
 

University of Miskolc 

Faculty of Mechanical Engineering and Informatics 

Institute of Applied Mechanics 

 

Dávid Gönczi 

Thermoelastic Problems of Functionally Graded and Composite 

Structural Components  

 

PhD dissertation 

 

Scientific Supervisor:  

István Ecsedi 

Professor Emeritus 

 

 

István Sályi Doctoral School 

Main Topic Group: Fundamental Sciences in Mechanical Engineering 

Topic Group: Mechanics of Solid Bodies 

 

Head of Doctoral School:  

Miklós Tisza, Doctor of Science, Full Professor  
 

 Head of the Main Topic Group: 

István Páczelt, Member of the Hungarian Academy of Sciences, Professor Emeritus 
 

Head of the Topic Group: 

György Szeidl, Doctor of Sciences, Professor Emeritus 

 

 

Miskolc-Egyetemváros 

2016 

  



- 2 - 

 

Table of Content 
 

Declaration ...................................................................................................................................... 5 

Nomenclature .................................................................................................................................. 6 

1. Introduction ................................................................................................................................. 8 

1.1. Composite and functionally graded materials ...................................................................... 8 

1.2. Preliminaries ......................................................................................................................... 9 

1.3. Objectives ........................................................................................................................... 12 

2. Basics of thermoelasticity ......................................................................................................... 14 

2.1. Displacement and strain tensors ......................................................................................... 14 

2.2. Constitutive law and equilibrium equations ....................................................................... 16 

2.3. Complementary energy ...................................................................................................... 17 

2.4. Functions of the material properties ................................................................................... 18 

2.5. Piezoelectric material behaviour ........................................................................................ 19 

3. Thermoelastic problems of layered composite and functionally graded spherical pressure vessels

 ....................................................................................................................................................... 21 

3.1. Multilayered spherical bodies ............................................................................................ 21 

3.2. Multilayered model of spherical bodies with temperature-dependent material properties 25 

3.2.1. Approximation of the material properties ................................................................... 25 

3.2.2. Determination of the temperature field ....................................................................... 26 

3.2.3. Thermal part of the problem ........................................................................................ 29 

3.2.4. Mechanical part of the problem .................................................................................. 29 

3.2.5. Application of the superposition principle .................................................................. 30 

3.2.6. Improvements in the accuracy of the multilayered approach ..................................... 31 

3.3. Analytical solution for a temperature-dependent functionally graded material ................. 32 

3.3.1 Formulation of the analytical solution ......................................................................... 32 

3.3.2. Analytical solution for the temperature field .............................................................. 34 

3.4. Analytical solution with stress function ............................................................................. 34 

3.5. Numerical examples for layered composite sphere models ............................................... 37 

3.5.1. Example 1 .................................................................................................................... 38 

3.5.2. Example 2 .................................................................................................................... 39 

3.5.3. Example 3 .................................................................................................................... 40 



- 3 - 

 

4. Numerical solutions for the problems of functionally graded spherical bodies ........................ 43 

4.1. Initial value problem of radially graded spheres with arbitrary material parameter 

distribution ................................................................................................................................ 43 

4.2. Functionally graded piezoelectric spheres ......................................................................... 44 

4.3. Incompressible spherical bodies ......................................................................................... 47 

4.4. Numerical examples ........................................................................................................... 50 

4.4.1. Example 4 .................................................................................................................... 50 

4.4.2. Example 5 .................................................................................................................... 53 

4.4.3. Example 6 .................................................................................................................... 57 

4.4.4. Example 7 .................................................................................................................... 59 

5. Thermoelastic problems of layered composite and functionally graded disks ......................... 61 

5.1. Temperature field in thin radially graded disks ................................................................. 61 

5.1.1. Multilayered approach with Bessel functions ............................................................. 62 

5.1.2. Finite difference method ............................................................................................. 63 

5.1.3. Temperature-dependent heat conduction equation ..................................................... 65 

5.1.4. Analytical formulation when the temperature dependence is neglected ..................... 66 

5.2. Numerical solutions with multilayered approach ............................................................... 67 

5.2.1. Multilayered approach for thin functionally graded disks .......................................... 67 

5.2.2. Layered composite cylindrical bodies ......................................................................... 70 

5.3. The initial value problem of functionally graded disks ...................................................... 71 

5.3.1. Radially graded disks with constant thickness ............................................................ 71 

5.3.2. Radially graded rotating disks with arbitrary thickness .............................................. 72 

5.3.3. The solution of the initial value problem .................................................................... 73 

5.4. An analytical solution of a radially graded disk ................................................................. 74 

5.5. Numerical examples ........................................................................................................... 76 

5.5.1. Example 8 .................................................................................................................... 76 

5.5.2. Example 9 .................................................................................................................... 77 

5.5.3. Example 10 .................................................................................................................. 79 

6. Thermoelastic problem of functionally graded beams and strips ............................................. 81 

6.1. Thermoelastic problem of functionally graded prismatic beams using complementary 

energy method ........................................................................................................................... 81 

6.2. Thermoelastic problem of functionally graded beams using a direct approach ................. 85 

6.3. Determination of the displacement field in inhomogeneous beams .................................. 86 



- 4 - 

 

6.4. Curved layered beams and strips ........................................................................................ 88 

6.4.1. Bimetallic beams and strips ......................................................................................... 88 

6.4.2. Strength of materials solution for curved beams ......................................................... 92 

6.4.3. Radially graded strips .................................................................................................. 93 

6.5. Numerical examples ........................................................................................................... 94 

6.5.1. Example 11 .................................................................................................................. 94 

6.5.2. Example 12 .................................................................................................................. 96 

6.5.3. Example 13 .................................................................................................................. 96 

6.5.5. Example 14 .................................................................................................................. 98 

7. Summary and theses ................................................................................................................ 100 

Theses ...................................................................................................................................... 101 

Magyar nyelvű összefoglaló (Summary in Hungarian) .......................................................... 103 

Publications ................................................................................................................................. 106 

References ................................................................................................................................... 108 

 

 



 

 

Declaration 

 

 

The author hereby declares that the work in this dissertation contains no material previously 

published or written by another person and no part of the dissertation has been submitted, either 

in the same or different form, to this or any other university for a PhD degree. The author confirms 

that the work presented in this dissertation is his own and the appropriate credit has been given 

where reference has been made to the work of the others. 

 

 

Miskolc, June 29, 2016.       Dávid Gönczi 

 

 

 

 

 

 

  



- 6 - 

 

Nomenclature 

 

Here the most important notations are gathered, although each notation is described in the text 

when first used. Due to the large number of constants and notations, a few symbols might appear 

in a section as for example integration constants. 

 

Latin symbols: 

 

a inner radius of spheres, curved beams and disks 

A surface 

b outer radius of spheres, curved beams and disks 

Bi body force vector 

Bij dielectric constants (for e-form) 

C constant of integration 

Cijkl  material stiffness 

D, Di electrical displacement 

eijk  piezoelectric constants 

E Young modulus, modulus of elasticity 

Ei coordinates of the electrical field, negative of potential gradient 

Eij Almansi strain tensor 

f distributed load at the boundary of the layers 

gijk  piezoelectric constants 

G shear modulus 

h(r), hi thickness of radially graded disks, thickness of layers  

M general notation for material parameters 

(…)M elastic part of (…) 

n number of layers 

p pressure 

Pi material dependent coefficients of temperature 

q heat flow 

r radial coordinate of cylindrical and spherical coordinate systems 

rmi average radius of the i-th layer 

Ri radius values of layers and curved bodies 

T temperature difference function, temperature field (T(r)=tabs-tref) 

t temperature value  

tabs absolute temperature (in K) 

tref reference temperature (where the stresses are zero if the body is undeformed) 

(…)T thermal part of (…) 

u radial displacement 

ui coordinates of the displacement vector 

U0 complementary energy per unit volume 

V volume 

V(r) stress function 
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Greek symbols: 

 

α coefficient of linear thermal expansion 

βij dielectric constants (for g-form)  

γij shear strain on the ij plane 

γ heat transfer coefficients  

δij Kronecker delta 

εi normal strain in the direction i 

εij strain tensor 

ϑ circumferential coordinate of spherical coordinate system 

ϴ function of the Kirchoff integral transformation 

λ thermal conductivity 

ν Poisson’s ratio 

    
c  total complementary energy 

ρ density 

σi normal stress in the direction i 

τij shearing stress on the ij plane 

φ tangential coordinate of spherical and cylindrical coordinate systems 

ω angular velocity of rotating disks 
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1. Introduction 

As technology progresses at an ever increasing rate, the need for advanced capability materials 

becomes a priority in the engineering of more complex and higher performance systems. This need 

can be seen in many fields in which engineers are exploring the applications of these new engineered 

materials. Pure metals are used rarely in engineering applications because of the demand of 

conflicting property requirements. In many cases an application may require a material that is hard 

as well as ductile. To solve this problem, metals are combined with other metals or non-metal 

components to improve their material properties.  

 

1.1. Composite and functionally graded materials 

 

One method of producing materials with improved properties is to combine them in solid state 

which is referred to as composite materials [1]. These advanced inhomogeneous materials are 

made of one or more materials in solid state with distinct mechanical and chemical properties. The 

composites offer excellent properties which are different from the individual constituent materials 

and in most cases lighter in weight. The basic types of composite materials are particle-reinforced, 

fiber-reinforced, laminated or layered structural and filled composites. The utilization of these 

materials is limited because under extreme working conditions a phenomenon called delamination 

[2] will occur. This process is especially problematic in high temperature environments when the 

parent materials have different coefficients of linear thermal expansion. 

 To solve this problem, researchers in Japan in the mid 1980s created the concept of the 

functionally graded material during a hypersonic space plane project where the body of the 

spaceplane is exposed to very high temperature environment with huge temperature gradient. The 

researchers wanted to create a material by gradually changing the material composition in order to 

improve both the thermal resistance and the mechanical properties of the structural members of 

the plane.  

Functionally Graded Materials (FGMs) are advanced material in which the composition and 

structure gradually change resulting in a corresponding change in the properties of the material. In 

functionally graded materials the sharp interfaces between the constituent materials are eliminated 

[3]. It replaces this sharp interface, which is where failure can be initiated, with a gradient interface 

which produces smooth transition from one material to the next [4, 5]. This solution lessens the 

stress concentrations which become troublesome in a laminated composite material. At high 

temperature, the smooth transition of material properties provides thermal protection, great 

mechanical behaviour and structural integrity without introducing a single point for failure within 

the structure. In recent years this concept has become more popular in Europe. 

From the point of view of material processing methods, the functionally graded structural 

components can be divided into two groups, thin and bulk functionally graded materials. Thin 

functionally graded materials or surface coatings can be produced for example by vapour 

deposition, plasma spraying or self-propagating high-temperature synthesis [1]. These methods 

are energy intensive and produce poisonous gases as their byproducts. All the above mentioned 

processes cannot be used to produce bulk functionally graded materials because they are generally 

slow and energy intensive, therefore they are uneconomical. 

Bulk functionally graded materials are produced using powder metallurgy technique, 

centrifugal casting method, solid freeform technology [6], etc. Powder metallurgy technique is 

used to produce functionally graded material through weighing and mixing of powders according 

to the predesigned spatial distribution as dictated by the functional requirement, stacking and 
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ramming of the premixed-powders, and finally sintering. Despite the excellent characteristics of 

powdered metallurgy, there exist some limitations, for example certain shapes and features cannot 

be produced. The centrifugal method is utilized to create continuous structures, where the force of 

gravity is used through the spinning of the mould, which contains molten metal matrix and ceramic 

powder, to form bulk functionally graded materials. One of the main problems of the centrifugal 

method is the limit to which type of gradient can be produced, because the gradient is formed 

through natural processes with two main components, which are the centrifugal force and the 

density difference. To solve these problems, researchers are using an advanced manufacturing 

method known as solid freeform (SFF) method. This is an additive manufacturing process that 

offers lots of advantages that include: higher speed of production, less energy consumption, 

maximum material utilization, ability to produce complex shapes and design freedom as parts are 

produced directly from CAD data [7]. SFF involves five basic steps, which are the generation of 

CAD data from softwares like AutoCAD, Solid Edge, etc., conversion of the CAD data to Standard 

Triangulation Language (STL) file, the slicing of the STL into two- dimensional cross section 

profiles, building of the component layer by layer, and lastly removal and finishing. To produce 

bulk functionally graded components the laser based SFF methods are utilized generally, such as 

3D printing, laser cladding based method, selective laser sintering and selective laser melting. A 

big disadvantage of the solid freeform method is the poor surface quality, therefore a second 

finishing operation is necessary. 

The fabrication processes are constantly improving, the cost of powders and the overall process 

expense are decreasing, therefore the application of functionally graded materials are expanding. 

These advanced materials are utilized in high efficiency engine components, light weight 

structures for aircraft and space industry, implants, cutting inserts, tools, numerous military 

applications, etc. 

 

1.2. Preliminaries 

 

The dissertation deals with the steady-state thermoelastic problems of simple structural 

components, such as disks, spheres and beams, which are subjected to thermal and mechanical 

loadings. These components are made from inhomogeneous materials, especially functionally 

graded materials and laminated composites.  

A lot of books and papers deal with the thermoelastic problems of homogeneous, isotropic 

materials. In the past few years many researchers dealt with the mechanics of structures made from 

inhomogeneous materials, in recent years the concept and the mechanics of functionally graded 

materials have become more popular in Europe. 

 Lots of works deal with the mechanics of functionally graded materials from various aspects. 

One of the main fields of the mechanical analysis for FGMs is finite element modelling for these 

materials, another areas are the stress, stability, dynamic analysis and fracture mechanics mostly 

for FGM beams, plates and shells [8, 9]. There are several textbooks dealing with the analytical, 

semi-analytical and numerical solutions for the thermomechanical problems of hollow spheres, 

cylinders, beams and disks.  

The analytical solution for the stresses and displacements in spheres and cylinders made from 

functionally graded materials are given by Lutz and Zimmerman [10]. Their paper considered thick 

radially graded spherical and cylindrical bodies under radial thermal loading, where the 

composition of the constituent materials was linear. 

The work by Tutuncu and Ozturk [11] derived closed-form analytical solutions for the stresses 

in functionally graded cylindrical and spherical bodies, subjected to internal pressure alone. 
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Radially varying inhomogeneous material properties are considered with a material stiffness-

matrix in which the parameters are obeying a simple power-law, furthermore the stress 

distributions depends on the inhomogeneity constant. This work presents specific applications to 

control the stress distribution. The paper of Obata and Noda [12] studied one-dimensional steady-

state thermal stress problem for functionally graded hollow circular cylinders and hollow spheres 

by use of a perturbation approach in order to investigate the effect of the composition on stresses 

and to design the optimum functionally graded hollow circular cylinder and hollow sphere, under 

different assumptions of temperature distributions. The unsteady-state thermal stress of graded 

circular hollow cylinders is based on the multilayered method and Green function were presented 

by Kim and Noda [13].  

