assume that the surface temperatures t; of the osculant layers are equal and the radial heatflow
g is constant

dT.(r)

[w( ) L0

:| =0 (Ri+l) = qi+1(Ri+l) = l:ﬂm(Tm(r)) %} ,i=1,...,n—1. (3.2.18)

r=Ri,4

After some manipulations of Egs (3.2.16-3.2.18) the unknown t; (i=2, ...,n) boundary temperatures
of the layers can be calculated from the following system of equations

const—Ii(g)dS R'”FF: -t i=2..,n, (3.2.19)

i i-1

moreover temperatures t; and tn+1 are given. In the next step instead of using Eq (3.2.17) to
compute the function of the temperature we will fit a curve or curves -for example with the least
squares method- to the temperature values t; in order to make the further calculations (especially
the integrations) easier and faster. The recommended approximation function is
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(N=0,r>+6.,r"+6,+6r+0,*. (3.2.20)

appr

In order to make the approximation more accurate more polynomial curves can be used to build
the approximated temperature function. After the determination of the temperature field, the
temperatures in the middle of the different layers are calculated for the approximation function of
the material parameters according to Eq. (3.2.2).

3.2.3. Thermal part of the problem

In the next steps the calculations will be split into two parts, then the superposition principle will
be used to solve the problem. In the first case the i-th layer is under thermal loading (t;, ti+1) and
has the previously calculated steady-state temperature field, the stresses on the boundary surfaces
(fi =fi+1=0) of the layers have zero value. The u;'(r) thermal radial displacement and the ai/'(r),
oip (1), oig' (r) thermal stresses have the following forms [52]:

) ,20-2y, ) R3 )
2 rP-R® % 2 20,
,r(r)_ { RR ! Ti(r)dr—FF! rTi(r)dr] (3.2.22)
oy, (r) = g(r)— Ll ;2 iRs 2rZT(r)dr+—_|'r2T(r)dr T(r)},n_ ..... n. (3.2.23)

where Ti(r) is the function of temperature difference (compared to a trer reference temperature) of
the i-th layer. Because of the approximation of the temperature field Eq. (3.2.20), the integrals of
Egs. (3.2.21-3.2.23) contain fourth degree polinomials which can be easly calculated.

3.2.4. Mechanical part of the problem

In the second case it is assumed that the inner and outer boundary surfaces of the i-th spherical
layer are under constant mechanical loading (fi and fi+1) without the thermal loads. The differential
equation for the radial displacement field uM(r) can be derived from the equilibrium equations.
The solution of this equation and the normal stresses —according to -Egs. (2.2.3-2.2.5)- have the
following forms [52], [60]:

uM (r) = Ar+%, (3.2.24)

1+v, 2 1+v, 1 .
o (r)=2G, (1_ 2 A -5 Bij ,oi (1) = o, (1) = 2G, (1_ 2 A +F Bi] Ji=1,..n. (3.2.25)
The unknown parameters A; and B; (i=1,...,n) can be determined from the equations of the boundary
conditions (ai™M(Ri)=fi, oir(Ri+1)=fi+1) and they can be used to derive the expressions of the normal
stresses.
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3
A (1 2v, )(RH-]. i+l R f) = H—lR (f'+1 :i), (3226)
2G,(1+v. )(R,+1 R%) 4G, (R’ —RY)

f.,—Rf *R¥(f,-f)1
O_Ill\r/I (r)= |+1 i+ _ I+1 ES T i (3.2.27)

Rlil - R3 RI3+1 Ri3 r3

f,—Rf RR(f-f.)1

'M r) = |+1 i+1 v |+1 —,i=1.. . 3.2.28
UW( ) RI3+1 - RS 2(R|+1 Ri3) r3 'hen ( )

3.2.5. Application of the superposition principle

The superposition principle can be utilized for this problem, because both the previously used
field equations and boundary conditions are linear. This means that we can add the stresses and
displacements caused by mechanical loads -Eqs. (3.2.24-3.2.28)- to the thermal stresses and
displacements -Egs.(3.2.21-3.2.23)- in order to solve this problem. For the computation of the
radial displacement, radial and tangential stresses the following equations are used:

u (N =ul (N+y"(r), o, (1) =0y (N +0, (1), o, (=0 (N+on(r), i=1..n. (3.2.29)

The unknown parameters fi (i=2,...,n) in the equations of uM(r), ai™(r), a:,(r) can be calculated
from the following equations

u(R.)=u,(R,), i=1..,n-1, (3.2.30)
which ensure the continuity of the radial displacement field furthermore f; and fn+1 are given.
o (R) = f,=—py, 0, (Ry) = fru=—p,. (3.2.31)
The system of equations (3.2.30) has the following form:
af +bf,+cf,,=u,(R,)-u (R,) i=2.,n-1, (3.2.32)

where the constants aj, bi and c;j are

g - SRRu (-w) (3.2.33)
4G, (R|+1 Ri ) L+v)
R 1-2v.)., R R 1-2v)., R’
b= 1 ) ps  Misg 11 R, +—-|, (3.2.34
2Gi+l(R|:j-2 |+2)|: (l+vl+1) ' 2 (R|3+1_ R ) (1+ ) ' 2 ( )
3
3R|+2R|+1 (1 V|+1) 2 -1. (3235)

Ci
4'(3|+1(R|+2 |+1) (1+ V|+l)

Using the previously determined fi parameters and Egs. (3.2.29) the radial displacement and the
normal stresses of the multilayered spherical body can be evaluated.
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3.2.6. Improvements in the accuracy of the multilayered approach

(a) By our multilayered model, the curve of the tangential normal stress may contain significant
steps, but the stress values in the middle of each layer have good accuracy as we will see in
Example 4. The radial quantities are accurate at the boundary of the layers. Thus an approximate
curve can be fitted to these points to increase the accuracy and the convergence of the method, for
this we can use the previously mentioned least squares method. For example the recommended
form of the approximation for materials presented in Section 2.4 is

—3m/4 —m/2 —m/4 m/4
o-w_appr(r) =F " +F,..r +F .r +F .r +F+F, ,r"+

m/2 3m/4 m+1
+ I:m/2 + I:3m/4 + F r + I:m+1

. (3.2.36)

which form can be useful for power indices about 0.5<m<150. For smaller values of m we can
compute the floor functions of the exponents in Eqg. (3.2.36).

(b) Alternatively we can use the following expressions for the calculation of the discretized
material property values:

Rig Ri Rig Ri,1
[Ty [E@T=t)dp  [apT=t)dp  [v(pT=t,)dp
{ -h p R =R =R (3.2.37)
Ri+l - Ri Ri+l - Ri Ri+1 - Ri Ri+1 - Ri

(c) It is recommended to use partitions according to the value of the power index m by choosing
the radii R (i=1,...,n+1) properly. It is essential by large or small values of m, when the effective
material parameters change drastically in a small section of the body as we can see in Section 2.4.
For example the following simple method can be utilized to determine the boundary of the layers
when the distribution of the different material properties M, which denotes the quantities E, «, v,
A, etc., is described by similar functions

M, = MED MR ) oM, =MR) > R, (=1.n+D), (6239

although it is recommended to further partition the thickest layer, for example when the relation
between the radii of the first and second thickest layers is Ri+1-Ri>10(Rj+1-Rj).

(d) When the thermal loading is dominant, the accuracy of the calculations can be improved by
using power-law material functions for the different layers instead of the initial constant values.
The form of the approximate power function is

M(RHI’ tmi)] , (3239)

Mi(r,T :tmi) = MOi (RLJ ) M()i = M(R|)! mMi :IOgRM( M

R

and the equations are

Liv 1 )17 20-2v) T R? )
U () =>—"ay ——1= | FT,(r)dr + + T, (r)dr
i (1) -y Qi R™ {I‘ZE‘; (1) { 1tv, R,-R R,-RI }J‘ (r) } (3.2.40)

i+1 i+1

aEa™| 2 r*-R* % 2 |
ol (r)=-—"- | r™2 T (r)dr == | r™*T.(r)dr |, i =1,...,n, (3.2.41
(=" Lg e LY rﬂ{ (rydr |, i (3.2.41)
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E |a™2r'+R® a" | r"
o () =oT (r) = A5 | r™2T (r)dr + r™T (r)dr——T.(r) |. (3.2.42
20 =000 = T g e | T R[ (Ndr=—5T,() | (3:242)
(e) We can go further and approximate the problem of radially graded spheres with a layered
spherical body in which the material properties of the different layers are certain power-law
functions of the radial coordinate. The approximation of the material properties is presented in Eq.

(3.2.39), the steps of the model are presented in Section 3.1.

3.3. Analytical solution for a temperature-dependent functionally graded
material

An analytical solution is developed for the case when the Poisson’s ratio is constant, the
distribution of the Young modulus is assumed to be described with a power-law along the radial
coordinate [52], [28], the coefficient of linear thermal expansion specifically depends on the
temperature and radial coordinate and the temperature field has the following form:

m

E(r) = F’l(éjmg ,a(r, T(N)=(P,+ PBT(r))Gj ,a<r<hb, (3.3.1)
L

inner) b ’ outer inner) b ’

t,. —t (3.3.2)

inner _( outer

T(r)= Hl_i JfA=const.: H, =t
r
where P1, P2, P3, me and m, are material parameters. The mechanical loads are constant pressures
p1 and p2 which act on the boundary surfaces (r=a and r=Db).

3.3.1 Formulation of the analytical solution

Based on the investigated temperature field, the strain-displacement and the stress-strain relations
for spherical bodies —from Eqg. (2.2.5)- can be expressed as

E(r)

ST

[(1—v)gr +2ve, — (1+v)&(r,T(r))] alr,T) = _%__T[a(r, p)dp, (3.3.3)
E(r)

W[”r +e, {1+ V)E(F,T(r))]. (3.3.4)

o4(r)=0,(r) =

The time-independence of the functions involved separates the analysis of the temperature field
from that of the elastic field, therefore the problem becomes uncoupled, which means that
a(r,T)y—a(r) and Egs. (3.1.6-3.1.7) are valid. From the equilibrium equation, the following
differential equation can be derived for the radial displacement u:
d’u (1-v)du
1-v)—+(mg +2 —+2|v(m_+1)-1
(1=v)5 7+ (e +2) ==+ 2[v(m, +1)-1]

where the constants A1, A2 and As are

u
2

r — Alrma—l_l_Azrma—Z_l_Arma—S’ (335)
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1+v

A =" (me —m)H, (B, + BH,), (3.3.6)
A =—1a4fnf (mg +m, —H, (R, +2RH,), (3.3.7)
A= (-me - m, +2)PH. (338)

The solution of differential equation (3.3.5) is

m,+1 m, m,—1
GIr = +G,r' +G,r

u(r)=C,r +C,r + G, : (3.3.9)
where C1 and C» are unknown constants of integration and the following notations are introduced:
&:%[—(mE+1)+\/mé+9+2mE%} (3.3.10)
@z%(—(m5+1)—\/mé+9+2mE%}, (3.3.11)
6 - {ZV[v(mE(SmE +5) +2) —mg (Mg +6) —4]+m: (v—1)%(2mg +m,) +2(m +2)+} 6312)
+m, (v —1)[m, (mg (1-mg) +5+v(mg (m; —5)-5) —m (5v(m; +1) -5-m_)]
m? (v —1)*(m, +2mg +2) + m [mg (2v —1) - 2]+ mov?(3m, +2) +
2" {+ma(v—l)[—4mE(mE 11 +m (M (M, —2)—5)—m_(m, +2) +5)]}’ (3:313)
. Aa{mi(v—l)z(ma +2mg +4)+2m [v(mg +1)+meyv —1]+m, (v -1)- } 5310
’ [m, (v(mg +m2 +1)—mZ -5m, ~1) — (v(m +1)(3m +6)-m_ +mZ-6)]|
G, =[m,(v-1)(m, +mg +3)—m. (v +1)][(v -1)(m, (M, +m. —1) —2) + m_(1—-3v)]- (3.3.15)

(v =1 (m,(m, +m +1)—2)—2m.v].
The radial stress takes the form
o, (r)=CS,r*™M ™ +C,S,r’="M* 4 S rMMe 4§ yM*Met 4§ rMtMe2 (3.3.16)

in the last term we used the following simplifications

s, =z[ 2], s, =z[( 0], Z = it 3.3.17
1= [( _V)ﬂi_'_ V]’ 2 = [( _V)ﬂ'z"' V]’ _amE(l_ZV)(l_l_V)' ( e )
S, =7 {%[(1— y(m, +1)+ 2] Hald* V;(m'} * PsHl)}, (3.3.18)
S.,=2 {%[(1— ym, +2v]+ H2lF V);';’j - 2P3H1)}, (3.3.19)
S,=7 {%[(1— (M, —1) +2v] —%}. (3.3.20)

The unknown constants C1, C, can be obtained from the stress boundary conditions:
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o.(@)=-p, o,(b)=-p, (3.3.21)

bjz'*'mE_lCa _ aj’z*’mE_le aﬂ'ﬁmE—le _ bﬂl+mE_lCa
Cl - Mg —1jy 4 +Mg -1 Mg —1py A, +mg -1 ’CZ - Mg —Lpy 4 +mg -1 me -1 Ap+me 1) (3.3.22)
Sl(aﬂfz*' E bﬂﬁ' E _aﬂﬁ E bﬂz+ E ) SZ (aﬁffr E bﬂfﬁ E _aﬂ'ﬁ E bﬂfz*' E )
c,=a""™ (S, +S @t +8 a7 )+p, ¢ =h"" (S +S b +S b7)+p, (3.3.23)

3.3.2. Analytical solution for the temperature field

An analytical solution is derived to check the accuracy of the developed method for the
temperature field in Section 3.2. The thermal conductivity is temperature- and coordinate-
dependent and can be expressed as

m,

A(r,T(r)) = Pe*® (LJ L asr<b, (3.3.24)
a

where P1, P> and m; are material constants. After solving Eq. (3.2.15) the temperature field can be
calculated and its constants can be evaluated from the thermal boundary conditions of the first
Kind:

1 PC, r™*
T =—In 21 —PCC, |, 3.3.25
O, [(mfrl) am J o)
b)y™
betouterpz _ aetinnerpz (j
o _ab(m1)(ene® —et®) o a) . (3.3.26)
1

-m 12 a(m1) (e — gl )
o[of2)" o] (m1) )

3.4. Analytical solution with stress function

In this section an analytical solution will be elaborated for the previously presented thermoelastic
problem of functionally graded spherical bodies using stress functions.

In this case the loading and the geometry can be seen in Fig. 3.6. The material properties of the
radially graded material are given as

E(r)=E,r™, a=a,r™, A=2,r", (3.4.1)

where Eg, ao, 10, m1, M2 and m3z are material constants, furthermore the Poisson’s ratio v is constant.
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E(r), v,
A(r), a(r)

Figure 3.6. The sketch of the problem.

The radial stresses, the heatflow and the temperature field are all continuous functions of the
radial coordinate. Our aim is to determine the displacement field and normal stresses within the
spherical component.