Another general analysis of one-dimensional steady-state thermal stress problems in a hollow 

thick FGM cylinder was obtained by Eslami et al. [14]. This work uses a direct method to solve 

the heat conduction and Navier equations, the temperature distribution is assumed to be a function 

of the radial coordinate. In a similar work (2005), Eslami et al. [15] investigated the thermal and 

mechanical stresses in hollow functionally graded spheres using the same method as in [14]. 

Liew et al. [16] investigated the thermomechanical behavior of hollow circular cylinders made 

from functionally graded material. The exact solutions are obtained by a novel limiting process 

that employs the solutions of homogeneous hollow circular cylinders, with no recourse to the basic 

theory or the equations of nonhomogeneous thermoelasticity with the results that thermal stresses 

occur in the FGM cylinder, except in the trivial case of zero temperature and heat resistance may 

be improved by the proper variation of material composition. The thermal stresses in the FGM 

cylinder are governed by more factors than in the case of homogeneous materials. 

Zamani N. and Rahimi [17] investigated the thermal and mechanical stresses under generalized 

plane strain and plane stress assumptions, respectively. Concerning the stress analysis of 

cylindrical and spherical structural elements, Tutuncu and Temel [18] presented a novel approach 

to stress analysis of pressurized FGM cylinders, disks, and spheres. In this work axisymmetric 

displacements and stresses in functionally graded hollow cylinders, disks and spheres subjected to 

constant internal pressure were determined using plane elasticity theory and the method of 

complementary functions. 

 The work of Nayak and Mondal [19] presented an analysis of a functionally graded thick 

cylindrical vessel with radially varying properties in the form of the displacement field, strains and 

associated stresses for thermal, mechanical and thermomechanical loads. This contains a reducing 

method for the FGM pressure vessels to thick cylindrical bodies made of isotropic homogeneous 

materials. The paper of Shao [20] presented the solution of a functionally graded hollow circular 

cylinder using a multilayered approach and the theory of laminated composites. That case is 

considered when the layers have finite lenght, the body is subjected to axisymmetric thermal and 

mechanical loads. Furthermore the material properties are homogeneous in each layer, varying 

radially between the layers and they are independent of the temperature field. The results are also 

presented for a mullite-molybdenum functionally graded circular hollow cylinder.  The work by 

Vitucci and Mishuris [21] investigated multilayered cylinders with perfect and imperfect contact 

between the isotropic homogeneous layers, and the residual stresses in ceramic layers. Arefi [22] 

applied the general shell deformation theory to functionally graded cylinders shells. 

You et al. [23] presented an accurate method to carry out elastic analysis of two kinds of thick 

spherical pressure vessels subjected to internal pressure. In the first case a spherical body is 

considered which consists of two homogeneous layers near the inner and outer surfaces of the 

vessel and one functionally graded layer in the middle. The other investigated case consideres a 

functionally graded sphere. In this paper the effects of the Young’s modulus of the outer and inner 

layers and geometric size of the middle layer on the displacement field and on the associated 



- 11 - 

 

stresses are examined. A method to obtain an almost constant circumferential stress in the spherical 

vessels made of functionally graded material only is presented.  

Ahmet and Tolga [24] dealt with the plane strain analytical solutions for functionally graded 

elastic and elastic–plastic pressurized tubes using small deformation theory. The modulus of 

elasticity and the uniaxial yield limit of the material are assumed to vary radially according to 

parabolic forms. The plastic model is based on Tresca yield criterion, its flow rule and ideally 

plastic material behaviour. By the suitable selection of the material parameters, the inhomogeneous 

elastic-plastic solution can be reduced to a homogeneous one. Chen and Lin [25] carried out the 

elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded 

materials when the material parameters are varying exponentially along the radial coordinate. This 

work investigates the stress distribution along the radial direction. Shao and Ma [26] presented 

thermo-mechanical analysis of functionally graded hollow circular cylinders subjected to 

mechanical loads and linearly increasing boundary temperature. Thermomechanical properties of 

functionally graded material are temperature independent and vary continuously in the radial 

direction of the cylinder. Using the Laplace transformation technique and methods for ordinary 

differential equation, the solutions for the time-dependent temperature and thermomechanical 

stresses are calculated, furthermore an example is presented for a molybdenum-mullite graded 

cylinder in which the material properties vary exponentially along the radial coordinate.  

Nayak et al. [27] elaborated an analytical solution to obtain the radial, tangential and effective 

stresses within thick spherical pressure vessels made of FGMs subjected to axisymmetric 

mechanical and thermal loadings. The properties of the material for the vessel are assumed to be 

graded in the radial direction based on a power-law function of the radial coordinate but the 

Poisson’s ratio has constant value. With thermal boundary conditions of the third kind and steady-

state unidirectional radial heat conduction, the equilibrium equation reduces to Navier equation. A 

work by Bayat, Mahdi and Torabi [28] dealt with the previously presented problem too, and 

investigated the effect of the index parameter of the power-law functions on the stress distribution.  

In paper by Pen, X. and Li, X. [29] the thermoelastic problem of isotropic functionally graded 

disks with arbitrary radial inhomogeneity was considered. The numerical solution of the steady-

state thermoelastic problem is reduced to a solution of a Fredholm integral equation. A general 

analysis of one-dimensional steady-state thermal stresses in thick cylinder made of isotropic 

radially inhomogeneous elastic materials is presented by Jabbari et. al [30]. An analytical method 

is used to solve the heat conduction and Navier equations in [30]. 

Some textbooks such as Timoshenko and Goodier [31], Solecki and Conant [32], Barber [33], 

Baroumi and Ragab [34], Hetnarski and Eslami [35], Noda et. al [36] give detailed analysis of the 

thermal stress problem for homogeneous isotropic elastic disk with axisymmetric temperature 

field. Furthermore these books and papers [31-36] neglect the convective heat transfer on the lower 

and upper plane surfaces of the disks. Numerous papers, such as [37-41], present 

thermomechanical problems of functionally graded disks but the material parameters are special 

functions of the radial coordinate. 

Wang et al. [61] studied the dynamic problem of a multilayered piezoelectric spherical body 

under symmetric loading. The superposition principle is used to divide the problem into quasi-

static and dynamic parts. Wang and Xu [42] investigated the effect of material inhomogeneity on 

the electromechanical behaviors of exponentially graded piezoelectric spheres using the Frobenius 

series method. The paper by Sburlati and Atashipour [43] investigated the electromechanical 

problem of piezoelectric spherical bodies with functionally graded coating. The material properties 

are power-law based functions of the radial coordinate. The work of Ghorbanpour et. al. [44] 

presents analytical solutions for a few cases of radially graded piezoelectric spheres under 

axisymmetric mechanical loading. 
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As for functionally graded beams, paper [45] dealt with the two-dimensional problem of 

exponentially graded beams under uniaxial tension and bending. The governing equation is 

derived by means of the Airy stress function method together with the strain compatibility 

equation. Sankar [46] studied a bending problem of a simply supported FGM beam based on the 

theories of beams and two-dimensional elasticity. Zhong and Yu [47] obtained the general solution 

for a cantilever made from functionally graded beam subjected to different kinds of loads. The 

paper by Ying et al. [48] gave a two-dimensional elasticity solution for functionally graded beams 

resting on elastic foundations. Wang and Liu [49] analysed a bi-material beam with graded 

intermediate layer subjected to uniform loading on the upper surface. A paper by Li et al. [50] 

made a stress analysis of FGM beams using effective principal axes. Papers [62-65] dealt with the 

problem of bimetallic strips made from two different homogeneous components, although the 

curved beams were not investigated. 

 

1.3. Objectives   

 

As we have seen in the previous section, analytical solutions were derived only in special cases, 

for example for power-law based material properties, constant Poisson’s ratio, etc. Most of the 

papers and works neglect the temperature dependency of the material properties. The aim of the 

dissertation is to deal with the problems of functionally graded simple structural components made 

from isotropic functionally graded materials and layered -laminated- composites subjected to 

thermal and mechanical loads. I intend to derive methods for thermoelastic problems of 

functionally graded materials with properties described by arbitrary spatial and temperature- 

dependent functions. I will investigate stationary or steady-state thermoelastic problems. The time-

independence of the functions involved separates the analysis of the temperature field from that of 

the elastic field, therefore these problems become uncoupled. As we have seen in Section 1.1 in 

many cases the functionally graded structural components are built with additive methods layer by 

layer, therefore we can approximate the problem of functionally graded components with methods 

of layered components (we will refer to this model as multilayered approach) with finite layer 

number n. Obviously when n→∞ we get to the functionally graded materials. In view of this, the 

objectives of the dissertation are 

(a) to derive analytical methods to calculate the temperature field, displacements and stress 

field within layered spherical bodies;  

(b) to develop fast and accurate numerical methods for determining the temperature-, 

displacement- and stress field within functionally -radially- graded spherical components, 

when the material properties are arbitrary functions of the radial coordinate and 

temperature; 

(c) investigation of special problems of functionally graded spherical bodies, such as 

incompressible or piezoelectric, radially polarized materials; 

(d) to present analytical solutions for functionally graded spheres, then compare the developed 

one-dimensional numerical and analytical methods to each other and to finite element 

simulations; 

(e) to develop analytical solutions for calculating the temperature field, displacements and 

normal stresses in layered composite disks; 

(f) derivation of numerical methods for rotating thin functionally graded disks with arbitrary 

thickness profile when the material properties are arbitrary functions of the radial 

coordinate and the temperature field, furthermore there are combined thermal and 

mechanical loads on the cylindrical boundary surfaces; 



- 13 - 

 

(g) to determine the thermal stresses and displacements in nonhomogeneous prismatic bars 

caused by mechanical and thermal loads when the cross section of the bar is an arbitrary 

bounded plain domain, the material properties and the temperature field do not depend on 

the axial coordinate; 

(h) to deal with the problems of curved layered composite and functionally graded curved 

beams subjected to special thermal and mechanical loads; 

(i) to compare the developed methods to each other, to finite element solutions and to results 

of the literature. 

 

The text of the dissertation is organized into seven chapters. After the introduction and the 

overview of the literature, the basic concepts and equations of thermoelasticity are presented in 

Chapter 2. In Chapters 3 and 4 several methods are derived to deal with the thermoelastic problem 

of layered composite and functionally graded spherical bodies, objectives (a)-(d). Chapter 3 

presents analytical methods for composite and radially graded spheres, while Chapter 4 focuses 

on numerical methods for functionally graded spherical bodies. Chapter 5 contains a few 

thermoelastic problems of thin radially graded disks (e)-(f). Objectives (g), (h) and (i) are presented 

in Chapter 6. The dissertation closes with a brief summary and the list of the most important 

theoretical results, i.e., the theses. 

 

 



 

2. Basics of thermoelasticity 

In this chapter the basic equations are presented for the thermoelastic problems which will be 

investigated in the next chapters. 

 

2.1. Displacement and strain tensors 

 

Consider an elastic body in its original undeformed configuration described in the coordinate 

system (g1, g2, g3) fixed to the body [35]. A point P of the body has the coordinates gi (i = 1, 2, 3) 

in this system (Fig. 2.1), after the loading, point P is deformed and moved to a new position Q. 

Along with the body, the original coordinate system is transformed into the deformed 

configuration (x1, x2, x3). The coordinates of the point Q in the deformed coordinates are xi, (i= 1, 

2, 3). It is assumed that the change and deformation of the body is continuous and the point 

transformation is one-to-one.  

 

Figure 2.1. The displacement vector. 

Let us confine ourselves to the rectangular Cartesian coordinates, and assume that the law of 

coordinate transformation between the original and the deformed coordinates and its inverse 

transformation law are known and given as 

 1 2 3( , , )i ix X g g g , (2.1.1) 

 1 2 3( , , )i ig G x x x . (2.1.2) 

From these equations we get 

 d d ,i
i k

k

x
x g

g





 (2.1.3) 

 d d .i
i k

k

g
g x

x





 (2.1.4) 

The differentials of position vector in the original and deformed configurations are 

 d ig
0 i

dr g , (2.1.5) 
 = d ixidr a ,  (2.1.6) 

where gi and ai are the unit vectors in the original and deformed coordinates, respectively. Here 

the summation conventions are valid. The differentials of line elements in the original and the 

deformed coordinates are 



- 15 - 

 

 2

0d d d d d ,i j ij i jS g g g g    0 0 i jdr dr g g  (2.1.7) 

 2d d d d d .i j ij i jS x x x x    i jdr dr a a  (2.1.8) 

The substitution of Eqs. (2.1.3), (2.1.4) into Eqs. (2.1.7), (2.1.8) gives 

 
2

0d d d ,
ji

ij k l

k l

gg
S x x

x x





 
 (2.1.9) 

 
2d d d .

ji
ij k l

k l

xx
S g g

g g





 
 (2.1.10) 

With the combination of Eqs. (2.1.7)-(2.1.10) we get 

 2 2

0d d d d ,
ji

kl ij k l

k l

gg
S S x x

x x
 

 
   

  
 (2.1.11) 

 2 2

0d d d d .
ji

ij kl k l

k l

xx
S S g g

g g
 

 
   

  
 (2.1.12) 

Let eij and Eij denote the Green strain tensor in terms of the strains in the original coordinates and 

the Almansi strain tensor in terms of the strains in the deformed coordinates, respectively as 

 
1

2

ji
kl ij kl

k l

xx
e

g g
 

 
  

  
,  

1
.

2

ji
kl kl ij

k l

gg
E

x x
 

 
  

  
 (2.1.13) 

The displacement vector u is defined as 

 , i i iu x g   
0

u r r . (2.1.14) 

The relation for the Almansi strain tensor is 
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.
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 (2.1.15) 

For the infinitesimal theory of elasticity the displacement gradient uk,i is small, so that the quadratic 

term in Eqs. (2.1.15) may be neglected and strain tensors eij and Eij are both reduced to the linear 

form as 

  , ,

1 1
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2 2

k k

ij ij j i i j

i j
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  
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 (2.1.16) 

In terms of the Oxyz conventional Cartesian coordinate system, the six strain-displacement 

relations reduce to 

11 22 33
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1 1 1 1 1 1
, , .

2 2 2 2 2 2

yx z
x y z
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  

        
            

         

(2.1.17) 

In equations (2.1.17) ux, uy and uz denote the components of the displacement vector in the 

direction of x, y and z, respectively. Here we note that the strain tensor εij is symmetric. In Orφz 

cylindrical coordinate system the strain-displacement relations are 
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 (2.1.18) 

where ur, uφ and uz are the components of the displacement vector. In Orφϑ spherical coordinate 

system the strain-displacement relations can be written in the following forms: 
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 (2.1.19) 

where ur, uφ and uϑ are the components of the displacement vector in the current coordinate system. 

 

2.2. Constitutive law and equilibrium equations 

 

In the classical theory of linear thermoelasticity the components of the strain tensor are linear 

functions of the components of the stress tensor and the components of the strain tensor due to the 

mechanical load and temperature change, that is [35] 

 M T

ij ij ij    , (2.2.1) 

where εij
M and εij

T denote the elastic and thermal strain tensors. The thermal strain due to 

temperature change is 

  T

ij abs ref ijt t    . (2.2.2) 

Here a cubic element was considered whose temperature is raised from the reference temperature 

tref at which strains and thermal stresses are zero, to the absolute temperature value tabs. The sides 

of the element are free from tractions, α is the coefficient of linear thermal expansion. The relation 

(2.2.2) represents a property of an isotropic body, in which a temperature change t−tref results in 

no change of shear angles, the only result being a change of volume of the element. The elastic 

strain tensor is linearly proportional to the stress tensor σij as 
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2 1

M

ij ij kk ij
G


   



 
  

 
, (2.2.3) 

where G is shear modulus, ν is the Poisson’s ratio. Eq. (2.2.3) is known as the constitutive law of 

linear elasticity or Hooke’s law. The constitutive equation of linear thermoelasticity is 

  
1

2 1
ij ij kk ij abs ref ijt t

G


     



 
    

 
, (2.2.4) 

for the stress tensor we get 
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. (2.2.5) 

Let us consider an elastic body with body force B. The motion equation can be expressed as 

 
,ij j i iB u   , (2.2.6) 

where the mass density is denoted by ρ, iu  is the acceleration vector. The equilibrium equations 

( 0)iu    for Oxyz Cartesian coordinate system are 

 

0,

0,

0.

xyx xz
x

yx y yz

y

zyzx z
z

B
x y z

B
x y z

B
x y z

 

  

 

 
   

  

  
   

  

 
   

  

 (2.2.7) 

In Orφz cylindrical and Orφϑ spherical coordinate systems the equilibrium equations can be 

written as 
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 (2.2.8) 

and 
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 (2.2.9) 

 

2.3. Complementary energy 

 

The practical solution of many structural problems is often obtained by one of various energy 

methods. The complementary energy is valid for finite strain and material nonlinearity. For small-

strain problems this method is very effective, however for finite strains where the stresses couple 

with the displacements the complementary energy methods are difficult to use [51], [52]. 

The strain energy per unit volume can be expressed as  
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with Hooke’s law we get 
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The complementary energy per unit volume U0 for thermoelastic problems can be expressed as 

  0 0 ' ,x y zU U T        (2.3.3) 

then the total complementary energy can be determined as  

   0, , , , , dc x y z xy xz zy

V

U V        . (2.3.4) 

From U0 we get the stress and strain components as 

 0 0 0 0 0 0, , , , , .x y z xy xz yz
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 (2.3.5) 

According to Eq. (2.3.4) the complementary energy can be expressed as 

 2 2 2 2 2 21
2 2(1 )( ) ( ) d

2
c x y z x y y z z x xy yz zx x y z

V

T V
E

                 
                  
 , (2.3.6) 

assuming that there are no prescribed surface displacements or the prescribed surface 

displacements vanish. The theorem of minimum of complementary energy states that among all 

the sets of admissible stresses σx, σy, σz, τxy, τxy, τxy which satisfy all the equilibrium equations and 

the prescribed stress boundary conditions, the set of actual stress components makes the functional 

 , , , , ,c x y z xy xz zy       an absolute minimum [51], [52]. 

 

2.4. Functions of the material properties  

 

Within the functionally graded material the volume fraction of the constituent materials gradually 

varies in the gradiation direction thus the effective properties of FGMs change along this direction. 

Since functionally graded structures are most commonly used in high temperature environment 

where significant changes in mechanical properties of the constituent materials are to be expected 

[53], [54], it is essential to take into consideration this temperature-dependency for accurate 

prediction of the mechanical response. Thus, the effective Young’s modulus Ef, Poisson’s ratio νf, 

coefficient of linear thermal expansion αf and thermal conductivity λf are assumed to be 

temperature-dependent.  

There are several method to calculate these effective properties, such as the Mori–Tanaka 

scheme [55] for regions of the graded microstructure which have a well-defined continuous matrix 

and a discontinuous particulate phase or the self-consistent method [53] which assumes that each 

reinforcement inclusion is embedded in a continuum material and does not distinguish between 

matrix and reinforcement phases. 

In many cases the effective material parameters can be expressed as a nonlinear functions of the 

temperature field [53], [56]: 
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0 1 1 2 3( ) ( 1 )M T P P T PT PT PT

     . (2.4.1) 

In Eq. (2.4.1) M(T) denotes the function of the considered effective material property (E, ν, α and 

λ), P0, P-1, P1, P2 and P3 are material dependent coefficients of temperature T [K]. Using these 

results we can present functions for the temperature- and position-dependent functionally graded 

material properties of disks, spherical bodies and plates [53]: 
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 
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

 (2.4.2) 

furthermore, indices 1 and 2 denote the constituent materials, mostly metal and ceramic 

components, a and b denote the inner and outer radii of the spherical body, h is the thickness of 

the plate, z is the thickness coordinate and m is the volume fraction of the FGM. The effect of the 

power index m is shown in Fig. 2.2 in the case of two constituent materials. 

 

Figure 2.2. The effect of the power index m to the volume fraction. 

 

2.5. Piezoelectric material behaviour 

 

A piezoelectric material responds to an electric potential gradient by straining, while stress 

causes an electric potential gradient in the material. This means that the piezoelectric effect is the 

coupling of stress and electric field in these materials. Lets define an electric enthalpy function H 

as [57], [58] 

 
1 1

( , )
2 2

ijkl ij kl ij i j ijk ij kH C E E e E     E ε , (2.5.1) 

where the relations of the strain tensor ε and the electric tensor E to the displacement field u and 

electric potential ϕ are 

  , , ,

1
,

2
ij i j j i i iu u E     , (2.5.2) 

and the constitutive equations ,in the so-called e-form, can be derived from the electric enthalpy 

as  
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 (2.5.3)  

In these last terms the notation Cijkl denotes the material stiffness measured by constant electric 

field, eijk are piezoelectric constants and Bij =βij
-1 are the dielectric constants. Furthermore the 

coupled equations for a piezoelectric linear medium can be expressed in g-form as 

 
ij ijkl kl mij mS g D   , (2.5.4) 

 
i ijk jk ij jE g D    , (2.5.5) 

where Sijkl are the material compliances defined at zero electrical displacement and gijk are 

piezoelectric constants. It is useful to introduce the compressed notation [58] for these quantities. 

Due to the material symmetry, these equations take shorter forms.  
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3. Thermoelastic problems of layered composite and functionally 

graded spherical pressure vessels 

 

In this chapter analytical solutions are presented for four cases of thermoelastic problems of 

spherical bodies. We consider one-dimensional thermoelastic problems of spherical bodies made 

from laminated composite and functionally graded materials which are subjected to axisymmetric 

thermal and mechanical loads on the inner and outer boundary surfaces. The hollow spherical body 

is subjected to unidirectional steady-state heat conduction with third- and first kind thermal and 

stress boundary conditions on the boundary surfaces. For multilayered spherical pressure vessels 

two analytical solutions are formulated. These methods can be used to determine the displacements 

and stress field of functionally graded spherical pressure vessels with arbitrary radial coordinate 

and temperature-dependent material properties. Further analytical solutions are derived for two 

cases of functionally graded materials. In the first case the material parameters are special 

functions of the radial coordinate -except the Poisson’s ratio- and additionally the coefficient of 

linear thermal expansion is temperature-dependent. In the second case an analytical solution is 

derived via stress functions when the material properties are specific power-law functions of the 

radial coordinate. The analytical solutions presented in this chapter will be used to verify the 

accuracy of the developed numerical methods. 

 

3.1. Multilayered spherical bodies 

 

This section investigates a one-dimensional thermoelastic problem of a hollow layered spherical 

body. The geometry of the spherical body can be seen in Fig. 3.1, where the inner radius of the 

sphere is R1, the outer radius is Rn+1 and n is the number of layers. The layers of the spherical 

structural component are assumed to be perfectly bonded and made of homogeneous, isotropic 

materials, furthermore a spherical coordinate system Orφϑ is used.  

 

Figure 3.1. The three-dimensional sketch of the hollow layered sphere. 

Thermal boundary conditions of first kind are prescribed on the inner and outer spherical 

surfaces. These temperature values are given, they are assumed to be constant, non-time- 

p2 

p1 
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dependent and denoted by t1 and tn+1. It follows that the temperature field is the function of the 

radial coordinate T=T(r). The uniformly distributed mechanical loading exerted on the inner 

boundary surface is denoted by p1=-f1, as we can see in Fig. 3.2, while -gn=p2 is the pressure which 

acts on the outer curved boundary surface.  

It is assumed that the radial stresses, the heatflow and the temperature are all continuous 

functions of the radial coordinate. Our aim is to determine the displacement field and normal 

stresses within the spherical component. 

At first we deal with the determination of the temperature field T=T(r)=tabs(r)-tref. Figure 3.2 shows 

the cross section and the loadings of the i-th layer.  

   

Figure 3.2. The cross section of the i-th layer of the sphere. 

We assume that the temperature field is a continuous function of the radial coordinate thus we 

have from the equation of heat conduction [59, 60] 

1 1 1 1( ) ( )i i i i it T R T R     ,  
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
 



     


 1,2,...,i n , (3.1.1) 

where the temperature field of the i-th spherical layer is denoted by Ti(r). We consider the case 

when the radial heatflow is constant, the temperatures of the inner and outer boundary surfaces are 

given:  
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i i i i
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,  1,...,i n ,    (3.1.2) 

 1 1 1( ) ( )i i i iq R q R   , 1,..., 1i n  ,   (3.1.3) 

where λi is the thermal conductivity. The surface temperature of the adjacent layers are equal 

therefore we get the following equations [59]:    
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1 1 1 2
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   

     

     
          

        
.   (3.1.4) 

From Eqs. (2.1.19) and (2.2.4) the radial and tangential normal strains εr, εφ and the stress-strain 

relations of a homogeneous sphere in one-dimensional problems can be presented as [52], [60]: 
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 (3.1.7) 

where u=u(r) is the radial displacement field, ν is the Poisson’s ratio, E is the Young modulus, α 

is the coefficient of linear thermal expansion, σr(r) is the radial normal stress and σφ(r) is the 

tangential normal stress of the spherical body. According to the Navier equation, let the 

displacement field for the i-th layer of the multilayered body be defined as 
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where Ci and Di are integration constants, Ui(r) has the following form [52] ,[60]: 
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With the combination of Eqs. (3.1.5), (3.1.6), (3.1.8) and (3.1.9) the expression of the radial 

stress for the i-th layer can be calculated as  
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and the tangential normal stress is 
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The following values of the displacement field and radial stresses will be used for the equations 

of the i-th layer: 

 1 1( ) , ( ) , ( ) , ( ) .i i i i i i ri i i ri i iu R n u R m R f R g       (3.1.13) 

Using Eqs. (3.1.13), the unknown integration constants of Eqs. (3.1.8-3.1.12) can be calculated as 

 1 2 1 2( ) ( )i i i i i i i i i i iC k m k f k U R k S R    , (3.1.14) 

 3 4 3 4( ) ( )i i i i i i i i i i iD k m k f k U R k S R    , (3.1.15) 

where 
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  

   
   

  
 1,...,i n . (3.1.16) 

From Eqs. (3.1.14-3.1.16) and (3.1.8-3.1.11) the expressions of the radial normal stress and radial 

displacement for the i-th layer can be obtained: 
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 1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ri i i i i i i i i i i ir K r m K r f K r U R K r S R S r      , (3.1.17) 

 1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ri i i i i i i i i i i iu r L r m L r f L r U R L r S R U r     , (3.1.18) 

where 
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 (3.1.19) 
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1 1 2 2 3 1 4 22 2 2 2

( ) , ( ) , ( ) , ( ) .i i i i
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k k k k
L r rk L r rk L r rk L r rk

r r r r
           (3.1.20) 

For the i-th layer of the spherical body the following matrix equation can be derived: 
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( ) ( ) ( ) ( )

( ) ( )

. (3.1.22)
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By the whole multilayered spherical body the following notations and fitting conditions will be 

used for the discrete values: 

 1 1 1 1( ) ( )i i i i iu R u R u     ,  1 1 1 1( ) ( )ri i ri i i iR R g f       ,  1,..., 1i n  , (3.1.23) 

furthermore f1 and gn are given. For the whole geometry the next system of equations can be 

derived for the displacement values ui as basic variables: 
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       
         
     
     
           

 (3.1.24) 

   f G u h . (3.1.25) 

From Eqs. (3.1.24) and (3.1.25) the unknown displacement values ui (i=1,...,n+1) can be 

calculated, and then, using Eq. (3.1.17-3.1.21) the radial normal stresses can be evaluated. 
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3.2. Multilayered model of spherical bodies with temperature-dependent 

material properties 

 

This section presents an analytical solution for the axisymmetric thermoelastic problem of 

multilayered composite spherical bodies under combined mechanical and thermal loads -similarly 

to Section 3.1, furthermore this method can be used as a numerical method to approximate the 

thermoelastic problem of functionally graded spherical vessels with a thermomechanical problem 

of multilayered spherical bodies (Fig. 3.3) where the temperature dependency of the material 

parameters is taken into account.  

The constant pressure is denoted by p2 which acts on the outer curved boundary surface while 

the uniformly distributed mechanical loading exerted on the inner surface is denoted by p1. The 

layers are perfectly bonded, which means that the radial stresses and displacement, the heatflow 

and the temperature are all continuous functions of the radial coordinate r, furthermore the material 

properties are position- and temperature-dependent.  

    

Figure 3.3. The multilayered model. 

In this model the layers are made of isotropic homogeneous materials and are perfectly bonded, 

the material properties are constants within the layers but varying radially between them. The more 

layers are considered the more accurate the computations are, by FGMs n͢→∞. 

Both the boundary conditions and the field equations [52], [60] are linear therefore the 

superposition principle can be used. This means that we can add the stresses and displacements 

caused by mechanical loads to the thermal stresses and displacements in order to solve this coupled 

problem. A spherical coordinate system Or  is used for our models. 

3.2.1. Approximation of the material properties 

We need to approximate the material properties and compute their discrete values for the different 

homogeneous layers. When the material parameters are arbitrary functions of the radial coordinate, 

the material properties for the i-th layer are calculated in our current model as (Fig. 3.4) 

1 , ( ), ( ), ( ), ( ), 1,..., .
2

i i
mi i mi i mi i mi i mi

R R
R E E r R r R r R r R i n     

          (3.2.1) 
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Figure 3.4. The approximation for the functions of the material properties. 

In case of radial coordinate- and temperature-dependent material properties E(r,T(r)), α(r,T(r)) and 

ν(r,T(r)), the computation of their discrete values for the different quasi-homogeneous layers of 

the multilayered spherical model require another formulae. We can assign the following material 

property values for the spherical layers: 

 ( ), ( , ), ( , ), ( , ).mi mi i mi mi i mi mi i mi mit T r R E E r R T t r R T t r R T t               (3.2.2) 

This means that we will approximate the arbitrary functions of the functionally graded material 

parameters with multi-stepped functions. To build the approximation function from the n step we 

can use for example the Heaviside function. Figure 3.5 indicates the sketch of the i-th layer of the 

multilayered spherical body. The constant mechanical loads exerted on the inner and outer surfaces 

of the i-th layer are denoted by fi and fi+1, respectively. The temperatures on the boundary surfaces 

are ti and ti+1. 