The first step is the calculation of the temperature field when the thermal conductivity is prescribed
by Eq. (3.4.1). For this problem the thermal boundary conditions of the first kind are

T(R)=t, T(R,)=t,=0. (3.4.2)

In this case the temperature difference field T(r) =t—t . has the following form [59]:

ref

r—m3—1 _ R—m3—1
T(r)=t (1— —
ORI R ™Y

" —

j, R <r<R,. (3.4.3)

The radial and tangential normal strains ¢,, ¢, = &, and the stress-strain relations for a spherical

body can be formulated as in Egs. (3.1.5-3.1.7) [52, 60]. According to Egs. (2.2.9), the equilibrium
equation in the radial direction of the spherical body has the following form

ddar +2(c7r -0o,) _0, R <r<R, (3.4.4)
r r
We reformulate Eq. (3.4.4) in the next form

d(r’c,)

g =2ro,, (3.4.5)
therefore the normal stresses can be expressed in terms of the stress function V=V(r) as

\Y 1dv
O'r:F, O-‘/’:EW’ RISFSRZ (346)

After some manipulations from Eqgs. (3.1.6), (3.1.7), (3.1.5) and (3.4.6) we can derive the next
system of ordinary differential equations for the displacement field and the stress function

v 1 1-2v)A+v) 1 1+v
= AT v

djui_| @-vr (-vE Ul b i-v o (3.4.7)
dr|V 2E 2v 1 V 2E
1-v 1-vr 1-v
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Considering the functions of the material properties given by Eqs. (3.4.1) the final form for the
system of differential equations can be expressed as:

v 1 1-2v)1+v) 1 1+v
u 1-v)r 1-v)E, ™% |[u _
E{ }: (L-v) (L-v)E { } L=V o armT. (348)
driV] | 2E™ v 1 V1| 2B (ma
1-v l-vr 1-v

The general solutions of the radial displacement field and the stress function are power
functions of the radial coordinate. The homogeneous solutions are assumed to have the following
forms:

u, =Cr*, VvV, =Crmt, (3.4.9)

Applying Eqgs. (3.4.9) to Egs. (3.4.8), we get the next system of linear equations for the constants
C, and C,

2v 1-2v)(1+v)
A+ C 0
1-v) 1-v)E, { 1}{ } (3.4.10)
2E 2v |G, ] [0
-—=0 A+m +1)———
1-v 1-v

From the solutions for the previously presented system of equations it follows that

o = (A+m +1)(1Q-v)-2v Cr + (A+m +1)(1-v)-2v C,r, (3.4.11)
2E, 2E,
V, = Crm? L C rietmt (3.4.12)
j —1—m, £J(m, +1)? _4A, A 2[1/(ml +1)—1]’ (34.13)
' 2 1-v
A+m +1D)(A-v)-2
c, - ArmFhd-v)=2v (3.4.14)
2E,
The following notations will be used for the computation of the particular solutions:
_ R™™ G T b % 3.4.15
Tl - tl [14— R2_m3_1 _ Ri_m3_1 1—v v 2 Rz—m3—l _ Rl—ms—l 1_ v . ( v )

The first particular solution is obtained by the next system of differential equations:
2v 1 @-2v)Q+v) 1

d{U}: A-v)r A1-v)E, r™ HJ{ 1+v }Tlrmﬂ (3.4.16)

ar|V] | 2grm v 1 V] [ 2Bt
1-v l-vr
U, =Dy™t, V=D, (3.4.17)

and we have
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1-v

—(1+v)(m +m, +2- 2v j+2(1+v)(1_2‘/)
e 1-v

D = T! . .
' 2v 2v ) 2(1+v)A-2v) ! (34.18)
m,+1+—|lm+m,+2- 5
1-v 1-v (1—v)
2(1+v)E,
—ZEO(ml—m3— j+ ( +V)
D, =
2 ( 2v j( 2v J 2(1+ v)(1- 2v) (34.19)
m,+1+ — || m+m,+2-
1-v 1-v (1_V)
The remaining particular solutions can be represented as
Upp =RI™™, V=R, (3.4.20)
1+ v)(ml +m,—m, +1- 2v j— 2(L+v)A=2v)
F= v Ly 3.4.21)
' ( 2v ][ 21/) 2(1+v)(1-2v) T (34
m,—my+—— (I m+m,—m,+1-
1-v 1-v (1—1/)
2E0(m2 14 2v ]_ 2(1+v)E,
-V 1-v
F, = (3.4.22)

(m2+l+2vj(ml+m2+2— 2vj 2L+ v)d- 2v)
1-v 1-v (l—v)

The summarized form of the general solution for the displacement field and the stress function
are as follows

(ﬂ,l+m +1)(A-v)- 2VC A A +m+DA-v)- 2VC e
2E, 2E, (3.4.23)
+ D™t Frm
Y o e ol e L (3.4.24)

In order to determine the unknown constants C; and C the next stress boundary conditions will
be used:

VR)_ V(R
R R

3.5. Numerical examples for layered composite sphere models

In this section numerical examples will be presented for our developed methods. The models
will be compared to each other, to finite element solutions and to results obtained from the
literature.
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3.5.1. Example 1

In this subsection two numerical examples will be presented to check the accuracy of the
temperature fields calculated from the previously presented methods of Subsection 3.2.2. We used
the temperature equations of Subsection 3.3.2 and finite element simulations to verify the
developed solutions. Furthermore, Maple 15 mathematical software was used to create the
program for the developed methods.

In the first numerical example the accuracy of the calculation for the temperature field is
investigated when A=A(r,T) and there are prescribed thermal boundary condition of first kind on
the boundary surfaces of the spherical body. The following data were used to carry out the
numerical computations for Egs. (3.3.24):

W 1

a=004mb=006m,P =10 P, =134-10° - m, =1.9,t; =273K, {y,, = 30K,

ref

t.r = 900K and the approximation function of the temperature field has the form of Eq. (3.2.20),

furthermore three cases with three different layer numbers (n1=5, n»=9, nz=17) are compared to
the analytical solution of Egs. (3.3.25-3.3.26). Figure 3.7 shows the temperature function and the
relative errors et of the approximations when

e, (%) _ Manalytli\c/lal - Mnumerica| ‘loo’ M (r) - T(r)’ u(r)’ Ur(r)' G(ﬂ(r). (351)

analytical

Br[%]ﬂi—..

T T T T T
0.040 0.043 0.030 0.033 0.060

r[m]

Figure 3.7. The temperature field and the relative errors of the model.

In Fig. 3.7 we can see that even in the case of 5 layers the maximum relative error is under 1%,
furthermore the relative errors have minimums at the boundaries of the layers.

In the second numerical example the accuracy of the calculation for the temperature field
presented in Subsection 3.2.2 is investigated when the thermal conductivity is power-law function
of the radial coordinate and there are prescribed thermal boundary conditions of the third kind.

We consider two cases for the determination of the temperature difference function with two
different layer numbers (n1=4 and n>=8). The parameters for this example, the function of the
thermal conductivity are:

a=0.5m,b=0.65m,t. =298K,t

1 el ' *eo

W opgp W e W
m-K mK

— 773K, h =12 Ay
m-K
w)—ﬂo(i]m
K

,m, =2.5,
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Figure 3.8. The relative errors of the multilayered method by power-law function of the
thermal conductivity.

3.5.2. Example 2

We consider a three-layered spherical component for the numerical example of the analytical
multilayered methods presented in Sections 3.1 and 3.2. The first and third layers are made of a
thermal insulation material, while the material of the second one is steel. For the numerical
computation the following data are used:

R =0.5m,R, =0.53m,R, =0.62m,R, =0.65m, E, = E, = 320GPa, E, = 211GPa,

w

—,a, =a, :7.4-10‘61,
mK K

Vo=, =0,2Lv, =0,3 4 = A, :4%,,12 _58
a, :12-10-6%, B, = 25MPa, p, = OMPa, t, = 250°C, t, = 0°C.

The radial displacement and the normal stress fields obtained by the method presented in
Section 3.1 can be seen in Figs. 3.9-3.11 and are denoted by blue dots (Method 1), while the results
of Section 3.2 are illustrated by red solid lines (Method 2). The two developed methods lead to the

same results.

0.00070

0.00068

000066

0.00064
u [m] = = Method 1
—— Method 2

0.00062 ~

000060 ~

0.00038

T T T T
0.50 0.5 0.60 0.65
r[m]

Figure 3.9. The plots of the displacement field in the three-layered sphere.
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-1.x 107+

S, [Pa] = = Method 1

Method 2

-2.x 107+

N w\/\

0.50 0.55 0.60 0.65
r[m]

Figure 3.10. The radial stresses of the three-layered sphere.

4% 108

3.% 10%

2.% 105

1% 108
Sy [Pa] = = Method 1

Method 2

~1.x 10%

-2.x 10%

i T T T T T T T T T T T T T T 1
0.30 0.33 0.60 0.63

Figure 3.11. The tangential normal stresses of the three-layered sphere.

3.5.3. Example 3

As we have mentioned earlier the problem of a functionally graded spherical body can be solved
with a model of layered spherical body which consist of homogeneous layers. In this example we
verified our analytical method of Section 3.4, then we have tried to solve it with our multilayered
approach when the temperature dependency is negligible. Furthermore an additional example will
be presented to investigate the effect of the power index of the material properties described in
Section 2.4.

The first analytical model was compared to the method presented in [27] and [28], we got the
same results. In our current example this analytical solution [28] is compared to the models of
Sections 3.1 and 3.2 in the case of power-law based material properties. The following data are
used for the numerical computations:

-40 -



a=0.04m, b=0.06m, t, =573K, t

! el 1 “eo

=298K, h =h, =10° % p, =80MPa, p, = 0MPa,

v=03, 4, :58%, E, =2-10"Pa, ¢, :1.2-10‘6%, m,=mg=m, =m,

A1) :Ao[éj " E(n) =K, (gj " alr)=a, Gj Ny

Table 3.1. The comparison of the analytical solution and the multilayered approach, m=1.

An.
Relative error (%) | va- | Relative error (%)
lue

r/a |u(r)10% n=4 | n=8 | n=32 [-6r/p1| N=4 | N=8 | n=32 | -6¢/p1 | N=4 | n=8 | n=32

1 0.5187/0.231|0.058(0.003| 1 |6-10® 0 0 |0.1382 | 4.98 [2.921|1.006
1.0875 |0.5119|0.532(0.138|0.008 [0.8077| 0.209 | 0.056|0.004 |0.3492 |2.466|0.563|0.188
1.1875 |0.5028) 0.541 | 0.089 | 0.004 0.6010| 0.138 | 0.024|0.001 [0.5954 (0.518|0.259(0.090
1.2875 |0.4917)0.503 (0.132 0.009 (0.4033) 0.025 | 0.004|.0001 {0.8471 |1.138|0.046|0.027
1.3875 (0.4781{0.473(0.124|0.008|0.2115/0.107 | 0.071|0.005 | 1.1044 | 2.764)0.957|0.201

1.5 |0.4597/0.498|0.125(0.008| 0 |9-107| 0 0 [1.4008 |2.920|1.589(0.422

Ana.
value

Ana.

relative error (%)
value

m=1

Tables 3.1 and 3.2 show the relative errors of the multilayered models by three different layer
numbers (n=4, 8, 32). The results indicate that the approximation is accurate for the radial
quantities, for the displacement field and stresses, for example when n=4 the maximum relative
error is under 0.55%. For the determination of the normal stresses o, and oy finer partitioning is
necessary because in some cases the errors can be significant especially at the curved boundary
surfaces.

Table 3.2. The comparison of the analytical solution and the multilayered approach, m=-1.
Ana. f An. : Ana.
Relative error (%) | va- | Relative error (%)
value lue value
r/a |u(r)10% n=4 | n=8 | n=32 [-or/p1| N=4 | N=8 | n=32 | -6¢/p1 | N=4 | n=8 | n=32

1 [0.6697/0.035/0.008/.00005 1 [9-10| 0 | 0 [0.6777 [0.783]0.597/0.192
1.0875 [0.6497/0.271/0.071 | 0.004 |0.7331/ 0.008 | 0.009|.0007 | 0.7668 |0.325|0.208 | 0.034
1.1875 [0.6231/0.281 | 0.037 [ 0.002 0.4868) 0.167 | 0.025(0.002 | 0.8119 {0.221/0.2660.179
1.2875 |0.5948| 0.256 | 0.068 | 0.003 /0.2916) 0.297 | 0.088(0.006 (0.8241 | 1.663|0.307 [0.093
1.3875 0.5664| 0.244 [ 0.064 | 0.0030.1368 0.229 | 0.131(0.009 |0.8189 |3.267 [1.211|0.287

1.5 [0.5354/0.272|0.067(0.003| 0 (9-107| O 0 ]0.8023 (3.776(1.924|0.487

m=-1 relative error (%)

The last example of this chapter investigates the effect of the power index m on the stress field.
The material properties have the following forms:

A0=4+Ge-2)£2] B0 -E (BB 2]
e -2 (3.5.3)
r—a\)™ r—a\)”
a(r):ai+(a0—ai)(ﬁ] ,v(r):vi+(v0—vi)(mj .
a=0.55m,b=0.7m,t, = 25K,t,, = 350K, p, = 40MPa, p, = 0MPa, h, =10° Vsz’
m
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W W o1

h, =500——, v, =0.28, 4, = 20—, E, =1.71-10"Pa, o, =0.76-10° —,
m°K mK K
v, =0.336, 4 :58%, E, =2.35-10"Pa, ¢, :1.2-10‘6%,m/1 =mg=m,=m,=m=0.7.

The results are shown in Fig. 3.12 in three cases. The graphs of the combined loads are denoted
by red solid lines, the green dash dot lines belong to the case when there are no thermal loading,
the blue dash lines indicate the results for the thermal loads without mechanical loading. Figure
3.13. illustrates the effect of power index m on the equivalent stress field, where

Oeq-Mises = ‘qu —Oyl. (354)
G, [Pa] /,/’_”‘H-\\ 4% 108
2.x107
1= ERT
\
0 -
\
ld 2.%10% \\\
22107 (Pl \
1.x10f \
3107 = \\ﬁ_ 7777777777 1
N
\
055 . I .
N
N
0.0009 / N
o hY
0.0002 — -1.x 108 \
o S

L — m—— e s

u [m ] 0000 \\

0.0005 055 060 [1Ki3] 0.0
0.0004 r [m]
0.0003

—-— Mechanical loading
i g . . —— Thermo-mechanical loading

035 050 063 070 — — Thermal loading

00002 =

Figure 3.12. The results for the normal stresses and displacement field.

Gyiela=600MPa
— m=3
—— m=0.05
<=1
m=0.3
“-/..-l'
065 070

Figure 3.13. The effect of the power index m on the equivalent stresses.
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4. Numerical solutions for the problems of functionally graded
spherical bodies

In this chapter numerical methods are presented to deal with the thermoelastic problem of radially
graded spherical bodies. An initial value problem and the previously developed multilayered
models are applied to functionally graded materials when the material properties are arbitrary
functions of the radial coordinate and the temperature field. Furthermore two special cases of
radially graded spheres are investigated. A numerical model is presented to deal with the problem
of functionally graded piezoelectric spherical parts. In the second case the equations are derived
to calculate the normal stresses of incompressible functionally graded spheres.

4.1. Initial value problem of radially graded spheres with arbitrary material
parameter distribution

A thermoelastic boundary value problem of a spherical body made from functionally graded
materials with arbitrary gradient is analysed, where the material parameters are arbitrary smooth
functions of the radial coordinate and temperature field, furthermore the steady-state temperature
distribution is assumed to be arbitrary smooth function of the radial coordinate r (Subsection
3.2.2). A coupled system of ordinary differential equations containing the radial displacement and
stress function is derived and used to get the distribution of normal stresses and radial
displacements caused by combined axisymmetric mechanical and thermal loads. The geometry
and the boundary conditions can be seen in Fig. 3.6.

The radial and tangential normal stresses in terms of stress function V=V(r) can be represented
as
\ 1adv
e O = R, <r<R,. (4.1.1)
After some manipulations from Egs. (3.1.5-3.1.7) and (4.1.1) we can derive the next system of
ordinary differential equations for the displacement field and the stress function

O, =

du(r) _  2v(r,T(r) 1 (1—2V(I’,T(I‘)))(1+V(I’,T(I’)))V(r)+l+v(r,T(l’))

u(r)+ a(r,T(r)T(r),
dr @-v(r, T(O)r (L—v(r, T(r))E(r,T(r)) r’  1-v(r,T(r))
dv(r) _ 2E(r,T(r)) u(r) + 2v(r,T(r)) V(r)+ 2E(r,T(r)) a(r T (O)T () (4.1.2)
dr  1-v(r,T(r)) 1-v(r,T(r)) r 1-v(r,T(r)) ’ o

The validity of this statement comes from the fact, that in our time independent uncoupled
problems, the temperature field can be obtained from the solution of the heat conduction equations
as we have seen in Subsection 3.2.2. At first all material parameters are arbitrary smooth functions
of the radial coordinate and temperature field, but the temperature field is given, which means that
M(r,T(r))—M(r) and Eqgs. (4.1.2) assume the form of Egs. (3.4.7).
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Our aim is the calculation of the initial values for the system of equations (4.1.2). The stress
boundary conditions and its expressions in terms of the stress function V=V(r) are as follows

Gr(Rl):_pl’ Gr(Rz):_pzv (4-1-3)
V(R)=-pR’ V(R,)=-p,R;. (4.1.4)

In Egs. (4.1.3), (4.1.4) p1 and p2 are known applied pressures at the inner and outer spherical
boundary surfaces. Our aim is to transform the two-point boundary value problem formulated by
Egs. (4.1.2), (4.1.4) into an initial value problem. This step is required to the realization of the
chosen numerical methods. To get the unknown initial displacement u(R1) we consider two
solutions for system of equations (4.1.2) which are denoted by [ui(r), Vi(r)] and [uz(r), V2(n)].
These solutions have the next prescribed initial values:

u,(R,) =u, : arbitrary value, (4.1.5)
Vi(R) =-pRY, (4.1.6)

u,(R,) = u, :arbitrary value, but u, = u,, (4.1.7)
V,(R) = —pRZ. (4.1.8)

To carry out the calculations and get [u1(r), Vi(r)] and [u2(r), V2(r)], we can use for example the
Runge-Kutta method. From these solutions the suitable value of u(R1)=us can be computed as
u2

_ul B 2
b=t S e S PRI W(R) (4.0.9)

The validity of this statement follows from the linearity of the considered thermoelastic
boundary value problem. The solution of the thermoelastic boundary value problem is obtained
from the numerical solution of system of equations (4.1.2) with the initial conditions

u(R)=u,, V(R)=-pR’. (4.1.10)

The stress field in this case can be obtained from the next equations

V()

1dv Eu v V(r) Ea
rr’ “ordr r

= = + T(r). 4.1.11
2rdr 1-vr 1-v r? 1-v () ( )

o,(r) =

a,(r)

4.2. Functionally graded piezoelectric spheres

In our next model a spherical body made from functionally graded materials with radial grading
and polarization will be considered. The loads for this axisymmetric problem are constant
mechanical loads denoted by p1 and p2 and electric potentials ¢1 and ¢2 on the inner and on the
outer boundary surfaces, respectively. Our aim is to transform this problem into an initial value
problem, then find a numerical method to solve it. The sketch of the problem can be seen in Fig.
4.1.
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’7¢(R;) )1=¢1 !

Figure 4.1. The sketch of the problem with the boundary conditions.