 

Figure 3.5. The sketch of the i-th layer with the mechanical and thermal loadings. 

3.2.2. Determination of the temperature field 

In this subsection two cases will be investigated. These models can be used to approximate the 

temperature field in a radially graded spherical body. At first, the thermal conductivity depends 

only on the radial coordinate and there are prescribed thermal boundary condition of the third kind 

at the inner and outer surfaces, in our second problem thermal boundary conditions of the first 

kind are considered but the material parameters depend on the temperature and radial coordinate. 
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An analytical solution for the temperature field can be derived when the distribution of the 

thermal conductivity has special form. An example can be found in [27, 28] for power-law function 

dependent thermal conductivity.  

Case 1. When the thermal conductivity of the functionally graded sphere depends only on the 

radial coordinate, the temperature dependency is negligible, the differential equation for the 

temperature field and its solution have the following forms:   
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d d
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   . (3.2.3)  

Using the equations of the thermal boundary conditions of third kind on the inner and outer 

surfaces we get the unknown constants of Eq. (3.2.3): 
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, (3.2.4) 

where γ1 and γ2 are the heat transfer coefficients of the inner and outer curved boundary surfaces, 

te1 and te2 are the temperatures of the surrounding environment, furthermore 
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 (3.2.5)  

We will approximate the temperature field of the FGM sphere using the multilayered method 

in order to avoid the integration in Eqs. (3.2.5). We will consider a layered spherical body with n 

layer and each of them has its own temperature field Ti(r). The first and the n-th layer have mixed 

thermal boundary conditions (of first kind and third kind) on the inner and outer surfaces.  

  1 2 2( ) ,T R t  
1

1
1 1 1 1

d ( )
( ) ( )

d
r R e

T r
R t t

r
     , (3.2.6) 

 ( ) ,n n nT R t
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d n

n
n r R e n
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R t t

r
 

    . (3.2.7) 

The other layers have thermal boundary conditions of the first kind on both spherical surfaces. 

Using the previously presented boundary conditions we get the temperature fields for the different 

layers as 
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We assume that the radial heatflow is constant and the surface temperatures of the osculant 

layers are equal.  

 1 1 1 1( ) ( )i i i i it T R T R     , 1,...,i n , 1 1 1( ) ( )i i i iq R q R   , 1,..., 1i n  , (3.2.11) 
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The unknown boundary temperatures of the spherical layers can be calculated from Eqs. 

(3.2.12) and (3.2.13). Substituting these values into Eqs. (3.2.8-3.2.10) then summarizing the 

results we get the temperature field of multilayered vessel.  

Case 2. Then that case will be investigated when the thermal conductivity λ(T,r) is temperature- 

and radial coordinate-dependent. We will approximate the temperature field of the functionally 

graded sphere for a temperature field of a multilayered spherical body with n quasi-homogeneous 

layers whose thermal conductivities depend only on temperature.  

 ( ) ( , ), 1,...,i miT r R T i n    . (3.2.14) 

For this case the nonlinear differential equation for the temperature field of the i-th layer Ti(r) has 

the following form: 
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Using the Kirchoff integral transformation, this problem becomes linear 
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From the thermal boundary conditions of first kind, the solution for the temperature field within 

the i-th layer can be derived in the following implicit form: 
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We assume that the surface temperatures ti of the osculant layers are equal and the radial heatflow 

q is constant  
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After some manipulations of Eqs (3.2.16-3.2.18) the unknown ti (i=2, ...,n) boundary temperatures 

of the layers can be calculated from the following system of equations 
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moreover temperatures t1 and tn+1 are given. In the next step instead of using Eq (3.2.17) to 

compute the function of the temperature we will fit a curve or curves -for example with the least 

squares method- to the temperature values ti in order to make the further calculations (especially 

the integrations) easier and faster. The recommended approximation function is 
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 2 1 2

2 1 0 1 2( )apprT r r r r r     

      .  (3.2.20) 

In order to make the approximation more accurate more polynomial curves can be used to build 

the approximated temperature function. After the determination of the temperature field, the 

temperatures in the middle of the different layers are calculated for the approximation function of 

the material parameters according to Eq. (3.2.2). 

 

3.2.3. Thermal part of the problem 

 

In the next steps the calculations will be split into two parts, then the superposition principle will 

be used to solve the problem. In the first case the i-th layer is under thermal loading (ti, ti+1) and 

has the previously calculated steady-state temperature field, the stresses on the boundary surfaces 

(fi =fi+1=0) of the layers have zero value. The ui
T(r) thermal radial displacement and the σir

T(r), 

σiφ
T(r), σiϑ

T(r) thermal stresses have the following forms [52]: 
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where Ti(r) is the function of temperature difference (compared to a tref reference temperature) of 

the i-th layer. Because of the approximation of the temperature field Eq. (3.2.20), the integrals of 

Eqs. (3.2.21-3.2.23) contain fourth degree polinomials which can be easly calculated. 

 

3.2.4. Mechanical part of the problem 

 

In the second case it is assumed that the inner and outer boundary surfaces of the i-th spherical 

layer are under constant mechanical loading (fi and fi+1) without the thermal loads. The differential 

equation for the radial displacement field ui
M(r) can be derived from the equilibrium equations. 

The solution of this equation and the normal stresses –according to -Eqs. (2.2.3-2.2.5)-  have the 

following forms [52], [60]: 
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The unknown parameters Ai and Bi (i=1,...,n) can be determined from the equations of the boundary 

conditions (σir
M(Ri)=fi, σir

M(Ri+1)=fi+1) and they can be used to derive the expressions of the normal 

stresses. 
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3.2.5. Application of the superposition principle  

 

The superposition principle can be utilized for this problem, because both the previously used 

field equations and boundary conditions are linear. This means that we can add the stresses and 

displacements caused by mechanical loads -Eqs. (3.2.24-3.2.28)- to the thermal stresses and 

displacements -Eqs.(3.2.21-3.2.23)- in order to solve this problem. For the computation of the 

radial displacement, radial and tangential stresses the following equations are used: 

     ( ) ( ) ( ),T M

i i iu r u r u r   ( ) ( ) ( ),T M

ir ir irr r r     ( ) ( ) ( ),T M

i i ir r r        1,..., .i n   (3.2.29) 

The unknown parameters fi (i=2,...,n)  in the equations of ui
M(r), σir

M(r), σiφ
M(r) can be calculated 

from the following equations 

 1 1 1( ) ( ),i i i iu R u R    1,..., 1i n  ,   (3.2.30) 

which ensure the continuity of the radial displacement field furthermore f1 and fn+1 are given.  

 
1 1 1 1( ) ,r R f p     

1 1 2( ) .nr n nR f p      (3.2.31) 

The system of equations (3.2.30) has the following form: 
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where the constants ai, bi and ci are 
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Using the previously determined fi parameters and Eqs. (3.2.29) the radial displacement and the 

normal stresses of the multilayered spherical body can be evaluated.  
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3.2.6. Improvements in the accuracy of the multilayered approach 

 

(a) By our multilayered model, the curve of the tangential normal stress may contain significant 

steps, but the stress values in the middle of each layer have good accuracy as we will see in 

Example 4. The radial quantities are accurate at the boundary of the layers. Thus an approximate 

curve can be fitted to these points to increase the accuracy and the convergence of the method, for 

this we can use the previously mentioned least squares method. For example the recommended 

form of the approximation for materials presented in Section 2.4 is 
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, (3.2.36) 

which form can be useful for power indices about 0.5<m<150. For smaller values of m we can 

compute the floor functions of the exponents in Eq. (3.2.36). 

(b) Alternatively we can use the following expressions for the calculation of the discretized 

material property values:  
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(3.2.37) 

(c) It is recommended to use partitions according to the value of the power index m by choosing 

the radii Ri (i=1,…,n+1) properly. It is essential by large or small values of m, when the effective 

material parameters change drastically in a small section of the body as we can see in Section 2.4. 

For example the following simple method can be utilized to determine the boundary of the layers 

when the distribution of the different material properties M, which denotes the quantities E, α, ν, 

λ, etc., is described by similar functions 

  1 1
1
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although it is recommended to further partition the thickest layer, for example when the relation 

between the radii of the first and second thickest layers is Ri+1-Ri>10(Rj+1-Rj). 

(d) When the thermal loading is dominant, the accuracy of the calculations can be improved by 

using power-law material functions for the different layers instead of the initial constant values. 

The form of the approximate power function is 
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and the equations are 
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(e) We can go further and approximate the problem of radially graded spheres with a layered 

spherical body in which the material properties of the different layers are certain power-law 

functions of the radial coordinate. The approximation of the material properties is presented in Eq. 

(3.2.39), the steps of the model are presented in Section 3.1. 

 

 

3.3. Analytical solution for a temperature-dependent functionally graded 

material 

 

An analytical solution is developed for the case when the Poisson’s ratio is constant, the 

distribution of the Young modulus is assumed to be described with a power-law along the radial 

coordinate [52], [28], the coefficient of linear thermal expansion specifically depends on the 

temperature and radial coordinate and the temperature field has the following form:  

 
1( ) ,

Em
r

E r P
a

 
  

 
2 3( , ( )) ( ( )) ,

m
r

r T r P PT r
a




 

   
 

,a r b   (3.3.1) 

  2
1( )

H
T r H

r
  , if const. : 

1 ( ) ,inner outer inner

b
H t t t

a b
  


2 ( ) ,outer inner

ab
H t t

a b
 


 (3.3.2) 

where P1, P2, P3, mE and mα are material parameters. The mechanical loads are constant pressures 

p1 and p2 which act on the boundary surfaces (r= a and r= b). 

3.3.1 Formulation of the analytical solution  

 

Based on the investigated temperature field, the strain-displacement and the stress-strain relations 

for spherical bodies –from Eq. (2.2.5)- can be expressed as 
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 (3.3.4) 

The time-independence of the functions involved separates the analysis of the temperature field 

from that of the elastic field, therefore the problem becomes uncoupled, which means that  

α(r,T)→α(r) and Eqs. (3.1.6-3.1.7) are valid. From the equilibrium equation, the following 

differential equation can be derived for the radial displacement u: 
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where the constants A1, A2 and A3 are 
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The solution of differential equation (3.3.5) is 
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where C1 and C2 are unknown constants of integration and the following notations are introduced: 
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The radial stress takes the form  
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in the last term we used the following simplifications  
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The unknown constants C1, C2 can be obtained from the stress boundary conditions:  
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3.3.2. Analytical solution for the temperature field 

 

An analytical solution is derived to check the accuracy of the developed method for the 

temperature field in Section 3.2. The thermal conductivity is temperature- and coordinate- 

dependent and can be expressed as 
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where P1, P2 and mλ are material constants. After solving Eq. (3.2.15) the temperature field can be 

calculated and its constants can be evaluated from the thermal boundary conditions of the first 

kind: 
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3.4. Analytical solution with stress function 

 

In this section an analytical solution will be elaborated for the previously presented thermoelastic 

problem of functionally graded spherical bodies using stress functions. 

In this case the loading and the geometry can be seen in Fig. 3.6. The material properties of the 

radially graded material are given as 

 31 2

0 0 0( ) , , ,
mm mE r E r r r       (3.4.1) 

where E0, α0, λ0, m1, m2 and m3 are material constants, furthermore the Poisson’s ratio ν is constant. 
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Figure 3.6. The sketch of the problem. 

The radial stresses, the heatflow and the temperature field are all continuous functions of the 

radial coordinate. Our aim is to determine the displacement field and normal stresses within the 

spherical component. 

The first step is the calculation of the temperature field when the thermal conductivity is prescribed 

by Eq. (3.4.1). For this problem the thermal boundary conditions of the first kind are 

 1 1 2 2( ) , ( ) 0.T R t T R t    (3.4.2) 

In this case the temperature difference field ( ) refT r t t   has the following form [59]: 
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The radial and tangential normal strains ,r      and the stress-strain relations for a spherical 

body can be formulated as in Eqs. (3.1.5-3.1.7) [52, 60]. According to Eqs. (2.2.9), the equilibrium 

equation in the radial direction of the spherical body has the following form  
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We reformulate Eq. (3.4.4) in the next form 
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therefore the normal stresses can be expressed in terms of the stress function V=V(r) as 
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After some manipulations from Eqs. (3.1.6), (3.1.7), (3.1.5) and (3.4.6) we can derive the next 

system of ordinary differential equations for the displacement field and the stress function 
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  (3.4.7) 
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Considering the functions of the material properties given by Eqs. (3.4.1) the final form for the 

system of differential equations can be expressed as: 
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  (3.4.8) 

The general solutions of the radial displacement field and the stress function are power 

functions of the radial coordinate. The homogeneous solutions are assumed to have the following 

forms: 

 1 1

1 2, m

h hu C r V C r    .  (3.4.9) 

Applying Eqs. (3.4.9) to Eqs. (3.4.8), we get the next system of linear equations for the constants 
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From the solutions for the previously presented system of equations it follows that 
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The following notations will be used for the computation of the particular solutions: 
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The first particular solution is obtained by the next system of differential equations: 
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and we have 
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The remaining particular solutions can be represented as 
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The summarized form of the general solution for the displacement field and the stress function 

are as follows 
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In order to determine the unknown constants C1 and C2 the next stress boundary conditions will 

be used: 
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3.5. Numerical examples for layered composite sphere models 

 

In this section numerical examples will be presented for our developed methods. The models 

will be compared to each other, to finite element solutions and to results obtained from the 

literature.   



- 38 - 

 

3.5.1. Example 1 

In this subsection two numerical examples will be presented to check the accuracy of the 

temperature fields calculated from the previously presented methods of Subsection 3.2.2. We used 

the temperature equations of Subsection 3.3.2 and finite element simulations to verify the 

developed solutions. Furthermore, Maple 15 mathematical software was used to create the 

program for the developed methods.  

In the first numerical example the accuracy of the calculation for the temperature field is 

investigated when λ=λ(r,T) and there are prescribed thermal boundary condition of first kind on 

the boundary surfaces of the spherical body. The following data were used to carry out the 

numerical computations for Eqs. (3.3.24):  

3

1 2

W 1
0.04m, 0.06m, 10 , 1.34 10 , 1.9, 273K,

mK K
refa b P P m t

       30K,innert   

500Koutert  and the approximation function of the temperature field has the form of Eq. (3.2.20), 

furthermore three cases with three different layer numbers (n1=5, n2=9, n3=17) are compared to 

the analytical solution of Eqs. (3.3.25-3.3.26). Figure 3.7 shows the temperature function and the 

relative errors eT of the approximations when  

 (%) 100, ( ) ( ), ( ), ( ), ( ).
analytical numerical

M r
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M
 


    (3.5.1) 

  

Figure 3.7. The temperature field and the relative errors of the model. 