In spherical coordinate system the constitutive equations for radially polarized piezoelectric
materials can be expressed as - according to Section 2.5 -

u du
£9=6,= = (Su+S,)0, +S,,0,+9:,D,, & = o 28,0, + S0, + 05,0, (4.2.1)

E, =-2040, — 050, + B;D,, Ri <r<R,, (4.2.2)
where in these last terms the following expressions are introduced
D d¢
D=-—, E=—-2. 4.2.3
r r2 r dr ( )
Here we note that Dy is obtained from the Gauss equation [57] which takes the form of
db. 25 o, (4.2.4)
dr r

furthermore in our current problem D is an unknown constant. We need to formulate the system
of differential equations for the unknown stress-, electric potential-, radial displacement functions
and electrical displacement. The combination of Egs. (4.2.1-4.2.3) and (4.1.1) gives

av(r) _d ( (r)r? ) do(r) r’ +2ro (1),
dr dr (4.2.5)
d_V: 2 u-— 2813 \i_ 2931 2 -
dr S,+S, S +S,r S,+S,r
du(r 1 dv(r V(r D
025, (1805, Y0, 2)
(4.2.6)

2
du 2813 E_,_ 333_ 2813 lz"‘ Uas — 2813931 22'
dr S +S,r S, +S,)r
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de(r) 1 dv(r) V(r)
dr =-E (I’) 2931(2[’ dr ) gs[ j ﬂss( J

, (4.2.7)
dg _ 29y u _ 2035, |V 20u _|D
= +{ O35 >—| Bt 7"
dr S, +S,r S, +S,)r S, +S,)r
This system of differential equations can be reformulate into a matrix equation:
2 _ 25, 1 _ 20y l
V Sll + S12 Sll + SlZ r S11 + S12 r u
2
L P S P E A T PR R VA Py
dr s S +S,r S, +S, S, +S,)r 5
2 1 20,5, |1 292 1
49 2 gy — —Jari3. = - . =
i S, +S,r S;,+S,)r S,+S,)r |

For our further investigation and numerical example, the following power-law functions will be
used to describe the distribution of the material parameters

r r)" r)"
Sll(r) = S110 (E] 1 Slz(r) = S120 [Ej | S13(") = S130 (Ej , (4-2-9)
1 1 1

r)
Sp=S110+Sip0, S(r) =Sy (r) +S,(r) =S, [E] , (4.2.10)
1

r\" r\" r\"
931(r) = Oa1o (EJ , 933(r) = U330 [EJ 1 ﬂss(r) = 13330 (EI] : (4-2-11)

Upon substituting these expressions into Eq. (4.2.8) we get

2()" 25,1 A .
S\ R, S, r S, \R,
al 25, 1 252 \( r \™ 25,9 mt '
-~ — 130 — [ i | 130 Y310 dv 1.(4.2.12
dr u SO r ( 330 SO j(le [9330 0 ][Rj ( )
¢ m,—m; -1 m,—2 m3—2 D
h L g _293108130 L ﬂ 29310 L
SO Rl 330 So Rl 330 R
The boundary conditions for this problem can be presented as
V(Rl) = _lelz’
V(R) =-p:R;, (4.2.13)
¢(R1) = ¢11
¢(Rz) = ¢2-

Let the solution vector X(r) be defined as
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u(r)
X(r)=|V(r) |.
#(r)
Four computations are required for the calculation of the solution. We need to solve the initial

value problems of four cases with the following initial values (for example with Runge-Kutta
method):

(4.2.14)

Uy ()| | Xia(r)
X (N =|V.(r) |=| X, (=1..4), (4.2.15)
¢ni(r) Xi3(r)

where Uni, Vi and @ni are numerical solutions of the different cases (i=1,...,4). Table 4.1. shows
the recommended method to solve this initial value problem.

Table 4.1. The different initial value subproblems for the model.

Initial case 1 case 2 case 3 case 4
values input output input output input output input output
u(Ry) 1 0 0 0
V(R1) 0 1 0 0
oR) | 0 X 0 X2 1 Xa 0 X
D 0 0 0 1
From the linearity of this problem it follows that
X1 (r) X (1) X (1) Xu(1)
X(r) =u(R)| X, (r) [+V(R)]| X,,(r) |+ #(R))| X5, (r) |+ D] X,,(r) (4.2.16)
Xl3(r) XZS(r) X33(r) X43(r)

After the manipulation of Eq. (4.2.16) we get the following system of equations:
V(R,) = _sz22 =U(R)X,, + (_p1R12>x22 + 3 X5 + DXy,
¢ =U(R) X + (_ lef) X+ ¢ Xy + DXy

From this system of equations we can calculate the unknown values of u(R:) and D. The last
step is the solution of the system of differential equation (4.2.12) with initial values [u(R1), V1, ¢1,
D].

(4.2.17)
(4.2.18)

4.3. Incompressible spherical bodies

A thick spherical vessel will be considered in Ore$ spherical coordinate system as we can see in
Fig. 4.2. The incompressible spherical body is radially graded, therefore the material properties
are vary along the radial coordinate r. The thermal loading is a steady-state temperature difference
field T=T(r) and the mechanical loads p1 and p2 are constant pressures exerted on the inner and
outer boundary surfaces.
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E(r), v, T(r)

Figure 4.2. The sketch of the problem.

Our aim is to derive a method to calculate the displacement field and normal stresses within an
incompressible spherical body.

In the case of incompressible materials the Poisson’s ratio is v=0.5 and the relation between the
Young modulus and the shear modulus is E=3G. The stress-strain relations for these spherical
bodies can be expressed as [52], [60]

o, =2Ge" +o, = % Ec" +o,, (4.3.1)
o, =2Ge) +o, =§Eg§" + oy, (4.3.2)
o,=2Gs) +0, =§E52" + 0y, (4.3.3)

where or, o,, osare the normal stresses, ¥, eM,, eMy denote the normal strains from mechanical
loads, furthermore we have

1 1
o, =§(O'r+0'(p+0"9)=§(0'r+20'¢). (4.3.4)
The normal strains can be written as the sum of its mechanical and thermal parts
rN—o (r
e (1) =" (N +&(r) = %m(m(r), (4.35)
r
—o,(r)+o,(r)
g,(N=¢,(N+¢,(r)= 2E(r)¢ +a(nT(r). (4.3.6)

For the trace of the strain tensor the following relation can be written

e=¢g +e,te, =6 +2,=3aT . (4.3.7)

The displacement-strain relations of spherical bodies are
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du(r)

6.(r) = (0=, =11 (438)

The combination of Egs. (4.3.7-4.3.8) leads to

(r)_du(rr) Lun _ 1 d(

u(ryr’). (4.3.9)
r r

The solution of Egs. (4.3.7), (4.3.9) gives the function of radial displacement field

3[pfaloM o)
u(r) =— > +—=3 1(2r) +-=2, (4.3.10)
r r r
where the following notation is introduced
F(n) = [ pa(p)T (p)dp. (4.3.11)

R

The substitution of Eq. (4.3.10) into the expressions of the normal strains Eqs. (4.3.5), (4.3.6) leads
to the following formulae:

F(r) <G

e(r)=3a(r)T(r)-6——= 2r3'

F(r) C

(4.3.12)

&,(r) =¢g,(r)=3—"5> (4.3.13)

In the case of hollow spherical bodies the equmbrlum equation can be expressed -Eqg. (2.2.9)- as
do, _,% (4.3.14)
dr r

The combination of Egs. (4.3.14) with Eqgs. (4.3.1, 4.3.2, 4.3.12, 4.3.13) leads to
% — 2(6 E(r) Fl(r) 2 E(r) C 2 E(r)a(r)T(r)j ]

4.3.15
dr r* r* r ( )

The solution of Eq. (4.3.15) gives the function of the radial normal stress

o (r) = 12jwd +4CI% —4j E(p)“(p)T(p)dp+C (4.3.16)
: p

The unknown constants C1 and C; can be calculated from the stress boundary conditions:
p=-0.(R), p,=-0,(R,). (4.3.17)

Form Eq. (4.3.17) it follows that
C,=0,(R). (4.3.18)
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o (R) -0 (R)12 I EPF(p) , @A) (0) g,

3p
C = . (4.3.19)

|5,

The tangential normal stresses can be calculated from Egs. (4.3.14-4.3.16)
1 do
o,(r)= r ‘ =
go( ) dr r

—ZE()( F(r) Cr: a(r)T(r)j+C +4_[E( )( F[E/’) Y Of(PLT(p)Jdp.

(4.3.20)

4

4.4. Numerical examples

In this section numerical calculations will be presented for the developed methods. In the first
example the accuracy of the initial value method and the multilayered method is investigated.
These models will be compared to the analytical solution derived in Section 3.3. In the next
example these numerical methods will be checked by finite element simulations in the case of a
metal-ceramic functionally graded material where the temperature dependency is taken into
account. In the last two problems the results of the methods developed in Sections 4.2 and 4.3 will
be presented and checked by FEM.

4.4.1. Example 4

In our first example the accuracy of the initial value method (Section 4.1) and multilayered method
(Section 3.2) is investigated. The material parameters for the analytical solution presented in
Section 3.3 and Egs. (3.3.1), (3.3.2) are

_81

a=0.065m,b =0.08m, P, =198GPa, P, =10 P=2- 10_8E m,=1.9,m. =2,

w

A =58ty = 450K, 1,y = 20K, t,, = 273K, p, = 20MPa, p, =OMPa.

inner 1 “outer
The results of the initial value method and the multilayered approach are compared to the exact
solution. Figure 4.3 shows the graphs of the radial displacements for the investigated models. As
for the multilayered method, the widths of the layers are equal, the material properties are
computed according to the method described in Subsection 3.2.1. It is important to note, that the
accuracy of this method can be improved when the widths of the layers are adjusted to the material
functions. As regards of Fig. 4.3, even in the case of n=4 the relative error is under 1%.
The relative errors for the numerical models can be seen in Fig. 4.3. The initial value method
has great accuracy according to Fig. 4.3, in our case the maximum error is 2.6-10° %. As for the
multilayered method, the relative errors are minimal at the edge of the layers. If we want to further
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improve the accuracy and speed of our method, we can get the displacement values at the
boundaries of the layers and fit a curve with least squares method.
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Figure 4.3. The plots and the relative errors for the displacement fields.
Figure 4.4 illustrates the radial normal stresses for the different methods.
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Figure 4.4. The graphs of the radial normal stresses.

The relative errors for the radial normal stresses can be seen in Fig. 4.5. The conclusions are the
same as in the case of the displacement field.
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Figure 4.5. The relative errors of radial normal stresses.

Figures 4.6 and 4.7 show the results for the tangential normal stresses o,=09. The curve from Egs.
(3.2.28) is not continuous, but we can see that the values at the middle of the layers have good
accuracy. With an approximation derived from Eq. (3.2.36) the accuracy can be greatly improved
aswecanseeinFig.46: o _ (N=F r?+F r*+F+Fr+Fr’+Fr’

p—appr
4108 o
2.x 107
04
%[Pa] -2 108 o
-4.x 10° o H
-6 108
-8.x 10% 5" T T T T : T T T T : T T T T :
0.063 0.070 0.073 0.080
r[m]
—— Analytical & intital value m. — multilayered, n=4 without approximation = * * multilayered, n=4 with approximation
Figure 4.6. The graphs of the tangential normal stresses.
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Figure 4.7. The relative errors for the tangential normal stresses.
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With the approximation the relative errors can be decreased, and obviously the errors around
the zero-beat of the tangential normal stress-function tend to infinity.

4.4.2. Example 5

In the second example a thermoelastic problem of a radially graded spherical pressure vessel
with temperature-dependent material properties is investigated under axisymmetric thermal and
mechanical loads. The results of the multilayered method presented in Sections 3.2 and the initial
value method from Section 4.1 are compared to finite element simulation. The functions of the
temperature-dependent functionally graded materials are described by Egs. (2.4.1.) and (2.4.2).
Table 4.2 shows the temperature coefficients of the steel — silicon nitride FGM. The other data of
the radially graded spherical pressure vessel are:

d =1m,h =0.09m,t, . = 420Kt ., = 20K, p, =150MPa, p, =5MPa,m = 3.
Table 4.2. The material parameters for the investigated metal-ceramic FGM.

material metal (stainless steel) ceramic (silicon nitride)

roper

P (IE)/I)ty Pmo Pm1(10%) | Pm2(107) |Pma(10) Peo Pc1(10°®) |Pc2(107) | Pea(10)
MW/mK) | 1539 | -1.264 | 20.92 | -7.223 | 12.723 |[-1.032 | 5.466 |-7.876

a (1K) |12.33-109 0.8086 0 0 |3.873-10°[0.9095| 0 0

E(Pa) |2.01-10' 0.3079 | -6.534 0 |3.484:10"|-0.307 | 2.16 |-8.946

v () 0.3262 | -0.1 | 3.797 0 0.24 0 0 0

The graphs of the material parameters at three temperature values and at three positions can be
seen in Figs. 4.8-4.10.
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Figure 4.8. The curves of the temperature- and spatial- dependent coefficient of linear
thermal expansion.
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Figure 4.9. The curves of the temperature-dependent Young modulus of the steel — silicon

nitrid FGM.
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Figure 4.10. The graphs of the temperature- and spatial- dependent Poisson’s ratio.

The numerical methods are compared to finite element models. The simulations were executed
with Abaqus CAE finite element software. The problem is axisymmetric, so a quarter of the
spherical vessel is modeled. The functionally graded sphere is modelled as a multilayered body.
Due to the radial grading, the layers should be concentrical hollow spheres with h/n wall thickness
and temperature-dependent properties. We allow the movement of the nodal points on the
horizontal edge only in the horizontal direction, on the vertical edge only in the vertical direction
as it is illustrated in Fig. 4.11. The mesh and the results for the displacement field are shown in
Fig. 4.12.

- number of layers: 32

- element type: 8-node
temperature-displacement,
quadrilateral el

-number of elements: 4201

Figure 4.11. The finite element model of the sphere.
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Figure 4.12. The mesh and the results of the FE simulation for the displacement field.

Figures 4.13-4.15 illustrate the graphs of the displacement fields and normal stresses for the finite
element simulation, initial value method and the multilayered solutions by three different layer
numbers. The results are in good agreement:

0.00127 o

0.00126 —

¢ [m] 0.00125 -
0.00124 -
0.00123
T T T T T T T T T T
0.50 051 0.52 0.53 0.54 0.53 0.56 0.57 0.58 0.59
r[m]
= multilayered n=16 ® FE simulation 'ﬂ( initial value method multilayered n=8
* 'multilayered n=4
4.13. The graphs for the displacement fields.
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T T T T T T T T
0.50 051 0.32 033 054 0.53 0.36 0.37 0.38 0.39
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= multilayered n=16 @ FE simulation = = multilayered n=8 = * ' multilayered n=4

‘ﬂ{ initial value method

Figure 4.14. The graphs for the radial normal stresses.
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Figure 4.15. The graphs for the tangential normal stresses.
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Figure 4.16. The result of the finite element simulation for the tangential normal stress.

In Figs. 4.16 and 4.17 the results of the finite element simulation are illustrated for the tangential
normal stress and for the equivalent stress. The curves of these stresses fluctuate, generally at the
boundary surfaces, which may lead to significant errors. In Fig 4.15, even by our multilayered
method with n=4 layers and approximation, the solutions had high accuracy.

>

oot
Tme distance along path

Figure 4.17. The equivalent stresses computed by the finite element software.
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4.4.3. Example 6

In this subsection a problem of a thick-walled functionally graded piezoelectric spherical
actuator is investigated. The method developed in Section 4.2 is compared to finite element
solutions. The material at the inner radius of the sphere is Pzt-4 [57], [58] with the following
parameters and data:

R, =0.02m, R, =0.06m, p, =10MPa, p, =0MPa, ¢ =-100V, ¢, =300V, m, =m, =m, =m,
2

m=-2,S,=5.552-10""Pa,S,,, = —2.1425-10*Pa, S,,, =8.0813-10 *Pa, g,,, = —0.010894%,

2
Oagg = 0.025678% B =8.9152.10",

Figure 4.18 shows the finite element model for this example. The number of element rows are
n=12. In Fig. 4.19 the comparison of the results of the finite element model and our method -
Section 4.2- can be seen for the displacement field.

s, M
(Avg: 75%)

Figure 4.18. The finite element model for the piezoelectric problem.

The results show good agreement for the displacement field, but regarding of the radial normal
stresses and electric potential the curves of the finite element simulation are fluctuating, as we can
see in Figs. 4.20-4.22. According to Fig. 4.21, the worst results come from the tangential normal
stresses —and for the equivalent stresses- of the finite element model. Our method produce more
accurate solutions.
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Figure 4.19. The graphs of the radial displacement field.

[ 0
,’/r
s Sk -2.% 10°4
L]
-4.x 1054
g [Pa]

r '3

/ -6.x 108

( | 8% 10°

L

| | S1x 1074 + : + .
u§ 0.02 003 0.04 0.05 0.06

Figure 4.20. The results for the radial normal stresses (left: FE method, right: our numerical
method).
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Figure 4.21. The graphs of the tangential normal stresses (left: FE method, right: our
numerical method).
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Figure 4.22. The graphs of the electric potential field (left: FE method, right: our numerical
method).
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4.4.4. Example 7

In this subsection a numerical example is presented for the problem of incompressible functionally
graded sphere of Section 4.3. The following power-law functions will be used to describe the
distribution of the material properties and temperature field within the radially graded sphere

a(r) = o, {Rll] E(r) = EO[RLJ CT()=Tyr™, (4.4.1)
and the other data are:
R, =0.5m,R,=0.7m, ¢, =1.2-1O‘6%, E, =210GPa,T, =1494%,m1 =m, =m,m, =5.638,
p, =30MPa, p, =0.

Figure 4.23 shows the curves of the radial normal stresses by three different values of power index
m=(1, 0.2, 2). The tangential normal stresses can be seen in Fig. 4.24.