In Fig. 3.7 we can see that even in the case of 5 layers the maximum relative error is under 1%, 

furthermore the relative errors have minimums at the boundaries of the layers.  

In the second numerical example the accuracy of the calculation for the temperature field 

presented in Subsection 3.2.2 is investigated when the thermal conductivity is power-law function 

of the radial coordinate and there are prescribed thermal boundary conditions of the third kind.  

We consider two cases for the determination of the temperature difference function with two 

different layer numbers (n1=4 and n2=8). The parameters for this example, the function of the 

thermal conductivity are: 
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Figure 3.8. The relative errors of the multilayered method by power-law function of the 

thermal conductivity. 
 

3.5.2. Example 2 

 

We consider a three-layered spherical component for the numerical example of the analytical 

multilayered methods presented in Sections 3.1 and 3.2. The first and third layers are made of a 

thermal insulation material, while the material of the second one is steel. For the numerical 

computation the following data are used: 

1 2 3 4 1 3 20.5m, 0.53m, 0.62m, 0.65m, 320GPa, 211GPa,R R R R E E E      

6

1 3 2 1 3 2 1 3

W W 1
0,21, 0,3, 4 , 58 , 7.4 10 ,

mK mK K
                

6

2 1 2 1 4

1
12 10 , 25MPa, 0MPa, 250 C, 0 C.

K
p p t t          

The radial displacement and the normal stress fields obtained by the method presented in 

Section 3.1 can be seen in Figs. 3.9-3.11 and are denoted by blue dots (Method 1), while the results 

of Section 3.2 are illustrated by red solid lines (Method 2). The two developed methods lead to the 

same results. 

 

 
Figure 3.9. The plots of the displacement field in the three-layered sphere. 
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Figure 3.10. The radial stresses of the three-layered sphere. 

 

 

 
Figure 3.11. The tangential normal stresses of the three-layered sphere. 

 

3.5.3. Example 3 

 

As we have mentioned earlier the problem of a functionally graded spherical body can be solved 

with a model of layered spherical body which consist of homogeneous layers. In this example we 

verified our analytical method of Section 3.4, then we have tried to solve it with our multilayered 

approach when the temperature dependency is negligible. Furthermore an additional example will 

be presented to investigate the effect of the power index of the material properties described in 

Section 2.4. 

The first analytical model was compared to the method presented in [27] and [28], we got the 

same results. In our current example this analytical solution [28] is compared to the models of 

Sections 3.1 and 3.2 in the case of power-law based material properties. The following data are 

used for the numerical computations: 
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Table 3.1. The comparison of the analytical solution and the multilayered approach, m=1. 

m=1 
Ana. 

value  
Relative error (%) 

An. 

va-

lue  
Relative error (%) 

Ana. 

value 
relative error (%) 

r/a u(r)·103 n=4 n=8 n=32 -σr/p1 n=4 n=8 n=32 -σφ/p1 n=4 n=8 n=32 

1 0.5187 0.231 0.058 0.003 1 6·10-8 0 0 0.1382 4.98 2.921 1.006 

1.0875 0.5119 0.532 0.138 0.008 0.8077 0.209 0.056 0.004 0.3492 2.466 0.563 0.188 

1.1875 0.5028 0.541 0.089 0.004 0.6010 0.138 0.024 0.001 0.5954 0.518 0.259 0.090 

1.2875 0.4917 0.503 0.132 0.009 0.4033 0.025 0.004 .0001 0.8471 1.138 0.046 0.027 

1.3875 0.4781 0.473 0.124 0.008 0.2115 0.107 0.071 0.005 1.1044 2.764 0.957 0.201 

1.5 0.4597 0.498 0.125 0.008 0 9·10-7 0 0 1.4008 2.920 1.589 0.422 
 

Tables 3.1 and 3.2 show the relative errors of the multilayered models by three different layer 

numbers (n=4, 8, 32). The results indicate that the approximation is accurate for the radial 

quantities, for the displacement field and stresses, for example when n=4 the maximum relative 

error is under 0.55%. For the determination of the normal stresses σφ and σϑ finer partitioning is 

necessary because in some cases the errors can be significant especially at the curved boundary 

surfaces. 
 

Table 3.2. The comparison of the analytical solution and the multilayered approach, m=-1. 

m=-1 
Ana. 

value  
Relative error (%) 

An. 

va-

lue  

Relative error (%) 
Ana. 

value 
relative error (%) 

r/a u(r)·103 n=4 n=8 n=32 -σr/p1 n=4 n=8 n=32 -σφ/p1 n=4 n=8 n=32 

1 0.6697 0.035 0.008 .00005 1 9·10-8 0 0 0.6777 0.783 0.597 0.192 

1.0875 0.6497 0.271 0.071 0.004 0.7331 0.008 0.009 .0007 0.7668 0.325 0.208 0.034 

1.1875 0.6231 0.281 0.037 0.002 0.4868 0.167 0.025 0.002 0.8119 0.221 0.266 0.179 

1.2875 0.5948 0.256 0.068 0.003 0.2916 0.297 0.088 0.006 0.8241 1.663 0.307 0.093 

1.3875 0.5664 0.244 0.064 0.003 0.1368 0.229 0.131 0.009 0.8189 3.267 1.211 0.287 

1.5 0.5354 0.272 0.067 0.003 0 9·10-7 0 0 0.8023 3.776 1.924 0.487 

 

The last example of this chapter investigates the effect of the power index m on the stress field. 

The material properties have the following forms: 

 
0 0

0 0

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) .

Em m

i i i i

m m

i i i i

r a r a
r E r E E E

b a b a

r a r a
r r

b a b a



 

   

       

    
        

    

    
        

    

 (3.5.3) 
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m K mK
o oh E

K
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11 6W 1
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mK K
i i i i EE m m m m m                 

The results are shown in Fig. 3.12 in three cases. The graphs of the combined loads are denoted 

by red solid lines, the green dash dot lines belong to the case when there are no thermal loading, 

the blue dash lines indicate the results for the thermal loads without mechanical loading. Figure 

3.13. illustrates the effect of power index m on the equivalent stress field, where  

 eq Mises r     . (3.5.4) 

 
Figure 3.12. The results for the normal stresses and displacement field. 

 

Figure 3.13. The effect of the power index m on the equivalent stresses. 
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4. Numerical solutions for the problems of functionally graded 

spherical bodies 

In this chapter numerical methods are presented to deal with the thermoelastic problem of radially 

graded spherical bodies. An initial value problem and the previously developed multilayered 

models are applied to functionally graded materials when the material properties are arbitrary 

functions of the radial coordinate and the temperature field. Furthermore two special cases of 

radially graded spheres are investigated. A numerical model is presented to deal with the problem 

of functionally graded piezoelectric spherical parts. In the second case the equations are derived 

to calculate the normal stresses of incompressible functionally graded spheres. 

  

 

4.1. Initial value problem of radially graded spheres with arbitrary material 

parameter distribution 

 

A thermoelastic boundary value problem of a spherical body made from functionally graded 

materials with arbitrary gradient is analysed, where the material parameters are arbitrary smooth 

functions of the radial coordinate and temperature field, furthermore the steady-state temperature 

distribution is assumed to be arbitrary smooth function of the radial coordinate r (Subsection 

3.2.2). A coupled system of ordinary differential equations containing the radial displacement and 

stress function is derived and used to get the distribution of normal stresses and radial 

displacements caused by combined axisymmetric mechanical and thermal loads. The geometry 

and the boundary conditions can be seen in Fig. 3.6.  

The radial and tangential normal stresses in terms of stress function V=V(r) can be represented 

as 
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After some manipulations from Eqs. (3.1.5-3.1.7) and (4.1.1) we can derive the next system of 

ordinary differential equations for the displacement field and the stress function 
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The validity of this statement comes from the fact, that in our time independent uncoupled 

problems, the temperature field can be obtained from the solution of the heat conduction equations 

as we have seen in Subsection 3.2.2. At first all material parameters are arbitrary smooth functions 

of the radial coordinate and temperature field, but the temperature field is given, which means that 

M(r,T(r))→M(r) and Eqs. (4.1.2) assume the form of Eqs. (3.4.7).  
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Our aim is the calculation of the initial values for the system of equations (4.1.2). The stress 

boundary conditions and its expressions in terms of the stress function V=V(r) are as follows 

 1 1 2 2( ) , ( ) ,r rR p R p      (4.1.3) 

 2 2

1 1 1 2 2 2( ) , ( ) .V R p R V R p R     (4.1.4) 

In Eqs. (4.1.3), (4.1.4) p1 and p2 are known applied pressures at the inner and outer spherical 

boundary surfaces. Our aim is to transform the two-point boundary value problem formulated by 

Eqs. (4.1.2), (4.1.4) into an initial value problem. This step is required to the realization of the 

chosen numerical methods. To get the unknown initial displacement u(R1) we consider two 

solutions for system of equations (4.1.2) which are denoted by [u1(r), V1(r)] and [u2(r), V2(r)]. 

These solutions have the next prescribed initial values: 

 1 1 1( ) : arbitrary value,u R u  (4.1.5) 

 2

1 1 1 1( ) ,V R p R   (4.1.6) 

 2 1 2 1 2( ) : arbitrary value,but ,u R u u u   (4.1.7) 

 2

2 1 1 1( ) .V R p R   (4.1.8) 

To carry out the calculations and get [u1(r), V1(r)] and [u2(r), V2(r)], we can use for example the 

Runge-Kutta method. From these solutions the suitable value of u(R1)=u3 can be computed as 
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u u
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
 (4.1.9) 

The validity of this statement follows from the linearity of the considered thermoelastic 

boundary value problem. The solution of the thermoelastic boundary value problem is obtained 

from the numerical solution of system of equations (4.1.2) with the initial conditions 

 2

1 3 1 1 1( ) , ( ) .u R u V R p R    (4.1.10) 

The stress field in this case can be obtained from the next equations 
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4.2. Functionally graded piezoelectric spheres 

 

In our next model a spherical body made from functionally graded materials with radial grading 

and polarization will be considered. The loads for this axisymmetric problem are constant 

mechanical loads denoted by p1 and p2 and electric potentials ϕ1 and ϕ2 on the inner and on the 

outer boundary surfaces, respectively. Our aim is to transform this problem into an initial value 

problem, then find a numerical method to solve it. The sketch of the problem can be seen in Fig. 

4.1.   
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Figure 4.1. The sketch of the problem with the boundary conditions. 

 

In spherical coordinate system the constitutive equations for radially polarized piezoelectric 

materials can be expressed as - according to Section 2.5 - 
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31 33 33 1 22 ,r r rE g g D R r R        , (4.2.2) 

where in these last terms the following expressions are introduced 
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Here we note that Dr is obtained from the Gauss equation [57] which takes the form of 
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furthermore in our current problem D is an unknown constant. We need to formulate the system 

of differential equations for the unknown stress-, electric potential-, radial displacement functions 

and electrical displacement. The combination of Eqs. (4.2.1-4.2.3) and (4.1.1) gives 
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This system of differential equations can be reformulate into a matrix equation: 
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For our further investigation and numerical example, the following power-law functions will be 

used to describe the distribution of the material parameters 
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Upon substituting these expressions into Eq. (4.2.8) we get 
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The boundary conditions for this problem can be presented as 
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 (4.2.13) 

Let the solution vector X(r) be defined as 
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Four computations are required for the calculation of the solution. We need to solve the initial 

value problems of four cases with the following initial values (for example with Runge-Kutta 

method): 
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where Uni, Vni and Φni are numerical solutions of the different cases (i=1,…,4). Table 4.1. shows 

the recommended method to solve this initial value problem. 

 

Table 4.1. The different initial value subproblems for the model. 

Initial 

values 

case 1 case 2 case 3 case 4 

input output input output input output input output 

u(R1) 1 

X1 

0 

X2 

0 

X3 

0 

X4 
V(R1) 0 1 0 0 

ϕ(R1) 0 0 1 0 

D 0 0 0 1 

 

From the linearity of this problem it follows that 
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After the manipulation of Eq. (4.2.16) we get the following system of equations: 

  2 2

2 2 2 1 12 1 1 22 1 32 42( ) ( ) ,V R p R u R X p R X X DX        (4.2.17) 

  2

2 1 13 1 1 23 1 33 43( )u R X p R X X DX      . (4.2.18) 

From this system of equations we can calculate the unknown values of u(R1) and D. The last 

step is the solution of the system of differential equation (4.2.12) with initial values [u(R1), V1, ϕ1, 

D]. 

 

 

4.3. Incompressible spherical bodies 

 

A thick spherical vessel will be considered in Orφϑ spherical coordinate system as we can see in 

Fig. 4.2. The incompressible spherical body is radially graded, therefore the material properties 

are vary along the radial coordinate r. The thermal loading is a steady-state temperature difference 

field T=T(r) and the mechanical loads p1 and p2 are constant pressures exerted on the inner and 

outer boundary surfaces.  
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Figure 4.2. The sketch of the problem. 

 

Our aim is to derive a method to calculate the displacement field and normal stresses within an 

incompressible spherical body.  

In the case of incompressible materials the Poisson’s ratio is ν=0.5 and the relation between the 

Young modulus and the shear modulus is E=3G. The stress-strain relations for these spherical 

bodies can be expressed as [52], [60] 
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where σr, σφ, σϑ are the normal stresses, εM
r, ε

M
φ, εM

ϑ denote the normal strains from mechanical 

loads, furthermore we have  
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3 3
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The normal strains can be written as the sum of its mechanical and thermal parts 
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For the trace of the strain tensor the following relation can be written  

 

 2 3r r T              . (4.3.7) 

 

The displacement-strain relations of spherical bodies are 
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The combination of Eqs. (4.3.7-4.3.8) leads to  
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The solution of Eqs. (4.3.7), (4.3.9) gives the function of radial displacement field 
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where the following notation is introduced 
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The substitution of Eq. (4.3.10) into the expressions of the normal strains Eqs. (4.3.5), (4.3.6) leads 

to the following formulae: 
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In the case of hollow spherical bodies the equilibrium equation can be expressed -Eq. (2.2.9)- as 
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The combination of Eqs. (4.3.14) with Eqs. (4.3.1, 4.3.2, 4.3.12, 4.3.13) leads to  
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The solution of Eq. (4.3.15) gives the function of the radial normal stress 
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The unknown constants C1 and C2 can be calculated from the stress boundary conditions: 

 

 1 1 2 2( ), ( ).r rp R p R      (4.3.17) 

 

Form Eq. (4.3.17) it follows that  

 2 1( ),rC R  (4.3.18) 
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The tangential normal stresses can be calculated from Eqs. (4.3.14-4.3.16) 
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4.4. Numerical examples 

 

In this section numerical calculations will be presented for the developed methods. In the first 

example the accuracy of the initial value method and the multilayered method is investigated. 

These models will be compared to the analytical solution derived in Section 3.3. In the next 

example these numerical methods will be checked by finite element simulations in the case of a 

metal-ceramic functionally graded material where the temperature dependency is taken into 

account. In the last two problems the results of the methods developed in Sections 4.2 and 4.3 will 

be presented and checked by FEM. 