— m=2
——m=0.2
e som=1

O [Pa]
T -1.x10

(o)

,[al

Figure 4.24. The plots of the tangential normal stresses within the incompressible sphere.

Next the solutions will be compared to finite element simulation. In the FE model the
axisymmetric functionally graded sphere is modeled as a multilayered body with n=20

-59 -



homogeneous spherical layers, as presented in [7]. In this case the displacement field can be seen
in Fig. 4.25. The results for the normal stresses are identical to the previously presented plots.

|—analy‘tical * FEM|

0.00018 4

0.00017 -
u [m]

0.00016

0.000135

050 oS o0& o0& 07
r[m]

Figure 4.25. The comparison of the results for displacement field when m=2.
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5. Thermoelastic problems of layered composite and functionally
graded disks

In this chapter a few thermoelastic problems of thin functionally graded disks are investigated. At
first the temperature fields will be presented in three cases with different boundary conditions and
geometry. The next part is the determination of the displacements and stress field in rotating
functionally graded and layered composite disks subjected to combined axisymmetric thermal and
mechanical loads. Analytical solutions are presented for layered composite disks and for a radially
graded disk where the material parameters follow a power-law distribution. Numerical solutions
will be presented for radially graded disks made from functionally graded materials with arbitrary
spatial and temperature-dependent parameters. The thickness of the disk in most cases will be
arbitrary functions of the radial coordinate. Furthermore, numerical examples will be presented to
compare the developed models to each other and to solutions obtained by finite element
simulations.

Figure 5.1 shows the method which approximates the problem of functionally graded materials
with multilayered approach similarly to the methods presented in the last two chapters. Cylindrical
coordinate system Orgz will be used to solve these problems.

E(r,T), v(r,T), Poustou
o(r,T), T(r)

Ra

(0] ®=0
(n-1)-th layer: Ep.4, /?9
Vaely One, Ant
1th layer: Eq,
Vi, dy, Aq

Figure 5.1. The functionally graded disk and its approximation with a multilayered model.

5.1. Temperature field in thin radially graded disks

In this section three cases will be investigated beside an analytical solution. In our first heat
conduction problem a multilayered disk is investigated with thermal boundary conditions of the
first kind on the cylindrical boundary surfaces and arbitrary convective heat transfer on the lower
and upper plane boundary surfaces. In our second case the method of finite differences is used to
solve the heat conduction problem of functionally graded disks with arbitrary thickness profile and
boundary conditions of the third kind. The last method presents a solution for functionally graded
disks with variable thickness and temperature-dependent material parameters using a multilayered
approach.
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5.1.1. Multilayered approach with Bessel functions

This subsection presents an analytical solution for the heat conduction problem of multilayered
disks with constant thickness. Of course, this method can be used as a numerical approximate
method for functionally graded materials and for arbitrary heat transfer coefficient where the
parameters and the thickness profile are functions of the radial coordinate.

The temperatures of the cylindrical boundary surfaces are given, they are constant, non-time-
dependent and denoted by t1 and t,+1, moreover there is symmetric convective heat exchange on
the lower and upper plane boundary surfaces. It follows that the temperature field T(r) is the
function of the radial coordinate. Figure 5.2 illustrates the sketch of the heat conduction problem,
where the heat transfer coefficient y can be arbitrary functions of the radial coordinate. For radial
coordinate-dependent thickness h(r) and heat transfer, the parameters for the i-th layer can be
computed as in Egs. (3.2.1).

i tns1 f transfer

Figure 5.2. The sketch of heat conduction problem.

We assume that the temperature field T and the environmental temperature teny is a continuous
function of the radial coordinate. By the previously mentioned thermal boundary conditions the
differential equation of the heat conduction in the layers has the following forms [59], [74]:

d’T  1dT
V(tg)+hT(r)=0, —+=—-p*(T(r)-t)=0 1.
(tg)+hT(r) 7t P -t,) =0, (5.1.1)

where we have introduced the notation p as
p= ,/% , p=p(r=R,;), h =h(r=R,;),etc. (5.1.2)

After solving Eq. (5.1.1), we get the temperature field of the i-th layer with the unknown
constants of integration:

T.(r)=Cl,(pr)+DK,(pr)+t,,, i=1..,n. (5.1.3)

Using the boundary conditions Ci and Dj can be evaluated, and with t (r=R.) we have:

envi = tenv

T (r) _ (tl _tenvi)KO( P; Ri+1) — (ti+1 _tenvi)KO( P; R|)

| KO(piRi+1)|0(piRi)_ Ko(piRi)Io(piRi+l)

n (_ti _tenvi)lo(pi Ri+1) + (ti+1 _tenvi)lo(pi R|) Ko(pir) +tenv(r)1
Ko(piRi+1)|0(piRi)_ KO(piRi)IO(piRi+1)

l,(pir) +
(5.1.4)
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where lo(x) and Ko(x) are the Bessel functions of the first and second kind and of order zero [59].
We consider the case when the radial heatflow is constant, the temperatures of the inner and outer
boundary surfaces are given. The surface temperatures of the adjacent layers are equal therefore
we get the following equations for disks with constant thickness:

ta=T(R.) =T.(R.), ha(R,)=h,0.(R,), i=1.,n-1, (5.1.5)

(I’) — _/1' P, (ti _tenvi)KO(pi Ri+1) _(ti+l _tenvi)KO(pi Ri)
Ko(piRi+1)|0(piRi)_Ko(piRi)IO(piRi+1)
_ i (_ti _tenvi)lo(pi Ri+1) +(ti+l _tenvi)lo(pi Ri)

o Ko(piRi+1)|0(piRi)_Ko(piRi)IO(piRi+1)

L,(p;r) +
, i=1..,n, (5.1.6)
K, (pir)

q

where the thermal conductivity of the i-th layer 4; is is calculated according to Eg. (3.2.1) in case
of FGMs. The unknown temperature values of the boundary surfaces ti can be calculated using the
system of Egs. (5.1.5-5.1.6).

5.1.2. Finite difference method

The sketch of this problem can be seen in Fig. 5.3. There are thermal boundary conditions of the
third kind prescribed on the inner and outer cylindrical surfaces. ya and y» denote the heat transfer
coefficients on the boundary surfaces, tenv,a and tenvp are the environment temperatures at the inner
and outer cylindrical surfaces, respectively. If y—oo, then we have thermal boundary conditions of
first kind on these surfaces. On the other two boundary surfaces the environmental temperatures
are arbitrary functions of the radial coordinate, the heat transfer coefficient is coordinate and
temperature-dependent.

The problem of the previously presented functionally graded disk will be solved based on the
equations of the steady-state heat conduction. The approximate model can be seen in Fig. 5.4. The
number of layers is n, the layers have constant thicknesses and the material properties are
discretized. Furthermore it is assumed, that the layers are perfectly bonded.

Figure 5.3. The disk with the thermal boundary conditions.
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Figure. 5.4. The approximate model of the functionally graded disk.

The functionally graded disk is built from n layers with different hi>0 uniform thickness (Fig. 5.4),
the material parameters and the environmental temperature for the i-th layer can be discretized as

R +R.+1 —
Rmi 2 ﬂ'(T) /’i'(r - le'T) 7/| 7/(r - Rmi’T)i (517)
hi = h(r = Rmi)'tenv,i :Tenv(r = Rmi)' I :1""'n’

or using integral means similarly to Egs. (3.2.1) and (3.2.2). For this case the nonlinear differential
equation for the temperature field of the i-th layer (Ti(r)) has the following form [59]:

11(%( »dT(r>j 2T (1))
rdr

(TN =ty ) =0, (5.1.8)

Finding the closed form analytical solution for Eq. (5.1.8) is very hard, therefore a numerical
method will be utilized to solve this differential equation. The points of the temperature field will
be calculated with the finite difference method. The nonlinear system of equations (with m points
in each layer, the number of layers is n) for the whole model can be expressed as:

0= ﬂ“l (T = tk+(i—1)n) tk+(i—1)n _tk+(i—l)n—l n tk+(i—1)n k+(i-1)n-1 dﬂ’( k+(l l)n) +
a+(i-1)d, +kAr Ar Ar dr (5.1.9)
+ tk+(i—:L)n+1 - 2tk+(| -I)n +tk+(| -1)n-1 /l ( ) 27/| (T = tk+(i—1)n) ( _ —t )
Arz k+(| -1)n hi k+(i-1)n env,i !
g D=2\ b= oy while k=1.,n-1.
n nm

If the thermal conductivity has the form of Egs. (2.4.1) and (2.4.2) then we can get for the previous
system of Eq. (5.1.9):

% (T = beiinn ) =L+ L—l,itlj(i—l)n t Ll,itk+ Ly tk+(|—1)n +Ls; tk+(|—1)n ’ (5.1.10)

dﬂ'i (T = tk+(i—1)n)
dr

= t+i—n_t+i— n—
- (_L—l,itkf(i—l)n + L +20 b iy +3L3,itk2+(i—l)n) — Ark =, (5.111)

where
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= (Pi —PiAT)-G(r=R,)+ P34, Ly, = (4 - &) G(r=R,) + 47,
Ll,i=(Pl/10—Pf/1§)-G(r=Rmi)+Pf,12,L2,_( Prds — P73 )-G(r=R,)+ P4}, (5.1.12)
L =(Pid —PiA7)-G(r=R,) + P47,

where 2] (j=1,2: number of the constituent material) are material constants, constants P’ (j=1,2

and | = -1,0,1,2,3) are temperature coefficients. We assume that the surface temperatures of the
adjacent layers are equal and the radial heatflow g is constant.

t. —t. t. ., —t.
_ (i-Hn+1 (i-Hn _ _ (i-1)n (i-1)n—1 s
_hiﬂ”l (T _t(i—l)n) . = _hi—lﬂ’l—l (T _t(ifl)n)—r , 1= 2,...,|I|. (5113)

From the thermal boundary conditions of the third kind it follows that

ﬂ —(t — —t)= tnm — tnm—l _ _ _
Ar (ti ter\V,al)hl(T ti) 0' Ar + (tnm 1:env,b)hn (T tnm) 0. (5114)

The points of the temperature field can be calculated from the solution of the nonlinear system of
equations (5.1.9), (5.1.13) and (5.1.14). Then a polynomial curve will be fitted to these values (via
least squares method), the recommended form for power-law distributions for smaller power index
values (m<7) is:

Toor =K+ G+ 91 + 3P + 3r’ + 3r+ G+ r*+3,r>+3,r°.  (5.1.15)

appr

5.1.3. Temperature-dependent heat conduction equation

In this subsection a numerical method is presented to approximate the temperature field of radially
graded disks —and cylinders- made from functionally graded materials with arbitrary spatial- and
temperature-dependent thermal conductivity. A multilayered model is derived where the disks are
made from homogeneous layers with arbitrary temperature-dependent materials as we saw in
Subsection 3.2.2. The thermal boundary conditions are boundary conditions of the first kind t; and
th+1 On the inner and outer cylindrical surfaces. There are n layers, the thermal conductivity is
arbitrary function of the temperature. Two cases will be investigated, the equations will be derived
for disks with constant thickness and with arbitrary thickness profile h(r). For each layer we have

(M) =A(r=R,;,,T)t =T,(R)=T,(R), i=1..n. (5.1.16)

mi?

For this case the nonlinear differential equation for the temperature field of the i-th layer Ti(r) can
be presented as:

i=1..n, (5.1.17)

i+1?

——[z(T( )- dT(r)} 0, R<r<R

With the Kirchoff integral transformation this problem becomes linear

T 1d| dé
0= [A(HNdY, ——{r—}:o, (5.1.18)
JO. rdr| dr

With the solution of the previous differential equation we obtain ©(r) and its boundary conditions
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|+1

6,(r)=C;;In(r)+C,,, j‘ﬂi(lg)dlgzcilln(Ri)_FCiZ .[ A1 (9dI=C;; In(R ) + C,,. (5.1.19)

i+l
The solution for the temperature field within the i-th layer assumes the implicit forms

(r) tisa 1 tia
0.(r) = j 2(9)d 8 =In(r) R HlRi tjz,(19)o|19+£,1,(,9)e|19+R jﬂ,(S)dS (5.1.20)

0 I+

; i+1

Ti(r) ty
[ A(909= RMR (RINM+1) [ 4(9)d9, i=1...n. (5.1.21)

t il N

In the case of disks with constant thickness, we assume that the surface temperatures t; of the
adjacent layers are equal and the radial heatflow q is — according to Fourier’s law:

l:ﬂ’| dTl(r)

dl’ i| = qi (Ri+1) = qi+l(Ri+l) = [Zﬂl M:| ’ i=1.., n-1. (5122)

dr

After the manipulation of Egs (5.1.21-5.1.22) the unknown t; (i=2, ...,n) boundary temperatures of
the layers can be calculated from the following system of equations

|+2 R R |+l R R .
A (9dy—2H = | L (9dI—2L1 >t i=2,..,Nn 1.
J (949 j (9)dg_2 el (5.1.23)

ti i+2 i+1 i+1 i

moreover t1 and t,+1 temperatures are given. Here it is recommended that instead of using Egs.
(5.1.20) and (5.1.21) to compute the function of the temperature we will fit a curve or curves -for
example with the least squares method- to the temperature values t; obtained by Eq. (5.1.23) in
order to make the further calculations, especially the integrations easier and faster. The
approximation function has the following form — in case of power-law distribution with |m|<6:
(N=0,r?+0.,r" +6,+6r+o,r*. (5.1.24)

appr

In order to make the approximation more accurate more polynomial curves can be used to build
the approximated temperature function.

In the case when the disk has arbitrary h(r) thickness, we will consider n layers with n different
hi=h(r=Rmi)>0 values similarly to the method presented in Subsection 5.1.2.

dT.(r) (r)
hA ——>2~ =|h A Tiia , 5.1.25
|: Iﬂ1 dr :|r=Ri+1 [ 1+171+1 dr }r_RHl ( )
tiyg
const. = Ii(n9)dl9 Rk h i=2,...n. (5.1.26)
t; i+1 |

The accuracy of this method is similar to the method presented in Subsection 3.2.2.

5.1.4. Analytical formulation when the temperature dependence is neglected

In this subsection it is assumed that the thermal conductivity depends on the radial coordinate and
the temperature values are given at the inner and outer cylindrical boundary surfaces of the
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functionally graded disk (t1 and t, respectively) so we have the following thermal boundary
conditions of first kind:

T(Rl):tl! T(Rz):tz- (5.1.27)
The steady-state temperature field -without internal heat sources- satisfies the next equation [59]
1d dT
——|rA(r)—|=0, R,<r<R,, 5.1.28
r dr{ ") dr} ' 2 ( )

where the thermal conductivity of the functionally graded material A=A(r) is arbitrary function of
the radial coordinate r. The solution of Eq. (5.1.28) under the current boundary conditions gives
the temperature distribution along the radial coordinate

t, — 1
T(r)=t+ R 2~k j dp, R, <r<R,. (5.1.29)
I 1 R PA(p)
r, PA(P)

5.2. Numerical solutions with multilayered approach

In this section the thermoelastic problems of rotating disks and cylinders will be solved with
the superposition of two separated cases, a mechanical loading without thermal load, and a
prescribed thermal load on the cylindrical boundary surfaces without mechanical loading. The
method derived for thin functionally graded disks can be used as analytical solutions for layered
composite disks with constant thickness.

5.2.1. Multilayered approach for thin functionally graded disks

In this subsection a numerical method is presented to determine the displacement field and thermal
stresses in functionally graded rotating disks with arbitrary axisymmetric thickness profile h(r).
The model is similar to the one presented in Section 3.2 for spheres. The thermoelastic problem is
split into two part, then the superposition principle is used to solve it.

The previously determined temperature field is the input of this method, the material parameters
for each layer can be discretized as

E,=E(r=R,,T=t,),vi=v(r=R

mi !

T=t,).q=a(r=R,T=t,), (5.2.1)

mi ?

pi=p(r=R;.T=t.), i=1..,n,

then we consider the case when the i-th layer is under thermal loading and has a steady-state
temperature field. The stresses on the curved boundary surfaces of the layers have zero values.

The u;'(r) thermal radial displacement and the air'(r), oi,' (r) thermal stresses can be formulated
as [52]:
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Ri +1

1+ vi)Ri2 + (1—vi)|’2

Ty LV, (
U (=—- aiE[rTi(r)dH rRE_R) ! (T (r)dr, (52.2)
o, | o, R? )
v @EF o E (1 R rndr 5.2.3
on(n=-% ! T+ o (1 rZJ ! (T, (r)dr (5.2.3)

r 2\ Risa
ol (1) :ali—lzziirTi(r)dr— EiaiTi(r)+ﬁ(]_+ F:_zj [mdr,i=1..n  (624)

_p2
i+1 i R

In the previous expressions the index i refers to the i-th layer, the sketch of a layer with the
loads is illustrated in Fig. 5.5.

Figure 5.5. The cross section of a quarter of the i-th layer.

In the next step it is assumed that the inner and outer cylindrical boundary surfaces of the i-th
layer are under constant mechanical loading f, =0, (R)andg, =0, (R,,). The differential

equation of the radial displacement field, derived from the equilibrium equation (Section 2.2):

49, % 7% | Luro, (5.2.5)
dr r
2, M M M
du'(M), du Ml _uw, o (5.2.6)
dr dar r r
where
k = L=vDpe V'E)p"" . (5.2.7)

In the expression of K, pi is the density of the i-th layer and w is the angular velocity of the rotating
disk. Furthermore the strain-displacement and stress-strain relations for homogeneous disks can
be expressed (Section 2.2) as

_du u

“Tar Ty

(5.2.8)

o = E [8r+vg¢—a(1+v)T], o, = E [v5r+g(p—a(1+v)T}.

r
1—1? 7 1-y?
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After solving Eq. (5.2.6) we get the following expressions for the displacement field and the
normal stresses:

ui“"(r):Cir+E—ﬁr3, (5.2.9)

r 8
vy EC _EB 1, a EGHVK 5.2.10
o (1) 1-v, 1+v,r? At A 8(1—Vi2) ’ (6210

EC EB, 1
SB) =l ()= T e

Using the equations of the boundary conditions, the unknown parameters Bi and C; can be
determined as

Ar? i=1,..n. (5.2.11)

Bi (1+V )R|+1R (A(ZRZ |+1)+ f gl) ’ (5212)
E (R R|+l
C — (1 Vi )(A(Rwl — R ) + RH—lgI Ri2 fl) . (5213)
I E; (R2 R|2+1)

The superposition principle can be utilized for this problem, because both the previously used
field equations and boundary conditions are linear. This means that we can add the stresses and
displacements caused by mechanical loads (5.2.8-5.2.13) to the thermal stresses and displacements
(5.2.2-5.2.4) in order to solve this problem. For the computation of the radial displacement, radial
and tangential stresses the following equations are used:

u; (r) =y (r)+u" (), (5.2.14)
o, (r) = oy () + oy (), (5.2.15)
o, (1) = o, (N + o) (1), i=1..,n. (5.2.16)

The unknown parameters fi (i=2...n) and gi (i=1...n-1) in the equations of uM(r), ai™M(r), oi,"(r)
can be calculated from the following equations

u(R,)=u,.(R,) i=1..,n-1, (5.2.17)
which ensure the continuity of the radial displacement field furthermore f; and fn+1 are given.
03 (R) = f, = —Piners O (Ro1) = 9 = — Poyeer- (5.2.18)
The system of equations (5.2.17) has the following form:

uiT+l(Ri+1) - u'T (Ri+1) =

(1 Vi )(A (R|+1 R )+ R|+lg| | |) R+ (1+V)R|+l i (A (RZ |+1)+ f B ) —SRS _
2 2 i+l 2 i1
Ei (R R|+1) Ei (RI |+1)R|+1 8
(1 V|+l)(A+1(R|+2 |+l) + R|+2 g|+l R|2+1 f|+1 (l+ V|+1)R|2+1 R|2+2 (A+1(R|+l |+Z) + f gi+l) K|+1 3
Ri+1 + - R|+1 )
E|+1 (R|2+l R|2+2) |+1(R|+1 |+2)R|+1 8
hgi =hi,fi (5.2.19)

Using the previously determined parameters fi and equations (5.2.14-5.2.16) the radial
displacement and the normal stresses of the multilayered disk can be evaluated by summation.
Because of the multilayered model the curve of the tangential normal stress may contain significant
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steps, but the stress values in the middle of each layer have good accuracy (as we saw in Chapter
4). Thus an approximate curve can be fitted to these points (for example using the least squares
method) to increase the accuracy and the convergence of the method. Furthermore the accuracy of
the method can be improved according to Subsection 3.2.6.

5.2.2. Layered composite cylindrical bodies

In this subsection the method presented in Subsection 5.2.1 will be applied to layered cylinders
where the homogeneous layers are only radially bonded -but not axially, for example in the case
of tubes with additional layers made from thermal insulation materials. For this problem a
cylindrical coordinate system Orpz will be used. The axisymmetric temperature field and
mechanical loading do not depend on the axial coordinate z and on the tangential coordinate ¢. To
determine the thermal stresses, the equations of generalized plane strain will be used.

oT(R)=o'(R.)=0 N = 27zj rol(r)dr=0, i=1,..,n. (5.2.20)

i+1

The u;'(r) thermal radial displacement and the i '(r), gis' (1), oiz' (r) thermal normal stresses can
be formulated as:

N EE 1-3v R 1 %
U (r)=1i—;04 {Fi[T(p)p]dp{ 1+er+ }W ! [T(p)p]dp}, (5.2.21)

T 20G(1+v)| ’ r’—R? R
() =——"++—-2 T (p)d +— T (p)d 5.2.22
=" !p (p)p (R|+1—R i | Ip (pMp | (5.222)
T 2a.G,(L+v,) r’+R? R
- (r)=——"1—"+—2*= T ————— | pT(p)dp-T(r 5.2.23
ou(N=""10 Ip (Mp+ ey | fp (PXp-T(r)|, (52.23)
T 20.G,(1+v,) 2 fw
T (r T(p)dp—T(r wy N 5.2.24
== e Ip (PMp=T(r) |, (5.2:24)
The mechanical part of this problem has the foIIowmg solutions:
M 1 (1-v C
| - LCor+ 22 | 5.2.25
u'(r) ZGi[lwi af + rj (5.2.25)
Y O S Y T J ) (5.2.26)
r’ r’
f R> —fR? R?,R? :
Cil _W, 2i _ﬁ(fiﬂ— fi)’ | :l,...,n . (5227)

i+1 i

Applying the principle of superposition according to Egs. (5.2.14-5.2.17) we get [68]

af +bf +cf  =ul,(R.)—u (R, i=2.,n1 (5.2.28)
a-—— 1 Fj Rur_ (5.2.29)
“G(+v)RL,-R
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bi — R2i+1 - (1_Vi) Ri2+1 + Ri2 + Ri+1 (1_Vi+1) Ri2+1 + Ri2+2 ’ (5230)
ZGi (Ri+1 - Ri ) (1+ Vi) 2Gi+1 (1+ Vi+l)
2
c=-t  RRa o ng (5.2.31)
Gi+l(1+ Vi+1) I:2i+2 - Ri+1

5.3. The initial value problem of functionally graded disks

In the next model we investigate a thermoelastic problem of thin functionally graded disks whose
material properties vary arbitrarily along the radial direction and are temperature-dependent. A
numerical approach will be presented which is based on a coupled system of first order ordinary
differential equations. The unknown functions of the system of linear differential equations are the
radial displacement and the stress function. Two models will be derived, in the first case a radially
graded disk is presented with constant thickness. The second model deals with the determination
of displacements and stress field of rotating radially graded disks with arbitrary thickness h(r).

5.3.1. Radially graded disks with constant thickness

In this subsection the system of differential equations of the radial displacement and stress function
is derived for radially graded disks with constant thickness. After the numerical solution of this
system of ordinary differential equation, the thermal stresses and radial displacement for arbitrary
radial nonhomogeneity can be obtained.

We consider a functionally graded hollow circular disk as shown in Fig. 5.6. R1 and R> denote
the inner and outer radii of the disk.

E(r:;r\/(;.T).
T(r), a(r,T)

Figure 5.6. The hollow functionally graded disk with the mechanical and thermal loads.

The temperature field is denoted by T=T(r) which is obtained from the solution of the steady-state
heat conduction equation (Section 5.1). The strain-displacement and stress-strain relations are
presented in Egs. (5.2.8), where for this case the Young modulus E, the Poisson’s ratio v and the
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coefficient of thermal expansion « depend on the radial coordinate r and on the temperature
difference function T. In this time independent uncoupled problem the temperature field can be
determined separately from the elastic problem, which means that for the material properties
M(r,T(r))—M(r) is valid and the stress-strain and strain-stress relations assume the forms of

o (r)= I E : [gr +ve, —a(1+v)T(r)],
v (5.3.1)

o,(r)= [vgr +¢,—a(l+ v)T(r)]

1-v2

g (r)= é[o; —VG(/,] +aT (r),
(5.3.2)
g,(r)= é[qﬂ —-vo, ] +aT(r).

The equilibrium equation in radial direction - disregarding the body force and the inertia terms -
is

dd? Lo ;% _0, R<r<R, (5.3.3)

The general solution of Eq. (5.3.3) in terms of stress function V=V(r) can be represented as

o-Y o -N Rr<r<r, (5.3.4)
r 7 dr
After some manipulations from Egs. (5.3.1-5.3.2) and (5.3.4) we can derive the next system of
ordinary differential equations for the displacement field and the stress function

v(r,T) 1-v*(r,T)

d u(r) 3 o rE(r,T) | u(r) N 1+v(r,T) a(r,TYT(r) (5.3.5)
ar|V(n)| | E(r,T) v(r,T) V()] [ -E(rT) ’ -

r r

In Egs. (5.3.5) all material properties depend arbitrarily on the radial coordinate and the
temperature field.

5.3.2. Radially graded rotating disks with arbitrary thickness

In this subsection a rotating thin radially graded disk is investigated with constant angular velocity.
The thickness of the structural component varies arbitrarily along the radial direction h(r)>0. In
this case the equilibrium equation can be expressed as

%(rar(r)h(r)) ~h(r)o, (1) +h(r) p(r)w’r? =0, (5.3.6)
dO_r + Gr—_ O-('o +%10—r _|_pa)2|‘ = O (537)
dr r dr h

From Eq. (5.3.7) the normal stresses in terms of stress function V(r) can be defined as
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_V(n)
o=y (5.3.8)
_av(r) 1 ) )
o,(r) == _h(r) +o p(r)re. (5.3.9)

After lengthy manipulations the following system of ordinary differential equations can be derived
for the displacement field and the stress function

du(r) _ 1-v(r,T)*V(r)
dr  h(nNE(,T) r

WV _ 1) Y0
dr r

v(r,T)@ +a(r,T)[L+v(r, T)]T(r),
r (5.3.10)

+h(r)E(r,T)&rr)—a(r,T)T(r)h(r)E(r,T) —h(r) p(r)o°r’.
5.3.3. The solution of the initial value problem

The next step is the determination of the initial values for the system of Egs. (5.3.5) and (5.3.10).
The stress boundary conditions of the considered thermoelastic problem (Fig. 5.6) are

Gr(R1)=_p1! Gr(RZ):_p27 (5-3-11)

which can be expressed in terms of the stress function V=V(r) when the thickness of the disk is
constant such as

V(R)=-pR, V(R)=-p,R,. (5.3.12)
In the case of arbitrary h(r) thickness we have
V(R)=-pRh, V(R,)=-p,R,h,, (5.3.13)

where h(R1)=h1 and h(R2)=h..

We formulate an initial value problem for the coupled system of ordinary differential equations
(5.3.5) and (5.3.10). To get the stresses and radial displacement for the considered thermoelastic
problem, three numerical solutions will be used with three different initial values. The aim is to
look for the suitable value of u(R:i) which provides the validity of the prescribed boundary
condition (5.3.12) and (5.3.13). At first we consider two solutions for system of equations (5.3.5)
and (5.3.10) which are denoted by [u1(r), V1(r)] and [uz(r), V2(r)]. These solutions have the next
initial values:

u,(R,) =u, : arbitrary value, (5.3.14)
V,(R)) =—-p,R,,whenh =constant and V,(R))=-p,Rh, whenh=h(r), (5.3.15)
u,(R,) = u, :arbitrary value, but u, = u,, (5.3.16)

V,(R,) =—p,R;,whenh =constant and V,(R,)=-p,Rh, whenh=h(r), (5.3.17)
By these solutions we compute uz as

u, —u,
U, =u, +
Vz(Rz)_Vl(Rz)

(-p,R,-V;(R,)), when h is constant | (5.3.18)
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u, —u,
U, =U, + V.(R)- V(R)( p,R,h, —V,(R,)) whenh =h(r). (5.3.19)

The solution of the thermoelastic boundary value problem formulated by Eqgs. (5.3.1), (5.2.8) and
(5.3.11) is obtained from the numerical solution of system of equations (5.3.5) and (5.3.10) with
the initial conditions

u(R)) =us, V(R)=-pR, or V(R)=-pRh. (5.3.20)

The validity of this statement follows from the linearity of the considered thermoelastic boundary
value problem. The stress field can be obtained by Egs. (5.3.4), (5.3.8) and (5.3.9).

5.4. An analytical solution of a radially graded disk

An analytical solution is developed for the case when the angular velocity is zero and the
distributions of the material properties are assumed to be described with a power-law along the
radial coordinate [69] as

E(r) = E,r™, a(r) = a,r™, A(r) = 4,r™ and v=constant. (5.4.1)

The boundary conditions are steady-state first kind thermal (t: and t2) and mechanical (p: and
p2) boundary conditions. The general solution of the following homogeneous system of ordinary
differential equations

%V 1-v°

+—-U,———=V, =0, 5.4.2
dr " Egrm* " (6.4.2)
dc\li E,rmiy, ——v —0, (5.4.3)

are as follows

+m, —v A+m —v
:Al—lclr*ﬂ +22—1 —C,r”, Vv, =Cra™ 4+C,re™, (5.4.4)
0 0
where
—m, £m? —4my + 4
Ay =——— e (5.4.5)

2

and C: and C» are arbitrary constants which can be obtained from the boundary condition Eg.
(5.3.12). Here we note that

m? —4my +4 = (m, - 2v)* + 4(1-v?) >0, (5.4.6)

this means that A1 and A> are real numbers because 0<v <0.5. For simplicity it is assumed that
t2=0. In this case the temperature change is

m3 R—m3
R™ —R,™

Next, we seek a particular solution for the system of nonhomogeneous differential equations

T(r)= t1 , RRSr<R,. (5.4.7)
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du, v 1—v? ™™ _ RMsp™

dr FUP E my+1 p a0t1(1+v) R1 —é*m3 =0, (5.4.8)
2
av, Myt _ -ty My,
—2—Er, ——v apEd - = Rém: 0. (5.4.9)
-

A simple computation shows that the particular solution for the the system of Egs. (5.4.8), (5.4.9)
is as follows

up — Alrmz—m3+1 + Blrm2+1, Vp — Azrml+m2—m3+1 + Bzrml+m2+l’ (5410)
where the following notations are used:

oty [ 1=v2 = (L+v)(m +m, —my—v+1) |

A= (R,™ =R ™)[ (M, —my +v+1)(m, +m, —m, —v+1) =1+ v* |’ (G411)
_ Bty (M, —m,)
A= (R;™ =R, ™)[ (M, —my+v+1)(m, +m, —m, —v+1) ~1+v* |’ (6412)
S ozotllzx’_z"“3 [(ml+m2—v+1)(1+v)+1—v2] | (5.413)
(R,™ =R, ™)[ (M, +v+1)(m, +m, —v+1) =1+v* |
B, — %ELR, M, (5.4.14)

(R7™ —R,™)[ (M, +v+1)(m, +m, —v+1)—1+v* |
The complete solution for the system of equations in the present case is
u(r) =u, (r)+u,(r), V(r)=V,(r)+V(r). (5.4.15)

The constants C1 and C> can be obtained from the stress boundary conditions as the solution of the
following system of linear equations

C Rﬂ1+m1 +C R Aoty AzR MMy =M+l B R myrm+l p1 - (5.4.16)
C R Ay +C R Ap+my 4 AZR my+my—M3-+1 + B R m1+m2+l p2 (5417)

Solution of system of equations (5.4.16-5.4.17) gives
(lel + AQlelerzfmfrl + Blem1+mz+l)R222+m2 .\ (p2R2 + A2R2m1+m2—m3+1+ BZR2m1+m2+l)R/12+ml

C, =- L —, (5.4.18
1 R121+m1 R;Q+m2 _ R122+m1 Rzﬂ,ﬁm1 Rlﬂﬁml RZAQerZ _ RlﬂQerl R;ﬁml ( )

C _ (lel + A2R1m1+m2—m3+1 + B2 lel+m2+1)R;1+m1 ~ (p2R2 + A2R2m1+m2—m3+1 + Bszmﬁszrl)Rfﬁml | (5 4 19)
2 Rllfrml R;Qerz _ RlZQerl R;ﬁml Rlﬂllﬂ’nl R;Q+m2 _ RlZQHTll R;1+m1 v

With Egs. (5.4.18) and (5.4.19) we can get the radial displacement and normal stresses for «=0 as

m m My —My+ my+
u(r) =4 +E “ers yHtMoy +E C,r” + Ar™ ™+ B, (5.4.20)
0 0
V(r) A+m -1 Ap+m -1 my+m,—mg m;+m,
o, (r) = =Cr +C,r +Ar +B,r™™™, (5.4.21)
o, (1) = dv (r) = C (A, + M)F*™ 1 C, (4, +m)r ™t

(5.4.22)
+ Az(ml +m, —m, +)r™™ ™ 4 B, (m, +m, +)r™ .
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5.5. Numerical examples

In this section numerical examples will be presented to the developed methods for the
thermoelastic problems of radially graded disks. The methods will be compared to each other and
to finite element simulations.

5.5.1. Example 8

In this example the initial value method will be verified with the analytical solution of Section
5.4. The material properties are prescribed as in Eqgs. (5.4.1). The geometry, material parameters
and loading of the radially graded disk are

R =1m R,=14m m =3 m,=-2m,=15v=03 E, =2-1o“%, o, =12.10° 1

oCm3 !

T(R)=0°C, T(R,)=300°C, p,=60MPa, p, =5MPa,

0.00070 1.3 % 1084

0.00069 -
normal
stresses

[Pa]
u [m] 000068 —
o, : redline

r

0 00067 - G,: blueline

0.00066 :.xw'—/
T T T y T T ;
i 2 3 2 3

Figure 5.7. The radial displacement field and the normal stresses of the analytical solution.