 

4.4.1. Example 4 

In our first example the accuracy of the initial value method (Section 4.1) and multilayered method 

(Section 3.2) is investigated. The material parameters for the analytical solution presented in 

Section 3.3 and Eqs. (3.3.1), (3.3.2) are 

8 8
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1 2

1 1
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K K
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inner outer ref

a b P P P m m

t t t p p





        

     

 

The results of the initial value method and the multilayered approach are compared to the exact 

solution. Figure 4.3 shows the graphs of the radial displacements for the investigated models. As 

for the multilayered method, the widths of the layers are equal, the material properties are 

computed according to the method described in Subsection 3.2.1. It is important to note, that the 

accuracy of this method can be improved when the widths of the layers are adjusted to the material 

functions. As regards of Fig. 4.3, even in the case of n=4 the relative error is under 1%. 

The relative errors for the numerical models can be seen in Fig. 4.3. The initial value method 

has great accuracy according to Fig. 4.3, in our case the maximum error is 2.6·10-5 %. As for the 

multilayered method, the relative errors are minimal at the edge of the layers. If we want to further 
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improve the accuracy and speed of our method, we can get the displacement values at the 

boundaries of the layers and fit a curve with least squares method.  
 

 

 

Figure 4.3. The plots and the relative errors for the displacement fields. 

Figure 4.4 illustrates the radial normal stresses for the different methods. 

 

Figure 4.4. The graphs of the radial normal stresses. 

The relative errors for the radial normal stresses can be seen in Fig. 4.5. The conclusions are the 

same as in the case of the displacement field. 
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Figure 4.5. The relative errors of radial normal stresses. 

Figures 4.6 and 4.7 show the results for the tangential normal stresses σφ=σϑ. The curve from Eqs. 

(3.2.28) is not continuous, but we can see that the values at the middle of the layers have good 

accuracy. With an approximation derived from Eq. (3.2.36) the accuracy can be greatly improved 

as we can see in Fig. 4.6:     2 1 2 3

2 1 0 1 2 3( )appr r F r F r F Fr F r F r
 

         

 

Figure 4.6. The graphs of the tangential normal stresses. 

 

Figure 4.7. The relative errors for the tangential normal stresses. 
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With the approximation the relative errors can be decreased, and obviously the errors around 

the zero-beat of the tangential normal stress-function tend to infinity. 

4.4.2. Example 5 

In the second example a thermoelastic problem of a radially graded spherical pressure vessel 

with temperature-dependent material properties is investigated under axisymmetric thermal and 

mechanical loads. The results of the multilayered method presented in Sections 3.2 and the initial 

value method from Section 4.1 are compared to finite element simulation. The functions of the 

temperature-dependent functionally graded materials are described by Eqs. (2.4.1.) and (2.4.2). 

Table 4.2 shows the temperature coefficients of the steel – silicon nitride FGM. The other data of 

the radially graded spherical pressure vessel are: 

1 21m, 0.09m, 420K, 20K, 150MPa, 5MPa, 3inner outerd h t t p p m       . 

Table 4.2. The material parameters for the investigated metal-ceramic FGM. 

material 

property 

(M) 

metal (stainless steel) ceramic (silicon nitride) 

Pm0 Pm1(10-3) Pm2(10-7) Pm3(10-10) Pc0 Pc1(10-3) Pc2(10-7) Pc3(10-11) 

λ(W/mK) 15.39 -1.264 20.92 -7.223 12.723 -1.032 5.466 -7.876 

α (1/K) 12.33·106 0.8086 0 0 3.873·10-6 0.9095 0 0 

E (Pa) 2.01·1011 0.3079 -6.534 0 3.484·1011 -0.307 2.16 -8.946 

ν (-) 0.3262 -0.1 3.797 0 0.24 0 0 0 

The graphs of the material parameters at three temperature values and at three positions can be 

seen in Figs. 4.8-4.10. 

           

Figure 4.8. The curves of the temperature- and spatial- dependent coefficient of linear 

thermal expansion. 
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Figure 4.9. The curves of the temperature-dependent Young modulus of the steel – silicon 

nitrid FGM. 

       

Figure 4.10. The graphs of the temperature- and spatial- dependent Poisson’s ratio. 

The numerical methods are compared to finite element models. The simulations were executed 

with Abaqus CAE finite element software. The problem is axisymmetric, so a quarter of the 

spherical vessel is modeled. The functionally graded sphere is modelled as a multilayered body. 

Due to the radial grading, the layers should be concentrical hollow spheres with h/n wall thickness 

and temperature-dependent properties. We allow the movement of the nodal points on the 

horizontal edge only in the horizontal direction, on the vertical edge only in the vertical direction 

as it is illustrated in Fig. 4.11. The mesh and the results for the displacement field are shown in 

Fig. 4.12. 

 
Figure 4.11. The finite element model of the sphere. 
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Figure 4.12. The mesh and the results of the FE simulation for the displacement field. 

 

Figures 4.13-4.15 illustrate the graphs of the displacement fields and normal stresses for the finite 

element simulation, initial value method and the multilayered solutions by three different layer 

numbers. The results are in good agreement:  

 

4.13. The graphs for the displacement fields. 

 

Figure 4.14. The graphs for the radial normal stresses. 



- 56 - 

 

 
Figure 4.15. The graphs for the tangential normal stresses. 

 

 
Figure 4.16. The result of the finite element simulation for the tangential normal stress.  

 

In Figs. 4.16 and 4.17 the results of the finite element simulation are illustrated for the tangential 

normal stress and for the equivalent stress. The curves of these stresses fluctuate, generally at the 

boundary surfaces, which may lead to significant errors. In Fig 4.15, even by our multilayered 

method with n=4 layers and approximation, the solutions had high accuracy.  

 

 
Figure 4.17. The equivalent stresses computed by the finite element software. 
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4.4.3. Example 6  

In this subsection a problem of a thick-walled functionally graded piezoelectric spherical 

actuator is investigated. The method developed in Section 4.2 is compared to finite element 

solutions. The material at the inner radius of the sphere is Pzt-4 [57], [58] with the following 

parameters and data: 

1 2 1 2 1 2 1 2 30.02m, 0.06m, 10MPa, 0MPa, 100V, 300V, ,R R p p m m m m          

2
12 12 12

0 130 330 310

2
7

330 330

m
2, 5.552 10 Pa, 2.1425 10 Pa, 8.0813 10 Pa, 0.010894 ,

C

m
0.025678 , 8.9152 10 .

C

m S S S g

g 

            

  

 

Figure 4.18 shows the finite element model for this example. The number of element rows are 

n=12. In Fig. 4.19 the comparison of the results of the finite element model and our method -

Section 4.2- can be seen for the displacement field. 

 

Figure 4.18. The finite element model for the piezoelectric problem. 

The results show good agreement for the displacement field, but regarding of the radial normal 

stresses and electric potential the curves of the finite element simulation are fluctuating, as we can 

see in Figs. 4.20-4.22. According to Fig. 4.21, the worst results come from the tangential normal 

stresses –and for the equivalent stresses- of the finite element model. Our method produce more 

accurate solutions. 
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Figure 4.19. The graphs of the radial displacement field.  

 

 

Figure 4.20. The results for the radial normal stresses (left: FE method, right: our numerical 

method). 

 

Figure 4.21. The graphs of the tangential normal stresses (left: FE method, right: our 

numerical method). 

 

Figure 4.22. The graphs of the electric potential field (left: FE method, right: our numerical 

method). 
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4.4.4. Example 7  

 

In this subsection a numerical example is presented for the problem of incompressible functionally 

graded sphere of Section 4.3. The following power-law functions will be used to describe the 

distribution of the material properties and temperature field within the radially graded sphere 

 

1 2

3

0 0 0

1 1

( ) , ( ) , ( )

m m

mr r
r E r E T r T r

R R
 

   
     

   
, (4.4.1) 

and the other data are: 

3

6

1 2 0 0 0 1 2 3

1 2

1 K
0.5m, 0.7m, 1.2 10 , 210GPa, 1494 , , 5.638,

K m

30MPa, 0.

m
R R E T m m m m

p p

         

 

 

Figure 4.23 shows the curves of the radial normal stresses by three different values of power index 

m=(1, 0.2, 2). The tangential normal stresses can be seen in Fig. 4.24.  

 

Figure 4.23. The plots of the radial normal stresses within the incompressible sphere. 

 

Figure 4.24. The plots of the tangential normal stresses within the incompressible sphere. 

Next the solutions will be compared to finite element simulation. In the FE model the 

axisymmetric functionally graded sphere is modeled as a multilayered body with n=20 
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homogeneous spherical layers, as presented in [7]. In this case the displacement field can be seen 

in Fig. 4.25. The results for the normal stresses are identical to the previously presented plots. 

 

Figure 4.25. The comparison of the results for displacement field when m=2.  
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5. Thermoelastic problems of layered composite and functionally 

graded disks 

 

In this chapter a few thermoelastic problems of thin functionally graded disks are investigated. At 

first the temperature fields will be presented in three cases with different boundary conditions and 

geometry. The next part is the determination of the displacements and stress field in rotating 

functionally graded and layered composite disks subjected to combined axisymmetric thermal and 

mechanical loads. Analytical solutions are presented for layered composite disks and for a radially 

graded disk where the material parameters follow a power-law distribution. Numerical solutions 

will be presented for radially graded disks made from functionally graded materials with arbitrary 

spatial and temperature-dependent parameters. The thickness of the disk in most cases will be 

arbitrary functions of the radial coordinate. Furthermore, numerical examples will be presented to 

compare the developed models to each other and to solutions obtained by finite element 

simulations. 

Figure 5.1 shows the method which approximates the problem of functionally graded materials 

with multilayered approach similarly to the methods presented in the last two chapters. Cylindrical 

coordinate system Orφz will be used to solve these problems.  

 

    

Figure 5.1. The functionally graded disk and its approximation with a multilayered model. 

 

5.1. Temperature field in thin radially graded disks 

 

In this section three cases will be investigated beside an analytical solution. In our first heat 

conduction problem a multilayered disk is investigated with thermal boundary conditions of the 

first kind on the cylindrical boundary surfaces and arbitrary convective heat transfer on the lower 

and upper plane boundary surfaces. In our second case the method of finite differences is used to 

solve the heat conduction problem of functionally graded disks with arbitrary thickness profile and 

boundary conditions of the third kind. The last method presents a solution for functionally graded 

disks with variable thickness and temperature-dependent material parameters using a multilayered 

approach. 
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5.1.1. Multilayered approach with Bessel functions  

This subsection presents an analytical solution for the heat conduction problem of multilayered 

disks with constant thickness. Of course, this method can be used as a numerical approximate 

method for functionally graded materials and for arbitrary heat transfer coefficient where the 

parameters and the thickness profile are functions of the radial coordinate. 

The temperatures of the cylindrical boundary surfaces are given, they are constant, non-time-

dependent and denoted by t1 and tn+1, moreover there is symmetric convective heat exchange on 

the lower and upper plane boundary surfaces. It follows that the temperature field T(r) is the 

function of the radial coordinate. Figure 5.2 illustrates the sketch of the heat conduction problem, 

where the heat transfer coefficient γ can be arbitrary functions of the radial coordinate. For radial 

coordinate-dependent thickness h(r) and heat transfer, the parameters for the i-th layer can be 

computed as in Eqs. (3.2.1). 

 

Figure 5.2. The sketch of heat conduction problem. 

We assume that the temperature field T and the environmental temperature tenv is a continuous 

function of the radial coordinate. By the previously mentioned thermal boundary conditions the 

differential equation of the heat conduction in the layers has the following forms [59], [74]: 

  
2

2

2

d 1 d
( ) 0, ( ( ) ) 0

d d
env

T T
t hT r p T r t

r r r
      q ,  (5.1.1) 

where we have introduced the notation p as 
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p
h




 , ( ), ( ),etc.i mi i mip p r R h h r R     (5.1.2) 

After solving Eq. (5.1.1), we get the temperature field of the i-th layer with the unknown 

constants of integration: 

   0 0( ) ( ) ( )i i i i i envT r C I p r D K p r t   ,   1,..., .i n   (5.1.3) 

Using the boundary conditions Ci and Di can be evaluated, and with ( )envi env mit t r R   we have: 
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 (5.1.4) 
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where I0(x) and K0(x) are the Bessel functions of the first and second kind and of order zero [59]. 

We consider the case when the radial heatflow is constant, the temperatures of the inner and outer 

boundary surfaces are given. The surface temperatures of the adjacent layers are equal therefore 

we get the following equations for disks with constant thickness:    

 1 1 1 1( ) ( )i i i i it T R T R     ,  1 1 1 1( ) ( )i i i i i ih q R h q R    , 1,..., 1i n  ,   (5.1.5) 
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1
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

i envi i i i envi i i
i i i i

i i i i i i i i

i envi i i i envi i i
i i i
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t t K p R t t K p R
q r p I p r
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t t I p R t t I p R
p K p r
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
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 

 
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 

  
  



   




,  1,...,i n ,    (5.1.6) 

where the thermal conductivity of the i-th layer λi is is calculated according to Eq. (3.2.1) in case 

of FGMs. The unknown temperature values of the boundary surfaces ti can be calculated using the 

system of Eqs. (5.1.5-5.1.6).  

5.1.2. Finite difference method 

 

The sketch of this problem can be seen in Fig. 5.3. There are thermal boundary conditions of the 

third kind prescribed on the inner and outer cylindrical surfaces. γa and γb denote the heat transfer 

coefficients on the boundary surfaces, tenv,a and tenv,b are the environment temperatures at the inner 

and outer cylindrical surfaces, respectively. If γ→∞, then we have thermal boundary conditions of 

first kind on these surfaces. On the other two boundary surfaces the environmental temperatures 

are arbitrary functions of the radial coordinate, the heat transfer coefficient is coordinate and 

temperature-dependent.  

The problem of the previously presented functionally graded disk will be solved based on the 

equations of the steady-state heat conduction. The approximate model can be seen in Fig. 5.4. The 

number of layers is n, the layers have constant thicknesses and the material properties are 

discretized. Furthermore it is assumed, that the layers are perfectly bonded. 

 

 

Figure 5.3. The disk with the thermal boundary conditions. 
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Figure. 5.4. The approximate model of the functionally graded disk. 

The functionally graded disk is built from n layers with different hi>0 uniform thickness (Fig. 5.4), 

the material parameters and the environmental temperature for the i-th layer can be discretized as 

 
1

,

, ( ) ( , ), ( , ),
2

( ), ( ), 1,..., ,

i i
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R R
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   
    
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 (5.1.7) 

or using integral means similarly to Eqs. (3.2.1) and (3.2.2). For this case the nonlinear differential 

equation for the temperature field of the i-th layer (Ti(r)) has the following form [59]: 

  ,
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. (5.1.8) 

Finding the closed form analytical solution for Eq. (5.1.8) is very hard, therefore a numerical 

method will be utilized to solve this differential equation. The points of the temperature field will 

be calculated with the finite difference method. The nonlinear system of equations (with m points 

in each layer, the number of layers is n) for the whole model can be expressed as: 
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 (5.1.9) 
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nm


  ,     1,..., , while 1,..., 1i m k n   . 