0.0003

0.0002
€ [%)] ar

eu

o

0.0001 4

D_\ T T
10 11 12 13 14

Figure 5.8. The relative errors of the initial value method compared to the analytical
solutions.
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The result of the comparison can be seen in Figs. 5.7 and 5.8. The developed initial value
method has good accuracy.

5.5.2. Example 9

In this subsection the methods presented in Sections 5.3 and 5.2 will be investigated. The

methods will be compared to each other in two cases. The properties of the material of the disks
based on Egs. (2.4.1) and (2.4.2) can be seen in Table 5.1 [8].

Table 5.1. Material properties of the functionally graded material of the disk.

Material material (1) material (2)
Property P Pri(10°%) | Pma(10°7) |Pra(102° P Pe1(107) Pea(107) | Pes(10™
(Mer) mo m1(1073) | Pm2(107") |Pms(10%) <0 c1(107) |Pc2(10°7) | Pea(10™)
AMW/mK) 15.39 -2.364 20.92 -7.223 1.7 -0.1276 |0.06648 -1
YW/m?K) | 10 0 0 0 2 0 0 0
p(kg/m®) 7200 0.3079 -6.534 0 104 -0.307 2.16 -8.946
a (1/K) 12.33-10%| 0.8086 0 0 3.873-10° | 0.9095 0 0
E (Pa) 2.01-101 | 0.3079 -6.534 0 3.484-1011 | -0.307 2.16 -8.946
v (-) 0.3262 -0.1 0.3797 0 0.24 0 0 0

We will consider a thin disk with constant thickness with the following geometry and loading:

R =10mm, R, =50mm, m=2m=0%T(r) :310.83—&227[@, p, =60MPa, p, =5MPa.
S r

Then the following disk will be investigated with thickness h(r):

3

R =0.1m, R,=0.3m, m=0.1, p, =60 MPa, p, = 0Pa,h(r) = 0.01—0.035r* —r—[m],

w= 4001,T(r) = _856 +170—721r +12298r* —41305r° +59657r" [K].
S r

The result for the multilayered method and the initial value method are shown in Figs. 5.9-5.11.

Here we can see that the results are in good agreement. Furthermore the radial displacements
computed via the multilayered model even by n=4 are fairly accurate (Fig. 5.9).

0.0014

0.00014
0.0013

24
— 0.00012

h(r)
0.0011 7 0.00010
0.0010 u [m]

0.00008
0.0009 4

0.0008 0.00006 4
0.0007

0.00004
0.0006 — L

B
0.01
0.0005 =

T T
0.02 0.03 004
T T

0.10 015 020

02 030 r[m]
T [m] - ‘— multilayered, n=4 + Initial value m. = - multilayered: n=8, n=16

0.03

Figure 5.9. The graphs of the displacement fields.
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In the case of disks with constant thickness the results for the radial normal stresses have good
accuracy at the edge of the layers, the graphs of the tangential normal stresses are accurate at the
middle of each layers (Figs. 5.10 and 5.11). The accuracy of this method can be improved with
curve fitting to these points.

o]

h(r)

0.m 0. él 0.03
T T T ]
0.10 0.15 020 025 030 I[III]
r[m] [ multilayered, n=f — multilayered-approx. 1= 1 initial value m. — muultilayered: n=8, n=1)

Figure 5.10. The graphs of the radial normal stresses.

The approximate function for the radial and tangential normal stresses have the following form
in these cases:

O (N =FF °+F r 2+ F r '+ R+ Rr+Rri + Frl + Frt + Rre. (5.5.1)

For the disk with thickness h(r) the next function is used for the normal stresses (Figs. 5.10 and
5.11):

Cap (N =F I '+ R+ Rr+ F,r’ + Fr* + Fr + Rre. (5.5.2)
8.% 10% 4 o
6.x 108
1% 10% hir)
2.x10°% o
o, [Pa]
0
-2.x 108
-4.x 108

G, [Pa] 3

T T T
0.01 0.02 0.03 0.04 0.05

1[m]

|— multilayered+approx. =4 — multilayered, n=4 | initial value m. — multilayered+approx.: n=8, =16 ‘

Figure 5.11. The graphs of the tangential normal stresses.
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With these approximations we get a fast and relatively accurate methods to deal with this kind
of problems of radially graded rotating disks. The accuracy of the multilayered approach can be
further improved with partitioning according to the material change within the structural
component - in our current case according to the power index m.

5.5.3. Example 10

In this subsection a numerical example is presented for rotating functionally graded disks with
a prescribed h=nh(r) thickness and temperature-dependent material properties. The temperature
field is determined by the method presented in Subsection 5.1.2. The displacement field and
normal stresses are computed according to Section 5.2 and compared to results obtained by finite
element simulation in Abaqgus. The following numerical data will be used for the computations:

r—0.09

0.01
a=0.1m, b=0.3m, h=0.0115-0.025r [m], T, (r) = 398( ) —ty [K], tinner=100K,

touter=400K, trer=273K, m=3 and for 1 and y: m1=2.3, Pinner=60MPa, pouter=0MPa, =400 1/s.

Table 5.1 presents the material parameters of the constituent materials based on Egs. (2.4.1)
and (2.4.2). Figure 5.12 shows that the temperature field of thin disks depends on the radial
coordinate by these symmetric boundary conditions.

T T T
010 0.15 020 025 030
r[m]

[—nm=15.15 - FEMresult——nm=10,10--- n m=5, 3]

Figure 5.12. The finite element model with the absolute temperature field and the graphs.

The results of the displacements and normal stresses are in good agreement as it can be seen in
Figs. 5.13-5.15. The approximation of the normal stresses can improve the accuracy of the
multilayered method.
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0.0005
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0.0003
0.0002 -
' T T T ?
0.10 0.15 020 0.2 030

r[m]
— multilayered solution: n=10, n=20,n=40 X FE solution, n=10
= 'multilayered s. n=5

Figure 5.13. The finite element model of the disk with the radial displacement and the graphs
of the different solutions.

8. 107
6.x 107
\/»J\ F‘/\ 1
\ 4.x107
D ’ﬂ‘\ 2% 107
\ o [Pa] **
f\ 0]
=
2% 107
-4.x107
. Abaqus results
-6.x107 3 ; ; ;
0.10 0.5 0.20 025 030
rim]
- —— multilayered, n=10 X FE solution, n=10
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6. Thermoelastic problem of functionally graded beams and strips

In this chapter functionally graded beams and strips will be investigated. The problems of
functionally graded prismatic beams are dealt with complementary energy method and a direct
approach. The problems of functionally graded strips are solved with multilayered approach,
furthermore the case of bimetallic strips in uniform temperature field is further analysed. At the
end of this chapter numerical examples are presented and verified with finite element solutions.

6.1. Thermoelastic problem of functionally graded prismatic beams using
complementary energy method

This section deals with the determination of thermal stresses in nonhomogeneous prismatic bars.
The derivation of the formulae for stresses caused by mechanical and thermal loads is based on
the principle of minimum of complementary energy. The cross section of the bar is an arbitrary
bounded plain domain, moreover the material properties and the temperature field do not depend
on the axial coordinate. The considered inhomogeneity means that the material properties are
arbitrary functions of the cross-sectional coordinates. The presented analysis is valid for compound
bars whose material properties are discontinuous functions of the cross-sectional coordinates and
bars made from functionally graded materials, whose material properties are smooth functions of
the cross-sectional coordinates. If there are no prescribed surface displacements than the theorem
of minimum of complementary energy can be formulated [51], [52], which means that among all
the sets of admissible stresses ox, ay, 0z, 7xy, Txy, Ty Which satisfy all the equilibrium equations and
the prescribed stress boundary conditions, the set of actual stress components makes the functional

Hc(ax,ay,az,r TXZ,TZy) defined by Eqg. (2.3.6) an absolute minimum as we can see in Section

2.3.

The considered nonhomogeneous prismatic bar and its mechanical loads are shown in Fig. 6.1,
where F=Fe,is the applied axial force and M =M e, + M e, is the applied bending moment.
The material properties are functions of x and y, therefore we have E=E(x,y) and a=a(X,y). In our
formulation the Poisson’s ratio of the thermoelastic bar problem does not appear. The temperature

difference field T also depends only on x and y and it is a given function. In the framework of
strength of materials the equilibrium stress field is characterized by the equations (Fig. 6.1)

Xy

o,=o,=1,=7,=1,,=0, o, =0,(X,Y), (6.1.1)

K [o,(x,y)] = [ o,(x, y)dA-F =0, (6.1.2)

K,[o,(x y)]= j Ro, (X, y)dA—e, x M =0. (6.1.3)



vt > o
F z &
O=CE —I;‘
'_Iﬁ - L -

Figure 6.1. Nonhomogeneous prismatic bar.

Egs. (6.1.1-6.1.3) refer to the coordinate system Oxyz with unit vectors e, e , e,and
R=xe +ye, (6.1.4)

the cross between two vectors in Eq. (6.1.3) denotes their vectorial product and the cross section
of the nonhomogeneous bar is A. Here we note that axis z is the E-weighted centerline of the
nonhomogeneous bar, it connects of E-weighted centres of cross sections. The E-weighted centre
Ce is defined by the next equation:

j E(x, y)RdA=0. (6.1.5)
A
The state of stresses are independent of the axial coordinate z, from this it follows that the axial

force and bending moment do not change along axis z. The complementary energy of
nonhomogeneous bar according to Eg. (2.3.6) is as follows

I, = LHZE (i’ " [o,(x, V)] +a(x, Y)T (X, y)o, (X, y)}dA, (6.1.6)

where L is the length of the bar (Fig. 6.1). Let I1[o,(x,y)] be defined as

_'[{ZE( )[O- (x, y)] +a(x, y)T(x y)o,(X, Y)}d (6.1.7)

According to the minimum of complementary energy we look for the minimum of I1.[o,(x,Y)]

under the subsidiary conditions given by Egs. (6.1.2), (6.1.3). The method of Lagrange multipliers
will be used [70], [71]. We define a new functional which contains the constraints given by Eqgs.
(6.1.2) and (6.1.3)

Flo,(X,y), &, &, | =11 [o,(X,¥)]- 4K, [0,(X, )] -1, - K, [o,(x, y)]. (6.1.8)

In Eq. (6.1.8) the scalar product of two vectors is indicated by dot. The necessary condition of
minimum is formulated by the next variational equation

I{G( Y 4 o, YT (% y) — A — b, - R}&rdA 5A{Iaz(x,y)dA—F}

(6.1.9)
—5h, - |:IRG (x,y)dA—e XM} 0.
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Since do,, 04, Ok, are arbitrary we obtain the following equations from Eq. (6.1.9)

O-z(Xv y) = E(Xv y) [ﬂ‘l + )"2 'R—OC(X, y)T(X’ y)]’ (6110)
F=[o,(xy)dA e ,xM=[Ro,(x y)dA (6.1.11)

Combination of Eq. (6.1.5) with Egs. (6.1.10) and (6.1.11) leads to
F+N;

= , 6.1.12
A A ( )
Ny = [ E(x y)a(x, y)T (X, y)A. (6.1.13)
In Eq. (6.1.12) the following notation is used
A = [E(x, y)dA. (6.1.14)

Substitution of Eg. (6.1.10) into Eq. (6.1.11)> yields the next expression
AJE( y)RAA+1, - [E(x, y)RoRIA-[E(x, y)a(x, Y)RT (x, y)}dA=e,xM.  (6.1.15)
A A A
Here the circle between two vectors denotes their tensorial (dyadic) product. We introduce the
Euler tensor I as
I :fE(x, y)RoRdA=1¢,0e +1 (e, 0e +e oe,)+le oe, (6.1.16)
A
where
1, =jE(x, y)X2dA, 1, =jE(x, y)xydA, I, =jE(x, y)y2dA. (6.1.17)
A A A
Let M+ be defined as
e, xM; = [E(x, y)a(x, Y)RT (x, y)dA (6.1.18)
A

In Eq. (6.1.15) the coefficient of A1 vanishes, that is we have
I-A,=e,xM; +e,xM. (6.1.19)
Denote the unit vector in direction of i, is m=me +me , which means that &, =4,m. Let
n=mxe, =ne, +ne be FromEq. (6.1.19) we get
AL(I-m)xe, =41-n=(e,xM;)xe, +(e,xM)xe,=M; +M, LI-n=M; +M.  (6.1.20)
From Eq. (6.1.20) it follows that

Ln=1"(M; +M). (6.1.21)
Eq. (6.1.21) gives a possibility to obtain the unit vector n
I’1~(MT + M)

n= : 6.1.22

17 (M, + M) (6122
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On the other hand from Eq. (6.1.20) we have

An-I-n=M; -n+M-n, (6.1.23)
that is
4:@, l,=n-l-n=1n2+21 nn +10% M, =M, -n M, =M-n. (6.1.24)
In Eq. (6.1.11)

h,-R=72m-R=4,(e,xn)-R=4,(xm +ym )=4(yn,—xn ).  (6.1.25)

Summarizing the obtained results the following formula can be derived for the axial normal stress
0z

o, (%, y) = E{F *A'ENT # Mo M (yn, —xny)—aT}. (6.1.26)

Here we note that the Lagrange multipliers A1 and i, have mechanical meanings. The stress-strain
relation for one-dimensional problem of thermoelasticity is formulated as [52], [60]

o, (% y) = E(x,y)[&,(x, ¥) —aT (x, )] (6.1.27)
In Eq. (6.1.27) &, is the normal strain. Comparison of Eq. (6.1.10) with Eq. (6.1.27) gives
g(%y)=4+%,-R=4+1Lm-R. (6.1.28)

Eqg. (6.1.28) shows that 41 is the normal strain at the E-weighted centre Ce of the cross section and
A, is the curvature vector of the deformed E-weighted centre line:

£00)=4=¢, A,=xm, (6.1.29)

where x is the curvature of the deformed longitudinal fiber determined by x=0,y=0and o<z < L.
The thermoelastic pure bending problem of nonhomogeneous prismatic bars, based on the Euler-
Bernoulli beam theory was analysed by Stokes [72]. Stokes paper uses a direct approach starting
from the assumed form of normal strain which is

£,(xy)= ’7_R"" - (6.1.30)

Here
n=m-R, k==, 1n,=—-Reg,. (6.1.31)

The zero line of longitudinal strains is given by 7, . Our approach is different from the one

presented by Stokes [72]. It demonstrates the efficiency of the variation method in solving the
problems of mechanics of solids.
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6.2. Thermoelastic problem of functionally graded beams using a direct
approach

In our second model the nonhomogeneous bar is subjected to a given temperature field T(x,y) and
eccentric tension F, the sketch of the problem is shown in Fig. 6.2. The material parameters and
the temperature field are functions of the coordinates x and y as in our previous problem.

YN
Vol

NG

A
Y

Figure 6.2. The sketch of the nonhomogeneous beam.

The mechanical loading can be expressed as:
F=Fe,, M=Fpxe,. (6.2.1)

We will use a direct approach for the axial normal strain —according to Egs. (6.1.30) and (6.1.31)-
with the curvature and the longitudinal strain:

g, =& +K1. (6.2.2)
The stress-strain relation for this case can be expressed as
o, (X, y) = E(X, ¥) (& +x717) — E(X, Y) (X, V)T (X, ) - (6.2.3)

The stress vector associated with a plane with normal unit vector e; is

p,(x,y) =Ege, + EkR-me, —EaTe, = Ege, + Ekn xR —EaTe,. (6.2.4)
From the equilibrium equation -and taking into account Eq. (6.1.5)- we get
F =&, [ EdA— [ EaTdA, (6.2.5)
A A
the unknown &o can be determined as
F+F
& = A L, (6.2.6)
where we have introduced the notations
A = j EdA, F = j EaTdA (6.2.7)
A A

With the bending moment the following equation can be established
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M :jR xp,dA = Kj ER x (N x R)dA—anTRdAxez =
A A A
I(I ER x(nxR)A—-M;, (6.2.8)
A
M, = [EaTRdAxe,.
A

The combination of Egs. (6.2.8) leads to
M+M, =«i-n, (6.2.9)
Here we note that in Eq. (6.2.9) we have introduced
i=lgoce +1 (e ce +e e )+le ce,. (6.2.10)
The vector n can be determined according to Eq. (6.1.22) but with | instead of 1. Equation (6.2.10)
can be rewritten into
rn=1"-M+1"-M,, (6.2.11)
From which we get

k(mxe,)=(1"xe,) -Fp+I11-M;,
( )A( ) T (6.2.12)
Km=(ezxl‘lxez)-Fp+erI‘l-MT.

The combination of Egs. (6.2.12), (6.2.6) and (6.2.3) leads to the axial normal stress:

o, = E{F ;FT - FR~(eZ ><i’1><ez)-p+R-eZ x1-M, —aT}. (6.2.13)
where the following notations are introduced:

A | |
-1 1 {y xy:| 1 (lyexoex+|Xy(exoey+eyoex)+Ixeyoey), (6.2.14)

" deti Ly 1 " detl

R 1 |- -1
IL=e xIt=—1 Y |, 6.2.15
1T detl{|y IXJ ( )

1
I2=deti(—|yeyoey—IXy(eyoex+exoey)—Ixexoex). (6.2.16)
The axial normal stresses can be calculated as

F 1
o,=E||—+-R:-1,-M; —aT |[+F| —+R:1,-p||. (6.2.17)

A Ac

6.3. Determination of the displacement field in inhomogeneous beams

In this section the determination of the displacement field in inhomogeneous prismatic bars is
investigated when the material properties E(x,y) and a(x,y) and temperature field T(x,y) are
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arbitrary functions of the cross-sectional coordinates x and y coordinates and do not depend on the
axial coordinate.
According to the Euler-Bernoulli beam theory, the assumed form of the displacement field is

u(x,y,z) =u(z)e, +v(z)e, +w(x,y,z)e, = U(z) +w(x,y,2)e,. (6.3.1)
The axial displacement can be expressed as
w(X,Y,z) =—X u(z) _ y ou(z) +w,(z)=-R -aU—(Z)+wo(z) . (6.3.2)
oz oz oz

The non-zero normal strain is

w_ ou(z) y o’u(z) . owy(2) _ R. o°U(z) s ow,(z) |

=—= 6.3.3
‘ooz oz’ oz’ 01 oz’ o1 (63.3)

The constitutive equation for this case has the following form:
g = %+0{T : (6.3.4)

The combination of Egs. (6.3.4) and (6.3.3) gives the axial normal stress for the inhomogeneous
beam.