If the thermal conductivity has the form of Eqs. (2.4.1) and (2.4.2) then we can get for the previous 

system of Eq. (5.1.9): 

   1 2 3
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where 
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where
0

j  (j=1,2: number of the constituent material) are material constants, constants  j

lP  (j=1,2 

and l = -1,0,1,2,3) are temperature coefficients. We assume that the surface temperatures of the 

adjacent layers are equal and the radial heatflow q is constant. 
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From the thermal boundary conditions of the third kind it follows that 
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The points of the temperature field can be calculated from the solution of the nonlinear system of 

equations (5.1.9), (5.1.13) and (5.1.14). Then a polynomial curve will be fitted to these values (via 

least squares method), the recommended form for power-law distributions for smaller power index 

values (m<7) is: 
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            . (5.1.15) 

 

5.1.3. Temperature-dependent heat conduction equation 

In this subsection a numerical method is presented to approximate the temperature field of radially 

graded disks –and cylinders- made from functionally graded materials with arbitrary spatial- and 

temperature-dependent thermal conductivity. A multilayered model is derived where the disks are 

made from homogeneous layers with arbitrary temperature-dependent materials as we saw in 

Subsection 3.2.2. The thermal boundary conditions are boundary conditions of the first kind t1 and 

tn+1 on the inner and outer cylindrical surfaces. There are n layers, the thermal conductivity is 

arbitrary function of the temperature. Two cases will be investigated, the equations will be derived 

for disks with constant thickness and with arbitrary thickness profile h(r). For each layer we have 

 1( ) ( , ), ( ) ( ), 1,...,i mi i i i i iT r R T t T R T R i n       . (5.1.16) 

For this case the nonlinear differential equation for the temperature field of the i-th layer Ti(r) can 

be presented as: 
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With the Kirchoff integral transformation this problem becomes linear 
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With the solution of the previous differential equation we obtain ϴ(r) and its boundary conditions 
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The solution for the temperature field within the i-th layer assumes the implicit forms 
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In the case of disks with constant thickness, we assume that the surface temperatures ti of the 

adjacent layers are equal and the radial heatflow q is – according to Fourier’s law: 
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After the manipulation of Eqs (5.1.21-5.1.22) the unknown ti (i=2, ...,n) boundary temperatures of 

the layers can be calculated from the following system of equations 
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moreover t1 and tn+1 temperatures are given. Here it is recommended that instead of using Eqs. 

(5.1.20) and (5.1.21) to compute the function of the temperature we will fit a curve or curves -for 

example with the least squares method- to the temperature values ti obtained by Eq. (5.1.23) in 

order to make the further calculations, especially the integrations easier and faster. The 

approximation function has the following form – in case of power-law distribution with |m|<6: 

 2 1 2

2 1 0 1 2( )apprT r r r r r     
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In order to make the approximation more accurate more polynomial curves can be used to build 

the approximated temperature function.  

In the case when the disk has arbitrary h(r) thickness, we will consider n layers with n different 

hi=h(r=Rmi)>0 values similarly to the method presented in Subsection 5.1.2. 

 

1 1

1
1 1

d ( ) d ( )

d d
i i

i i
i i i i

r R r R

T r T r
h h

r r
 

 


 

 

   
      

, (5.1.25) 

 

1

1

1

. ( )d
i

i

t

i i
i i i

i it

R R
const h t

R R
  







 
   2,..., .i n  (5.1.26) 

The accuracy of this method is similar to the method presented in Subsection 3.2.2. 

5.1.4. Analytical formulation when the temperature dependence is neglected 

In this subsection it is assumed that the thermal conductivity depends on the radial coordinate and 

the temperature values are given at the inner and outer cylindrical boundary surfaces of the 
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functionally graded disk (t1 and t2, respectively) so we have the following thermal boundary 

conditions of first kind:  

 1 1 2 2( ) , ( ) .T R t T R t   (5.1.27) 

The steady-state temperature field -without internal heat sources- satisfies the next equation [59] 
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where the thermal conductivity of the functionally graded material λ=λ(r) is arbitrary function of 

the radial coordinate r. The solution of Eq. (5.1.28) under the current boundary conditions gives 

the temperature distribution along the radial coordinate 
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5.2. Numerical solutions with multilayered approach 

 

In this section the thermoelastic problems of rotating disks and cylinders will be solved with 

the superposition of two separated cases, a mechanical loading without thermal load, and a 

prescribed thermal load on the cylindrical boundary surfaces without mechanical loading. The 

method derived for thin functionally graded disks can be used as analytical solutions for layered 

composite disks with constant thickness. 

 

5.2.1. Multilayered approach for thin functionally graded disks 

 

In this subsection a numerical method is presented to determine the displacement field and thermal 

stresses in functionally graded rotating disks with arbitrary axisymmetric thickness profile h(r). 

The model is similar to the one presented in Section 3.2 for spheres. The thermoelastic problem is 

split into two part, then the superposition principle is used to solve it. 

The previously determined temperature field is the input of this method, the material parameters 

for each layer can be discretized as 
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then we consider the case when the i-th layer is under thermal loading and has a steady-state 

temperature field. The stresses on the curved boundary surfaces of the layers have zero values.  

The ui
T(r) thermal radial displacement and the σir

T(r), σiφ
T(r) thermal stresses can be formulated 

as [52]: 
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In the previous expressions the index i refers to the i-th layer, the sketch of a layer with the 

loads is illustrated in Fig. 5.5. 

 

Figure 5.5. The cross section of a quarter of the i-th layer. 

 

In the next step it is assumed that the inner and outer cylindrical boundary surfaces of the i-th 

layer are under constant mechanical loading ( )M

i ir if R and 1( )M

i ir ig R  . The differential 

equation of the radial displacement field, derived from the equilibrium equation (Section 2.2): 
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where 
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In the expression of Ki, ρi is the density of the i-th layer and ω is the angular velocity of the rotating 

disk. Furthermore the strain-displacement and stress-strain relations for homogeneous disks can 

be expressed (Section 2.2) as  
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After solving Eq. (5.2.6) we get the following expressions for the displacement field and the 

normal stresses: 
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Using the equations of the boundary conditions, the unknown parameters Bi and Ci can be 

determined as 
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The superposition principle can be utilized for this problem, because both the previously used 

field equations and boundary conditions are linear. This means that we can add the stresses and 

displacements caused by mechanical loads (5.2.8-5.2.13) to the thermal stresses and displacements 

(5.2.2-5.2.4) in order to solve this problem. For the computation of the radial displacement, radial 

and tangential stresses the following equations are used: 
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The unknown parameters fi (i=2...n) and gi (i=1...n-1) in the equations of ui
M(r), σir

M(r), σiφ
M(r) 

can be calculated from the following equations 

 1 1 1( ) ( ),i i i iu R u R   1,..., 1i n  , (5.2.17) 

which ensure the continuity of the radial displacement field furthermore f1 and fn+1 are given.  
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The system of equations (5.2.17) has the following form: 
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Using the previously determined parameters fi and equations (5.2.14-5.2.16) the radial 

displacement and the normal stresses of the multilayered disk can be evaluated by summation. 

Because of the multilayered model the curve of the tangential normal stress may contain significant 
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steps, but the stress values in the middle of each layer have good accuracy (as we saw in Chapter 

4). Thus an approximate curve can be fitted to these points (for example using the least squares 

method) to increase the accuracy and the convergence of the method. Furthermore the accuracy of 

the method can be improved according to Subsection 3.2.6. 

 

5.2.2. Layered composite cylindrical bodies 

In this subsection the method presented in Subsection 5.2.1 will be applied to layered cylinders 

where the homogeneous layers are only radially bonded -but not axially, for example in the case 

of tubes with additional layers made from thermal insulation materials. For this problem a 

cylindrical coordinate system Orφz will be used. The axisymmetric temperature field and 

mechanical loading do not depend on the axial coordinate z and on the tangential coordinate φ. To 

determine the thermal stresses, the equations of generalized plane strain will be used. 
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The ui
T(r) thermal radial displacement and the σir

T(r), σiφ
T(r), σiz

T(r) thermal normal stresses can 

be formulated as: 
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The mechanical part of this problem has the following solutions: 
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Applying the principle of superposition according to Eqs. (5.2.14-5.2.17) we get [68] 
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5.3. The initial value problem of functionally graded disks 

 

In the next model we investigate a thermoelastic problem of thin functionally graded disks whose 

material properties vary arbitrarily along the radial direction and are temperature-dependent. A 

numerical approach will be presented which is based on a coupled system of first order ordinary 

differential equations. The unknown functions of the system of linear differential equations are the 

radial displacement and the stress function. Two models will be derived, in the first case a radially 

graded disk is presented with constant thickness. The second model deals with the determination 

of displacements and stress field of rotating radially graded disks with arbitrary thickness h(r). 

 

5.3.1. Radially graded disks with constant thickness 

 

In this subsection the system of differential equations of the radial displacement and stress function 

is derived for radially graded disks with constant thickness.  After the numerical solution of this 

system of ordinary differential equation, the thermal stresses and radial displacement for arbitrary 

radial nonhomogeneity can be obtained.  

We consider a functionally graded hollow circular disk as shown in Fig. 5.6. R1 and R2 denote 

the inner and outer radii of the disk. 

 

Figure 5.6. The hollow functionally graded disk with the mechanical and thermal loads. 

The temperature field is denoted by T=T(r) which is obtained from the solution of the steady-state 

heat conduction equation (Section 5.1). The strain-displacement and stress-strain relations are 

presented in Eqs. (5.2.8), where for this case the Young modulus E, the Poisson’s ratio ν and the 
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coefficient of thermal expansion α depend on the radial coordinate r and on the temperature 

difference function T. In this time independent uncoupled problem the temperature field can be 

determined separately from the elastic problem, which means that for the material properties 

M(r,T(r))→M(r) is valid and the stress-strain and strain-stress relations assume the forms of  
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The equilibrium equation in radial direction - disregarding the body force and the inertia terms - 

is 
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The general solution of Eq. (5.3.3) in terms of stress function V=V(r) can be represented as 
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After some manipulations from Eqs. (5.3.1-5.3.2) and (5.3.4) we can derive the next system of 

ordinary differential equations for the displacement field and the stress function 
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 (5.3.5) 

In Eqs. (5.3.5) all material properties depend arbitrarily on the radial coordinate and the 

temperature field. 

 

5.3.2. Radially graded rotating disks with arbitrary thickness 

In this subsection a rotating thin radially graded disk is investigated with constant angular velocity. 

The thickness of the structural component varies arbitrarily along the radial direction h(r)>0. In 

this case the equilibrium equation can be expressed as 
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From Eq. (5.3.7) the normal stresses in terms of stress function V(r) can be defined as 
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After lengthy manipulations the following system of ordinary differential equations can be derived 

for the displacement field and the stress function 
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5.3.3. The solution of the initial value problem 

 

The next step is the determination of the initial values for the system of Eqs. (5.3.5) and (5.3.10). 

The stress boundary conditions of the considered thermoelastic problem (Fig. 5.6) are 

 1 1 2 2( ) , ( ) ,r rR p R p      (5.3.11) 

which can be expressed in terms of the stress function V=V(r) when the thickness of the disk is 

constant such as 

 1 1 1 2 2 2( ) , ( ) .V R p R V R p R     (5.3.12) 

In the case of arbitrary h(r) thickness we have 

 1 1 1 1 2 2 2 2( ) , ( ) ,V R p R h V R p R h     (5.3.13) 

where h(R1)=h1 and h(R2)=h2.  

We formulate an initial value problem for the coupled system of ordinary differential equations 

(5.3.5) and (5.3.10). To get the stresses and radial displacement for the considered thermoelastic 

problem, three numerical solutions will be used with three different initial values. The aim is to 

look for the suitable value of u(R1) which provides the validity of the prescribed boundary 

condition (5.3.12) and (5.3.13). At first we consider two solutions for system of equations (5.3.5) 

and (5.3.10) which are denoted by [u1(r), V1(r)] and [u2(r), V2(r)]. These solutions have the next 

initial values: 

 1 1 1( ) : arbitrary value,u R u  (5.3.14) 

 1 1 1 1 1 1 1 1 1( ) ,when constant and ( ) , when ( ),V R p R h V R p R h h h r       (5.3.15) 

 2 1 2 1 2( ) : arbitrary value,but ,u R u u u   (5.3.16) 

 2 1 1 1 2 1 1 1 1( ) ,when constant and ( ) , when ( ),V R p R h V R p R h h h r       (5.3.17) 

By these solutions we compute u3 as 

 
2 1

3 1 2 2 1 2

2 2 1 2

( ( )), when is constant
( ) ( )

u u
u u p R V R h

V R V R


   


, (5.3.18) 
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2 1

3 1 2 2 2 1 2

2 2 1 2

( ( )) when ( )
( ) ( )

u u
u u p R h V R h h r

V R V R


    


. (5.3.19) 

The solution of the thermoelastic boundary value problem formulated by Eqs. (5.3.1), (5.2.8) and 

(5.3.11) is obtained from the numerical solution of system of equations (5.3.5) and (5.3.10) with 

the initial conditions 

 1 3 1 1 1 1 1 1 1( ) , ( ) or ( )u R u V R p R V R p R h     . (5.3.20) 

The validity of this statement follows from the linearity of the considered thermoelastic boundary 

value problem. The stress field can be obtained by Eqs. (5.3.4), (5.3.8) and (5.3.9). 

 

5.4. An analytical solution of a radially graded disk  

 

An analytical solution is developed for the case when the angular velocity is zero and the 

distributions of the material properties are assumed to be described with a power-law along the 

radial coordinate [69] as 

 1

0( ) ,mE r E r 2

0( ) ,mr r  3

0( )
m

r r  and ν=constant. (5.4.1)  

The boundary conditions are steady-state first kind thermal (t1 and t2) and mechanical (p1 and 

p2) boundary conditions. The general solution of the following homogeneous system of ordinary 

differential equations 

 
1

2

1

0

d 1
0,

d

h
h hm

u
u V

r r E r

 



    (5.4.2) 

 1 1

0

d
0,

d

mh
h h

V
E r u V

r r

    (5.4.3) 

are as follows 

 1 21 1 2 1
1 2

0 0

,h

m m
u C r C r

E E

       
       1 1 2 1

1 2 ,m m

hV C r C r     (5.4.4) 

where 

 
2

1 1 1

1,2

4 4
,

2

m m m


   
  (5.4.5) 

and C1 and C2 are arbitrary constants which can be obtained from the boundary condition Eq. 