2
o = r.2YD (@) £+

2 6.3.5
oz’ oz (63.9)
The equilibrium equation gives the axial displacement of the centerline wo
[o.da=F = Mo p _N, | (6.3.6)
A oz
F+N;
Wy=——"-12, (6.3.7)
For the moment M we have
[RxcedA=M, (6.3.8)
A
2
e, xM=[Ro,dA=—-[ERoRdA. 0 LZJ +%j ERdA- [ E&TRdA. (6.3.9)
A A oz oz A
The combination of Egs. (6.3.9), (6.1.18) and (6.1.5) leads to
o°U
e, x(M+M;)=-1—-. (6.3.10)
0z
From Egs. (6.3.10) and (6.3.1) we get, that
0° 0° _
e, x[ auz(f)ex " a"z(f)eyj: I (M+M,), (6.3.11)

when M and Mr are constant,
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u(z):%ll-(M+MT)-ey, (6.3.12)

v(z):—%ll-(M+MT)-ex. (6.3.13)

6.4. Curved layered beams and strips

In this section thermoelastic problems of curved beams are investigated for bimetallic curved strips
and multilayered beams. The thermal stresses are caused by uniform temperature field. The
functionally graded beam is approximated with the multilayered approach.

6.4.1. Bimetallic beams and strips

In this subsection a curved bimetallic beam is investigated, which can be seen in Fig. 6.3. The thin
beam consists of two different elastic materials.

y

Figure 6.3. Bimetallic curved beam with rectangular cross section.

The governing equations and boundary conditions are formulated in the cylindrical coordinate
system Orgz, and the plane z=0 is the symmetry plane of the two-layered curved beam for its
geometrical properties. The connection between beam component 1 and beam component 2 at the
common cylindrical boundary surface r=R; is perfect, both the displacements and tractions have
no jump at r=R». There are no present body forces and the whole boundary of the bimetallic curved
beam is stress free. This means that

o, (R.p)=0,(Ry,0)=7,,(R,9)=7,,(R;,9) =0, 0<p<, (6.4.1)
o,(r,9)=0,(r,0)=7,(,9)=r,(r0)=0, R <r<R.. (6.4.2)

In the framework of generalized plane stress model the boundary condition
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o, (1,9 =0,(r,00=0, R <r<R, (6.4.3)

will be satisfied only in weak form such as

Ry Ry

N = j o, (r,9)dr = j o, (r,0)dr =0, (6.4.4)
Rl Rl
Ry Ry

M = jra{p(r,&)dr = jr%(r,O)dr =0. (6.4.5)
R Ry

The stress resultants and stress couple resultants vanish only at the end cross sections ¢=0 and
p=3. Initially the temperature of the two-layer composite beam is the reference temperature. Its
temperature is slowly raised to a constant uniform temperature, where the temperature change is
T. The deformations and stresses are caused by only the uniform change of temperature. The
solution of this problem is derived from the next displacement field

u(r,@) =U,(r)+ f,cosp + f,sing, (i=12), (6.4.6)
Vv,(r,p) =Crp+ f;sinp— f,cosp+ f,r, (i=12), (6.4.7)

where the displacement in the radial direction is denoted by ui and the displacement in tangential
direction is indicated by vi, furthermore lower index i refers to curved beam component i (i=1,2).
In Egs. (6.4.6), (6.4.7) f1, f» and f3 are constants whose values obtained from the displacement
boundary conditions (Fig. 6.3).

u,(R,0) =0, v,(R,,0) =0, Vv,(R,,0)=0. (6.4.8)

The constant C will be determined from the stress boundary conditions (6.4.1), (6.4.4), (6.4.5) and
the continuity conditions of displacements and normal stress field or at the common cylindrical
boundary between beam component 1 and beam component 2. From Egs. (6.4.6), (6.4.7) it follows
that the strains can be expressed in terms of U; and C as

_dy,

£, :$+C, a =g (i1=12). (6.4.9)

2 r
Combination of Eq. (6.4.9) with Eq. (6.4.10) gives the strain compatibility equation

rd(ioi +e,—-6;—C=0, (i=12). (6.4.10)

In the present problem the constitutive law of linear thermoelasticity [52], [60] has the next form

Ee,=0,-Vvio,+EaT, (i=12), (6.4.11)
Ee,=0,-Vvio, +EaT, (i=12). (6.4.12)

where ori, 0, denote the radial and circumferential normal stresses of the i-th layer (i=1,2).
Substituting Egs. (6.4.11), (6.4.12) into Eq. (6.4.10) yields
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ri(—vio-ri +0,+ EiaiT)—(l+ v)o,+(1+v)o,—EC=0, (i=12). (6.4.13)
dr 7 7
In our case the equation of mechanical equilibrium is as follows

do, N Ori ~O%%i _ 0, (i=12). (6.4.14)

The general solution of Eq. (6.4.14) in terms of stress function Vi=Vi(r) can be given as

:w, o. = v (i=12). (6.4.15)

ri ¢i dr ’

Combination of Eq. (6.4.13) with formulae of normal stresses leads to the following differential
equation

2
Z%Jf f%i—Vi -ECr=0, (i=12). (6.4.16)

The solution of Eg. (6.4.16) is as follows

V,(r)= clr+—c2 +—E; rinr, R <r<R,, (6.4.17)
r

Vz(r)=c3r+&+%rlnr, R, <r<R,. (6.4.18)
r

Here, we note that the stress field and strain field are independent of the polar angle ¢. A simple
computation shows that

R R
2 2 d

N = I O-(p(r)dr = J.a(rar)dr = Rzo-r1(R2) - Rlo-rl(Rl) + R3O'r2(R3) - Rzo-rz(Rz) =0 (6.4.19)
Ry

Ry
if the stress boundary conditions
0.(R)=0,,(R;))=0, (6.4.20)
and stress continuity condition
04(R,) =0,,(R,) (6.4.21)

are satisfied. To obtain the stress field we must determine the five constants ci, ¢, c3, ¢4 and C.
The next equation will be used to get the value of the unknown constants

Grl(Rl) = 0' GrZ(RS) = 0' Grl(RZ) = GrZ(RZ)’ (6422)

RZ R3
U(R)=U,(R,), [ro,dr+[ro,dr=0. (6.4.23)
Rl RZ
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We can reformulate Eq. (6.4.23)1 by the use of Eq. (6.4.9)1 as
gwl(Rz) = gq;z(Rz)- (6.4.24)
Eq. (6.4.24) in terms of stresses is expressed as

Eil[om(R2>—vm(Rz)]+al =Eiz[%(Rz)—vzo,z(Rz)]sz- (6.4.25)

The following system of linear equations can be derived from Eqgs. (6.4.22), (6.4.23) and (6.4.25)

Mx =f, (6.4.26)
where
M=[m;]. (.j=12345), £=[0,0,0,1,0],x=[c,C,.CC,.C]', (6:4.27)
1 E,
mll_Rl’ mlzzﬁv m13:m14:m21:m22:0’ m15:?R1|n Rl'
1
1 E 1 1
My = Ry, m24:Ev m25:72R3|nR3’ my, =Ry, mszzR_' Mg =—R,, m34:_R_’
3 2 2
mo-EB " Bppr moovn o vy 1w 1hy,
® 2 P g TR ERETE E, % ERY (6.4.28)
vV, —V 1 R 1 R
m, =-—2—=2InR,, m51:§(R22—Rf), mszz—lnﬁz, m53=E(R§—R22), m54:—InR—3,
1 2

M, :%[Rf InR, — RZIn Rl+%(R§ - Rf)}+%{R§ InR, - RZInR, +%(R§ - Rf)},

f=(a,—)T.

After the solution of system of linear equation (6.4.26) we can compute the stresses and
displacements by the next formulae

ou(N=c+2+ECmr o (n=c-2+ESanr+), (6.4.29)
r 2 ? r 2

0,,(r) =¢, +C—§+%Cln r, o,(r)=c, —C—‘z‘+%(ln r+1), (6.4.30)
r r

1-v 1+v Cr
U,(r) = . Ler - - 1(;2+7 (1-v,)Inr=1]+aTr, (6.4.31)

1 1

1-v, 1+v, Cr
Cof — c,+

U.(r) = —I|(1-v,)Inr-1|+a,Tr, 4.32
(=g 3 S [(A-v)inr-1]+a, (6.4.32)

-91-



1+wc CR,
2

1-
f=-U(R)=-"""¢R + —1[(1-v)InR -1]+aTR, f,=f,=0, (6.4.33)

E, RE, 2
u(r)=U,(r)-U,(R)cosp, (i=12), (6.4.34)
v,(r)=Crp+U,(R)singp, (i=12). (6.4.35)

6.4.2. Strength of materials solution for curved beams

According to paper by Ecsedi and Dluli [73] it is assumed that

u=U(p), v=rg(p)+ (6.4.36)
do

is valid for the whole two-layer composite curved beam. From the strain-displacement
relationships of linearized theory of elasticity we obtain

Srzgzz)/r(p:]/WZ]/rZZO, (6437)
2
g =ty dY ), 98 (6.4.38)
M de? dqo

that is one strain component is different from zero. The next constitutive equation will be used

2
c,=Es,—EqT ZE(U + dV j+ E, d¢_ —EaT, (i=12). (6.4.39)
r de? "do

The stress- and stress-couple resultants vanish since there are no applied mechanical load (Fig.
6.3), that is, we have

R 2
¢ du dg
N :E[%dr:kl[u 007 ]+k - pT =0, (6.4.40)
M—Trodr—k( 2Uj+k g9¢ —-yT=0 (6.4.41)
2 L do’ do -

Here, the next notations are introduced

R,

k= E,In R2+E Nt ko =E(R,~R)+E;(Ri—R,),
_— i (6.4.42)
ko =+ (R -RY)+=2 (RS - RY),
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E E
f=aEi(R,~R)+ B, (R —Ry), 7= T2 (R —RY)+ T2 (RS -RY). (6.4.49)
From Eqgs. (6.4.40), (6.4.41) we get

2
U+ BYU _Shmrker 96 kSl g (6.4.44)
dp®  kk,—k; = dp  kk,—k;

Combination of Eq. (6.4.39) with Eq. (6.4.44) leads to the expression of circumferential normal
stresses

o, —E{—" Z(ﬁk3_7/k2+7kl—,6'k2j—ai T (i=12). (6.4.45)
v k2T

Knowing o, (i=1,2) we can determine the normal stress ori by the use of equation of equilibrium
%(raﬁ) —o, (i=12). (6.4.46)
A simple computation gives

I N S r _ ry_, R
G”(r)_El{(klk3—k22)r('Bk3 7k2)|nR1+(7k1 ﬂkz)(r Rl) o r }T,RleSsz (6.4.47)

R r-R
0,(N=-20,(R)+E,« ——— 20T,
? ro T (ks k) R, ? r (6.4.48)

R, <r<R,,

Integration of Eq. (6.4.44) and using of boundary condition (6.4.8) lead to the expressions of radial
and circumferential displacements

k,— 7k
U(p) = ’83—722(1— cosg)T, (6.4.49)
k1k3 - kz

(7k1_ﬂk2)r¢_(ﬂk3 _7/k2)5in(PT
5 )
klk3_k2

V(p, 1) = (6.4.50)

6.4.3. Radially graded strips

In this subsection the problem of functionally graded strips in uniform temperature field will be
approximated with a multilayered method based on the one presented in Subsection 6.4.1. Let us
consider a layered curved strip with perfectly bonded homogeneous layers, the number of layers
is denoted by n. According to Subsection 6.4.1 the equations for this case are:
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oi(r=c;, +(;‘—§+E‘—2C|n r, (6.4.51)
o, (r)= Cil—%+%(lnr+1), (6.4.52)
1-v, 1+v,

U, (r)= C, +%[(1—vi)ln r-1]+aTr, (i=12,..,n). (6.4.53)

C,M—
E rE;
The unknown constants cii, C2i and C can be calculated from the boundary and fitting conditions
similarly to Egs. (6.4.22) and (6.4.23).

1 R 0 0 0 0 0. 0 0 0 0 5 R
1 R® -1 -R* 0 0 0. 0 0 0 0 [E1;E2j|n(R2)
0 0 1 RY -1 R' 0 - 0 0 0 0 (Ez*Eajln(RS) o °
2 Cy 0
: Cy 0
0 0 0 0 0 0 0 1 R 1 R {E E 1jln(R) K
Cy | 0
0 0 0 0 0 0 0 0 0 1 R Z1n(R,,,) G 0
2 (o -a)TR
Lvp —1E+RV1 "ZE &y 1E+F:2 0 0 0 0 0 0 0 RaInR) (), ) Gt 5
1 1, 2 212 o | | (2, -, )TR
C| 0
0 0 0 0 0 0 0. 1 vann I+v, v-1 ! 1+v, Rnln(Rn)(V )
Enfl Enfan En Ean 2
RR-R* (R,) R-R? (R R < 2( 1] 2[ 1)
D0 2 B2 o= In| —2 E.[RZ,|In(R R In(R,)-=
) = 5 2| 2Rl IR0 -3 |- Ri| n®)-3
(6.4.54)

After the calculation of the stress field, the accuracy of the tangential normal stresses can be
improved with curve fitting as we can see in Example 14.

6.5. Numerical examples

In this section four examples will be presented. In the first example a two-layered prismatic beam
will be investigated in constant temperature field, in our second example a functionally graded
beam will be examined loaded with concentrated force, moment and uniform temperature field.
These problems will be solved with the method presented in Sections 6.1-6.3. In Subsection 6.5.3
a bimetallic- , in 6.5.4 a radially graded curved strip will be investigated.

6.5.1. Example 11

For this numerical example the cross section of the considered bar is shown in Fig. 6.4. This cross
section is made of two different homogeneous materials with Young moduli E;=E, E>=3E and the
coefficients of linear thermal expansion are ai=a, a2=2a. There are no applied mechanical loads,
that isF =0, M =0. The temperature difference T is constant on the whole cross section. For
homogeneous cross section the uniform temperature does not produce any stress field, the
homogeneous bar is stress free. The position of the E-weighted centre of cross section is given in
Fig. 6.4. The elements of Euler tensor are
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|, =512Ec*, I, =64Ec’, I, =-96Ec". (6.5.1)

A simple computation gives

Xy

A =48Ec?, N, =T72EaTc?. (6.5.2)

e,
YA
4c
P ™
2c § [E+=3E, w=2a| 0=C, X
2(;" E1=E, oa=a " e'X
12¢ Q

Figure 6.4. Nonhomogeneous cross section and its finite element model.

By the use of above computed values we can determine the stress field of composite bar caused
by uniform temperature field. We determine the normal stresses at points P(-4c, 2c) and Q(8c, -
2¢). The computation gives

o,(P)=20.002EaT, o,(Q) = —5.0413ET. (6.5.3)

From the finite element simulations in Abaqus CAE we get o, (R)=54.69MPa,
o, (Q) = —45.33MPa, from our calculations we get o, (R) =54.21MPa, o, (Q) = —45.87MPa
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Figure 6.5. The displacement fields of the prismatic composite bar.
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6.5.2. Example 12
In this example a functionally graded prismatic beam will be considered. The geometry of the
beam, the loadings and the material parameters are:

a=05m,b=0.7m, F=e,kN, M =150e, +100e Nm, T=100K,

E(r) = 2.1-10"(1+ 20X —15y) Pa, a(r)=12-10°(1+ 20x—15y)%.

The finite element model can be seen in Fig. 6.6. The FE model was built from homogeneous
segments (element lines as we can see in Fig. 6.6) with discrete values of the material properties
calculated in the middle of each segment.

Figure 6.6. The finite element model of the functionally graded prismatic beam.

The results of the finite element model are in good agreement with the ones calculated with the
previously presented method. The axial normal stresses of the marked points (in Fig. 6.5) are
o, {A B,C,D} = {32.65,6.16,—60.3,9.91} MPa.

6.5.3. Example 13

In this example a bimetallic curved beam will be considered (Fig. 6.3). This problem is solved
with the two methods presented in Sections 6.4.1 and 6.4.2, then these results are compared to the
finite element calculations. The next data are used in the numerical example:

R, =0.5m,R, =0.6 m,R, =0.7 m,E, =200 GPa,E, =70 GPa,

v, =0.27,v, =0.33,0,=11-10° L o, =23.10° 1 T = 200K, 9= 7.
K K 2

In Figs. 6.7 and 6.8 the graphs of normal stresses or and o, are illustrated in comparison with FE
solution - which was carried out by Abaqus CAE software / coupled temperature-displacement
solver.
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Figure 6.7. Plots of the radial normal stresses.
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Figure 6.8. Plots of the circumferential normal stresses.

In Fig. 6.9 the finite element model of the problem and the von Mises equivalent stress field are
presented, here we can see that the stress distribution does not depend on the polar angle ¢ except
at the ends of the curved beam.

Figure 6.9. The finite element model with the equivalent stress field.
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Figure 6.10 shows the 3D graphs of displacements U(r, ¢) and v(r, @) obtained by the previously
presented elasticity solution when R <r<R, and 0<¢<7.

B 044

£ n 3 040 0
2% g3 038
o [rad] Ay 1 [m] r [m]

Figure 6.10. Plots of displacement field.

6.5.5. Example 14

In this example the problem of a functionally -radially- graded curved strip is replaced with the
problem of a multilayered curved strip as we can see in Subsection 6.4.3, the number of layers is
n and their thicknesses are equal. The next data are used in the numerical example:

2

a=05m,b=0.7 m,9=gn, T =100K, K(r) =(F:‘ RI;J v(r)=(0.32-0.24)K(r)" +0.24,

E(r)=(21-10" -3.5-10")K(r)" +3.5-10" Pa,a(r) = (12-10° ~3.8-10° )K ()" +3.8-10° %
The results were compared to finite element simulations and they are in good agreement (in the
case of n=32 the maximum tangential stresses are o,, FEmax=24.9MPa, 6, muisitayered max=24.01MPa).
The graphs of the radial normal stress and displacement field are shown in Fig. 6.11.

-0.000096 -
-0.000098
-0.000100 1
S, [MPa] - u [m] -0.000102 4

-0.000104 4

-0.000106

T T T T
: ‘ ‘ ‘ . 0050 0053 0.060 0.065 0.070
0.030 0.035 0.050 0.065 0.070
r[m] r[m]

Figure 6.11. The radial normal stress and displacement field of the curved beam.

With curve fitting the accuracy of the tangential normal stresses can be improved. In our current
case the fitting function of the tangential normal stress has the following recommended form
(m<10):
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o (N =F, + Er+Fr2 + Frd+ Fré, (6.5.4)

app ¢

the result can be seen in Fig. 6.12.

——

0.050 0.033 0.060 0.065 0.070
r[m]

|— 1n=100 — — n=4 with aproximation —— n=8 with appmximation‘

Figure 6.12. The plot of the normal tangential stresses in the curved functionally graded strip.
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7. Summary and theses

The main goal of this dissertation was to present analytical and numerical methods to deal with
the thermoelastic problem of composite and functionally graded simple structural components.
The temperature-, displacement- and stress fields were determined in spherical bodies, disks and
beams subjected to mechanical and thermal loads. Several methods were derived for steady-state
thermoelastic problems of parts made from functionally graded materials, where the material
properties are arbitrary functions of one (or two) coordinate(s) and the temperature field. The time-
independence of the functions involved separates the analysis of the temperature field from that of
the elastic field, therefore these problems become uncoupled.

After the introduction and the overview of the literature, the basic concepts and equations of
thermoelasticity were presented in Chapter 2, such as the equilibrium equation and constitutive
equations of linear thermoelasticity, functions of temperature-dependent material properties, etc.

In Chapter 3 two analytical methods were derived for layered composite spheres, where one
based on the superposition of the cases of pure mechanical and pure thermal loading while the
other used a direct form of the displacement field. Then two additional analytical methods were
presented for radially graded spheres with special -mostly power-law based- functions for the
material properties.

In Chapter 4 numerical methods were presented for determining the temperature-,
displacement- and stress field within functionally -radially- graded spherical components, when
the material properties are arbitrary functions of the radial coordinate and temperature. The
possibility of approximating this one-dimensional static thermoelastic problem of functionally
graded spheres with multilayered approach was investigated. A second method was derived which
solves the problem of radially graded spheres with a coupled system of ordinary differential
equations containing the radial displacement and stress function and transforms the two point
boundary value problem to an initial value problem. This chapter contained special problems of
functionally graded spherical bodies, such as incompressible materials or piezoelectric, radially
polarized materials.

In Chapter 5 two numerical methods were developed for thin functionally graded rotating disks
with arbitrary thickness profile when the material properties are arbitrary functions of the radial
coordinate and the temperature field. There were combined thermal and mechanical loads on the
cylindrical boundary surfaces. One method used the multilayered approach and the principle of
superposition of the thermal and mechanical loads, while the other is an initial value method. The
multilayered approach was applied to a generalized plane strain problem of radially bonded
layered cylindrical bodies with axisymmetric loading which did not depend on the axial
coordinate.

Chapter 6 dealt with the calculation of thermal stresses and displacements in nonhomogeneous
prismatic bars caused by mechanical and thermal loads when the cross section of the bar is an
arbitrary bounded plain domain, the material properties and the temperature field do not depend
on the axial coordinate. Then the problem of curved layered composite and functionally graded
curved beams was investigated when the structural components were subjected to special thermal
and mechanical loads.

Furthermore numerical examples were presented in the end of each chapter to verify the
developed methods, to demonstrate their accuracy, etc. The result were compared to each other,
analytical solutions, to results obtained from the literature and FE simulations.
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Theses

Thesis 1

I have derived two analytical methods to determine the displacements and stress field in layered
composite spherical bodies subjected to axisymmetric mechanical and thermal loads exerted on
the inner and outer boundary surfaces. The homogeneous layers were perfectly bonded. The first
method uses a direct form of the displacement field, the second model derives the solutions of the
combined loading from the superposition of the cases when there is only mechanical load and
when there is only thermal load. An analytical solution is presented for the case when the
distribution of the Young modulus is described by a certain power-law function, moreover the
coefficient of thermal expansion depends on the radial coordinate and on the temperature in a
prescribed way. | have solved the thermoelastic problem of radially graded spheres with stress
function when the material properties follow a power-law distribution. | have investigated the
possibilities of modelling the functionally graded spheres with the method of layered composite
spheres. The developed methods have been verified by data obtained from the literature and
comparisons have been made with each other and they have led to the same results.

Thesis 2

| have elaborated two numerical methods to deal with the thermoelastic problem of functionally
graded spherical bodies subjected to axisymmetric thermal loading and constant pressure. The
temperature field, displacements and normal stresses are determined when the material properties
are arbitrary functions of the radial coordinate and temperature. The first model is based on the
multilayered approach of Thesis 1. The second method uses a coupled system of ordinary
differential equations containing the radial displacement and stress function and transforms the
two point boundary value problem to an initial value problem. I have derived a numerical solution
for radially graded piezoelectric spherical actuators and an analytical method for incompressible
functionally graded spheres. By means of numerical examples the accuracy of the developed
numerical methods have been investigated, compared to the analytical solutions of Thesis 1 and
have been verified by finite element simulations. According to these, it turns out that the numerical
models have good accuracy.

Thesis 3

I have derived two numerical methods for the thermoelastic analysis of thin functionally graded
rotating disks subjected to combined axisymmetric thermal and mechanical loads. The
temperature-dependent material properties of the rotating disk vary arbitrarily along the radial
coordinate, moreover the thickness of the disk is an arbitrary function of the radial coordinate. The
equations of the steady-state temperature fields have been presented for three cases with different
thermal boundary conditions. In the first novel method the displacements and the normal stresses
are determined by a multilayered approach which can be used as an analytical solution for layered
composite disks with constant thickness. This method has been modified to tackle some
thermoelastic problems of multilayered tubes which consist of radially bonded homogeneous
layers. Furthermore, the tubes are loaded with constant temperature field and pressure. The second
developed method uses a coupled system of ordinary differential equations containing the radial
displacement and stress function which transforms the two point boundary value problem to an
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initial value problem. An analytical method is proposed for the case when the distribution of the
material properties are prescribed as power-law functions of the radial coordinate. The developed
numerical methods have been compared to my analytical solution and finite element simulations.
The results shows that the models have high accuracy.

Thesis 4

I have elaborated methods to determine the displacement- and stress field of functionally graded
prismatic bars whose cross section is an arbitrary bounded plain domain. The material properties
and the temperature field are arbitrary functions of the cross-sectional coordinates and do not vary
in the axial direction. | have derived a model based on the principle of minimum of complementary
energy for the case, when the prismatic bar is subjected to certain mechanical and thermal loads.
Furthermore a method has been developed using a direct form of the axial normal strain. | have
presented the equations for layered curved beam and | have focused on the problem of bimetallic
curved beam in uniform temperature field. The method was extended to approximate the
thermoelastic behaviour of functionally -radially- graded curved strips. The developed methods
were verified by literature and finite element simulations.
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Magyar nyelvii 6sszefoglalo (Summary in Hungarian)

Napjainkban a modern mérndki anyagok alkalmazasa igen széles korben elterjedt. Gondoljunk
példaul a kompozitok térhoditasara, vagy a funkciondlisan gradiens anyagok ¢€s ezzel egyiitt az
inverz tervezési eljaras eléretorésére, melynek oka az ezen anyagokbol késziilt szerkezeti elemek
kivalé ho és mechanikai tulajdonsagai. A tervezési folyamat soran az anyagi viselkedés leirdsa
kiemelt jelentdséggel bir, napjainkban egyre tobb konyv és folyodiratcikk foglalkozik a modern
mérndki technologidk anyagainak mechanikajaval.

A disszertacié hd és mechanikai terhelésnek aldvetett kompozit és funkciondlisan gradiens
szerkezeti elemek hérugalmassagtani problémainak megoldasaval foglalkozik. A vizsgalat targyat
egyszerlibb geometriaju alkatrészek képezik, mint példdul tarcsdk, gdbmb alaku testek és tartalyok,
rudak, bimetal szalagok és hengeresen rétegzett testek. A mérnoki gyakorlatban a funkcionalisan
gradiens alkatrészeken beliil altalaban egy irdnyban valtozik az anyagi Osszetétel, és ezzel az
anyagjellemzok, emiatt a vizsgalt problémak nagy részében -a rudak kivételével- ezt az esetet
vizsgaltam. A folyamatok idot6l vald fliggésétdl eltekintettem, igy az eredetileg kapcsolt
problémakat szét tudtam valasztani egy hdvezetési €s egy hdrugalmassagtani feladatra.

Funkciondlisan gradiens anyagok esetén az analitikus megoldasok eldallitasa leszamitva
néhany specialis eloszlas esetét, rendkiviil koriilményes. Eppen ezért a szakirodalomban fellelhetd
problémak kiilonféle feltételezésekkel élnek. Ide sorolhatjuk példaul:

- specialis fliggvények -legtdbbszor hatvanyfiiggvény- altal leirhat6 anyagi eloszlas,
- a hdmérseklettdl valo fiiggés elhanyagolasa,

- geometriai egyszertisitések,

- terhelésbeli megszoritasok stb.

Ennek tikrében a célkitiizéseim:

(a) analitikus megoldasok keresése rétegzett kompozit és funkcionalisan gradiens szerkezeti
elemekben kialakulé hdmérséklet-, elmozdulas- és fesziiltségmezd szdmitasara,

(b) numerikus modellek kidolgozasa funcionalisan gradiens alkatrészek problémainak
megoldasara, amikor az anyagjellemzdk a kitiintett koordinata —vagy koordinatadk- és a
homérséklet tetszoleges fiiggvényei,

(c) néhany speciadlis eset vizsgalata, mint példaul az Osszenyomhatatlan, vagy a
piezoelektromos anyagok avagy a bimetal gorbe rudak leirasa,

(d)a kidolgozott modszerek pontossaganak vizsgalata, Osszevetésik egymassal, a
szakirodalomban fellelhetd és kereskedelmi szoftverekkel végrehajtott végeselemes
szimulacidk eredményeivel.
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Tézis 1

Levezettem két analitikus moddszert tobbrétegli, gomb alakl testek elmozduladsmezdinek és
fesziiltségeinek meghatarozasara abban az esetben, amikor azokat forgasszimmetrikus, allandosult
allapott h6 és mechanikai terhelések érik. A homogén gombi rétegeket tokéletesen kapcsolatnak
tekintettem. Az egyik modszer az elmozdulasmez6 egy feltételezett alakjabol kiindulva, a mésik
illesztésébdl szarmaztatja a feladat megoldasat. Analitikus megoldas lett eldallitva arra az esetre,
mikor az anyagjellemzok a Poisson szam kivételével a helykoordinatanak specialis alaka
hatvanyfiiggvényei és a linearis hotagulasi egyiitthaté a hdmérséklet linearis fliggvénye. Majd
fesziiltségfiiggvények alkalmazasaval keriilt kidolgozasra egy masik analitikus modell a hatvany
fliggvény eloszlast anyagi 0sszetétel esetére. Vizsgaltam a lehetdségeit a funkcionalisan gradiens
anyagu gdmbok hoérugalmassagi feladatanak kozelitésére tobbrétegli gdmbok modelljeivel. A
levezetett modszereket Osszehasonlitottam egymassal ¢és szakirodalomban fellelhetd
eredményekkel, melyek kapcsan azonos eredményeket kaptam.

Tézis 2

Kidolgoztam két numerikus moddszert funkciondlisan gradiens gombok egydimenzids
hérugalmassagi feladataira, amikor a testet forgasszimmetrikus hd és mechanikai terhelések érik.
A hoémérsékletmezok, elmozdulasok és fesziiltségek szamitdsara szolgalé modellek abban az
esetben érvényesek, ha az anyagjellemzdk a sugarkoordinata és hdmérsékletmezd —amely szintén
csak a sugarkoordinatatol fiigg- tetszoleges fliggvénye. Az egyik moddszer a funkcionalisan
gradiens anyagot az elsd tézisben ismertetett analitikus, tobbrétegli gombre vonatkozd
megoldassal kozeliti. A masik modell a fesziiltségfiiggvényt €s az elmozduldsmez6t, mint
ismeretleneket tartalmazo kapcsolt egyenletrendszer segitségével kezdeti érték problémara
vonatkoz6, numerikus megoldasként oldja meg a feladatot. Egy-egy numerikus modszer lett
kidolgozva a piezoelektromos, radidlisan polarizalt, funkcionalisan gradiens, gomb alaku testek
esetére €s Osszenyomhatatlan gdmbok problémaira is. Szampéldakon keresztiil vizsgaltam a
kidolgozott numerikus modszerek pontossagat, Osszevetve azokat az elsé tézisben kidolgozott
analitikus megoldéasokkal. A leirt modelleket végeselemes szimulaciokkal is Osszevetettem €s j6
egyezés tapasztalhatd. Vizsgéltam a modszerek pontossagnovelésének lehetdségeit kozelitd
polinomok 1illesztésével. A numerikus példakbol jol latszik, hogy a kidolgozott modszerek
kielégitd pontossaguak.

Tézis 3

Levezettem két numerikus modszert vékony, forgd, funkciondlisan gradiens tarcsakra, amelyeket
kombinalt hé ¢és mechanikai terhelések érnek. Az anyagallandok a hdémérsékletnek ¢és a
sugarkoordindtanak, a tarcsa vastagsaga a radialis koordinata tetszleges fliggvényei. Az
allandosult allapotti hdmérsékletmezd harom esetben lett kidolgozva hdrom hétani peremfeltétel-
kombinécio esetén. Az elsé numerikus modszer a radidlisan gradiens, valtozo profilt, forgo tarcsat
tobb homogén rétegbdl felépitett komponensként kezeli és a tisztan hd €s tisztan mechanikai
megoldasat. Ezen modell analitikus megoldasként alkalmazhatdo alland6 vastagsagq,
koncentrikusan rétegzett tarcsak hdérugalmassdgtani feladataihoz, valamint ki lettek terjesztve
tobbrétegli hengeres testek azon eseteire, amikor a rétegek radialisan kapcsoltak, de axialisan nem.
Egy masik numerikus modellt vezettem le vékony, forgd, funkcionalisan gradiens tarcsak esetére,
amely fesziiltségfliggvényt és az elmozdulasmez6t tartalmazd egyenletrendszer segitségével
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kezdeti érték problémara transzformalja a feladatot, majd megoldja azt. Megadtam az analitikus
megoldast hatvany fiiggvény eloszlas esetére. Végezetiil a numerikus modellek pontossagat
vizsgaltam az analitikus megoldas segitségével, majd az eredményeket Osszevetett végeselemes
szimulaciokkal, és kideriilt, hogy kielégité pontossaguak.

Tézis 4

Kidolgoztam funkciondlisan gradiens prizmatikus rudak elmozdulas és fesziiltségmezdinek
leirasara szolgald egyenleteit abban az esetben, amikor az anyagjellemzdk €s a homérsékletmezd
a keresztmetszeti koordinatak tetszdleges fiiggvényei, a keresztmetszet tetszéleges €s a rudat
koncentralt erd és nyomaték terheli. Az egyik modszer a kiegészitd energia minimuma elvet
hasznalja, a masik esetben az axialis nytlas és elmozdulasmez6 egy adott alakjabol indulva
oldottam meg a feladatot. Levezettem egy modellt a tobbrétegli, goérbe vonalt rudak
hérugalmassagtani feladatainak megoldasara az altalanositott sikfesziiltségi allapot feltételezéseit
hasznalva. Részletesen megadtam a bimetal gorbe vonalu szalagokra vonatkoz6 megoldast, majd
kiterjesztettem a moddszert radidlis irdnyban gradiens gorbe vonalu vékony rudakra is. Az
eredményeket Osszevetettem kereskedelmi forgalomban kaphat6 végeselem szoftverekkel végzett
szimulaciokkal €s jo egyezést tapasztaltam.
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