(5.3.12). Here we note that 

 2 2 2

1 1 14 4 ( 2 ) 4(1 ) 0,m m m          (5.4.6) 

this means that λ1 and λ2 are real numbers because 0 0.5  . For simplicity it is assumed that 

t2=0. In this case the temperature change is  

 
3 3

3 3

2
1

1 2

( ) ,
m m

m m

r R
T r t

R R

 

 





 1 2.R r R   (5.4.7) 

Next, we seek a particular solution for the system of nonhomogeneous differential equations 
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3 31
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2
0 11

0 1 2
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(1 ) 0,

d

m m m m
p

p p m mm

u r R r
u V t

r r E r R R

 
 

 

 

 
    


 (5.4.8) 

 
1 2 3 3 1 2

1

3 3

1 2
0 0 0 1

1 2

d
0.

d

m m m m m m
p m

p p m m

V r R r
E r u V E t

r r R R




   


 


   


 (5.4.9) 

A simple computation shows that the particular solution for the the system of Eqs. (5.4.8), (5.4.9) 

is as follows 

 2 3 21 1

1 1 ,
m m m

pu Ar B r
    1 2 3 1 21 1

2 2 ,
m m m m m

pV A r B r
       (5.4.10) 

where the following notations are used: 

 
3 3

2

0 1 1 2 3

1 2

2 1 2 3 1 2 3

1 (1 )( 1)

( ) ( 1)( 1) 1
m m

t m m m
A

R R m m m m m

   

   

        
           

, (5.4.11) 

 
3 3

0 0 1 2 3
2 2

2 1 2 3 1 2 3

( )

( ) ( 1)( 1) 1
m m

E t m m
A

R R m m m m m



   


 

           

, (5.4.12) 
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0 1 2 1 2
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2 1 2 1 2
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,

( ) ( 1)( 1) 1

m

m m

t R m m
B

R R m m m

   

  



 

        
         

  (5.4.13) 

 
3

3 3

0 0 1 2 2
2 2

1 2 2 1 2

.
( ) ( 1)( 1) 1

m

m m

E t R m
B

R R m m m



  



 


         

 (5.4.14) 

The complete solution for the system of equations in the present case is 

 ( ) ( ) ( ),h pu r u r u r     ( ) ( ) ( ).h pV r V r V r    (5.4.15) 

The constants C1 and C2 can be obtained from the stress boundary conditions as the solution of the 

following system of linear equations 

 1 2 31 1 2 1 1 21 1

1 1 2 1 2 1 2 1 1 1,
m m mm m m mC R C R A R B R p R             (5.4.16) 

 1 2 31 1 2 1 1 21 1

1 2 2 2 2 2 2 2 2 2.
m m mm m m mC R C R A R B R p R             (5.4.17) 

Solution of system of equations (5.4.16-5.4.17) gives 

1 2 3 1 2 31 2 2 2 1 2 2 1

1 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1

1 11 1

1 1 2 1 2 1 2 2 2 2 2 2 2 1
1

1 2 1 2 1 2 1 2

( ) ( )
,

m m m m m mm m m m m m

m m m m m m m m

p R A R B R R p R A R B R R
C

R R R R R R R R

 

       

          

       

   
  

 
 (5.4.18) 

1 2 3 1 2 31 2 1 1 1 2 1 1

1 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1

1 11 1

1 1 2 1 2 1 2 2 2 2 2 2 2 1
2

1 2 1 2 1 2 1 2

( ) ( )
.

m m m m m mm m m m m m

m m m m m m m m

p R A R B R R p R A R B R R
C

R R R R R R R R

 

       

          

       

   
 

 
 (5.4.19) 

With Eqs. (5.4.18) and (5.4.19) we can get the radial displacement and normal stresses for ω=0 as 

 2 31 2 21 11 1 2 1
1 2 1 1

0 0

( ) ,
m m mm m

u r C r C r Ar B r
E E

          
     (5.4.20) 

 1 2 31 1 2 1 1 21 1

1 2 2 2

( )
( ) ,

m m mm m m m

r

V r
r C r C r A r B r

r

             (5.4.21) 
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A m m m r B m m r

 

     
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     
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  (5.4.22) 
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5.5. Numerical examples 

 

In this section numerical examples will be presented to the developed methods for the 

thermoelastic problems of radially graded disks. The methods will be compared to each other and 

to finite element simulations. 

5.5.1. Example 8 

In this example the initial value method will be verified with the analytical solution of Section 

5.4. The material properties are prescribed as in Eqs. (5.4.1). The geometry, material parameters 

and loading of the radially graded disk are 

   

11 6

1 2 1 2 3 0 05 3

1 2 1 2

N 1
1m, 1.4m, 3, 2, 1.5, 0.3, 2 10 , 1.2 10 ,

m °Cm

0 °C, 300 °C, 60MPa, 5MPa.

R R m m m E

T R T R p p

            

   

 

 

 

Figure 5.7. The radial displacement field and the normal stresses of the analytical solution. 

 

Figure 5.8. The relative errors of the initial value method compared to the analytical 

solutions. 
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The result of the comparison can be seen in Figs. 5.7 and 5.8. The developed initial value 

method has good accuracy. 

 

5.5.2. Example 9 

In this subsection the methods presented in Sections 5.3 and 5.2 will be investigated. The 

methods will be compared to each other in two cases. The properties of the material of the disks 

based on Eqs. (2.4.1) and (2.4.2) can be seen in Table 5.1 [8]. 

 

Table 5.1. Material properties of the functionally graded material of the disk. 
Material 

Property 

(Meff) 

material (1) material (2) 

Pm0 Pm1(10-3) Pm2(10-7) Pm3(10-10) Pc0 Pc1(10-3) Pc2(10-7) Pc3(10-11) 

λ(W/mK) 15.39 -2.364 20.92 -7.223 1.7 -0.1276 0.06648 -1 

γ(W/m2K) 10 0 0 0 2 0 0 0 

ρ(kg/m3) 7200 0.3079 -6.534 0 104 -0.307 2.16 -8.946 

α (1/K) 12.33·10-6 0.8086 0 0 3.873·10-6 0.9095 0 0 

E (Pa) 2.01·1011 0.3079 -6.534 0 3.484·1011 -0.307 2.16 -8.946 

ν (-) 0.3262 -0.1 0.3797 0 0.24 0 0 0 

 

We will consider a thin disk with constant thickness with the following geometry and loading: 

 1 2 1 22

1 0.027
10mm, 50mm, 2, 0 , ( ) 310.83 K , 60MPa, 5MPa.

s
R R m T r p p

r
         

Then the following disk will be investigated with thickness h(r): 

 
3

2

1 2 1 20.1m, 0.3m, 0.1, 60MPa, 0Pa, ( ) 0.01 0.035 m ,
100

r
R R m p p h r r         

 2 3 41 8.56
400 , ( ) 170 721 12298 41305 59657 K .

s
T r r r r r

r
          

 

The result for the multilayered method and the initial value method are shown in Figs. 5.9-5.11. 

Here we can see that the results are in good agreement. Furthermore the radial displacements 

computed via the multilayered model even by n=4 are fairly accurate (Fig. 5.9).  
 

 

Figure 5.9. The graphs of the displacement fields.  
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In the case of disks with constant thickness the results for the radial normal stresses have good 

accuracy at the edge of the layers, the graphs of the tangential normal stresses are accurate at the 

middle of each layers (Figs. 5.10 and 5.11). The accuracy of this method can be improved with 

curve fitting to these points. 

 

 

Figure 5.10. The graphs of the radial normal stresses. 

 

The approximate function for the radial and tangential normal stresses have the following form 

in these cases: 

3 2 1 2 3 4 5

3 2 1 0 1 2 3 4 5( )appr r F r F r F r F Fr F r F r F r F r   

           . (5.5.1) 

For the disk with thickness h(r) the next function is used for the normal stresses (Figs. 5.10 and 

5.11): 

 1 2 3 4 5

1 0 1 2 3 4 5( )appr r F r F Fr F r F r F r F r 

       . (5.5.2) 

 

Figure 5.11. The graphs of the tangential normal stresses. 
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With these approximations we get a fast and relatively accurate methods to deal with this kind 

of problems of radially graded rotating disks. The accuracy of the multilayered approach can be 

further improved with partitioning according to the material change within the structural 

component - in our current case according to the power index m. 

5.5.3. Example 10 

 

In this subsection a numerical example is presented for rotating functionally graded disks with 

a prescribed h=h(r) thickness and temperature-dependent material properties. The temperature 

field is determined by the method presented in Subsection 5.1.2. The displacement field and 

normal stresses are computed according to Section 5.2 and compared to results obtained by finite 

element simulation in Abaqus. The following numerical data will be used for the computations:  

a=0.1m, b=0.3m, h=0.0115-0.025r [m], 

0.01
0.09

( ) 398env ref

r
T r t

a

 
  

 
[K], tinner=100K, 

touter=400K, tref=273K, m=3 and for λ and γ: m1=2.3, pinner=60MPa, pouter=0MPa, ω=400 1/s. 

Table 5.1 presents the material parameters of the constituent materials based on Eqs. (2.4.1) 

and (2.4.2). Figure 5.12 shows that the temperature field of thin disks depends on the radial 

coordinate by these symmetric boundary conditions. 

 

 

Figure 5.12. The finite element model with the absolute temperature field and the graphs. 

 

The results of the displacements and normal stresses are in good agreement as it can be seen in 

Figs. 5.13-5.15. The approximation of the normal stresses can improve the accuracy of the 

multilayered method. 
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Figure 5.13. The finite element model of the disk with the radial displacement and the graphs 

of the different solutions. 

 

Figure 5.14. The radial normal stresses within the radially graded disk. 

 

Figure 5.15. The graphs of the tangential normal stresses. 

 

Abaqus results 

Abaqus results 



 

 

6. Thermoelastic problem of functionally graded beams and strips 

 

In this chapter functionally graded beams and strips will be investigated. The problems of 

functionally graded prismatic beams are dealt with complementary energy method and a direct 

approach. The problems of functionally graded strips are solved with multilayered approach, 

furthermore the case of bimetallic strips in uniform temperature field is further analysed. At the 

end of this chapter numerical examples are presented and verified with finite element solutions. 

 

6.1. Thermoelastic problem of functionally graded prismatic beams using 

complementary energy method 

 

This section deals with the determination of thermal stresses in nonhomogeneous prismatic bars. 

The derivation of the formulae for stresses caused by mechanical and thermal loads is based on 

the principle of minimum of complementary energy. The cross section of the bar is an arbitrary 

bounded plain domain, moreover the material properties and the temperature field do not depend 

on the axial coordinate. The considered inhomogeneity means that the material properties are 

arbitrary functions of the cross-sectional coordinates. The presented analysis is valid for compound 

bars whose material properties are discontinuous functions of the cross-sectional coordinates and 

bars made from functionally graded materials, whose material properties are smooth functions of 

the cross-sectional coordinates. If there are no prescribed surface displacements than the theorem 

of minimum of complementary energy can be formulated [51], [52], which means that among all 

the sets of admissible stresses σx, σy, σz, τxy, τxy, τxy which satisfy all the equilibrium equations and 

the prescribed stress boundary conditions, the set of actual stress components makes the functional 

 , , , , ,c x y z xy xz zy       defined by Eq. (2.3.6) an absolute minimum as we can see in Section 

2.3.  

The considered nonhomogeneous prismatic bar and its mechanical loads are shown in Fig. 6.1, 

where zFF e is the applied axial force and x x y yM M M e e  is the applied bending moment. 

The material properties are functions of x and y, therefore we have E=E(x,y) and α=α(x,y). In our 

formulation the Poisson’s ratio of the thermoelastic bar problem does not appear. The temperature 

difference field T also depends only on x and y and it is a given function. In the framework of 

strength of materials the equilibrium stress field is characterized by the equations (Fig. 6.1) 

 0, ( , ),x y yz xy xz z z x y             (6.1.1) 

  1 ( , ) ( , )d 0,z z

A

K x y x y A F     (6.1.2) 

  2 ( , ) ( , )d .z z z

A

x y x y A    K R e M 0  (6.1.3) 
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Figure 6.1. Nonhomogeneous prismatic bar. 

 

Eqs. (6.1.1-6.1.3) refer to the coordinate system Oxyz with unit vectors , ,x y ze e e and  

 ,x yx y R e e   (6.1.4) 

the cross between two vectors in Eq. (6.1.3) denotes their vectorial product and the cross section 

of the nonhomogeneous bar is A. Here we note that axis z is the E-weighted centerline of the 

nonhomogeneous bar, it connects of E-weighted centres of cross sections. The E-weighted centre 

CE is defined by the next equation: 

 ( , ) d .
A

E x y A  R 0  (6.1.5) 

The state of stresses are independent of the axial coordinate z, from this it follows that the axial 

force and bending moment do not change along axis z. The complementary energy of 

nonhomogeneous bar according to Eq. (2.3.6) is as follows 

  
21

( , ) ( , ) ( , ) ( , ) d ,
2 ( , )

c z z

A

L x y x y T x y x y A
E x y

  
 

   
 
  (6.1.6) 

where L is the length of the bar (Fig. 6.1). Let  ( , )c z x y  be defined as 

  
21

( , ) ( , ) ( , ) ( , ) d
2 ( , )

c z z

A

x y x y T x y x y A
E x y

  
 

   
 
 . (6.1.7) 

According to the minimum of complementary energy we look for the minimum of  ( , )c z x y  

under the subsidiary conditions given by Eqs. (6.1.2), (6.1.3). The method of Lagrange multipliers 

will be used [70], [71]. We define a new functional which contains the constraints given by Eqs. 

(6.1.2) and (6.1.3) 

        1 2 1 1 2 2( , ), , ( , ) ( , ) ( , ) .z c z z zF x y x y K x y x y         λ λ K      (6.1.8) 

In Eq. (6.1.8) the scalar product of two vectors is indicated by dot. The necessary condition of 

minimum is formulated by the next variational equation 

   

1 2 1

2

( , )
( , ) ( , ) d ( , )d

( , )

( , )d 0.

z
z z

A A

z z

A

x y
F x y T x y A x y A F

E x y

x y A


     

 

  
         

   

 
     

 

 



λ R

λ R e M

           (6.1.9) 
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Since 21, ,z  λ  are arbitrary we obtain the following equations from Eq. (6.1.9) 

  1 2( , ) ( , ) ( , ) ( , ) ,z x y E x y x y T x y     λ R         (6.1.10) 

 ( , )d , ( , )d .z z z

A A

F x y A x y A    e M R        (6.1.11) 

Combination of Eq. (6.1.5) with Eqs. (6.1.10) and (6.1.11) leads to 

 1 ,T

E

F N

A



  (6.1.12) 

 ( , ) ( , ) ( , )dT

A

N E x y x y T x y A  . (6.1.13) 

In Eq. (6.1.12) the following notation is used 

 ( , )dE

A

A E x y A  . (6.1.14) 

Substitution of Eq. (6.1.10) into Eq. (6.1.11)2 yields the next expression 

        
1 2( , ) d ( , ) d ( , ) ( , ) ( , )d .z

A A A

E x y A E x y A E x y x y T x y A       R λ R R R e M   (6.1.15) 

Here the circle between two vectors denotes their tensorial (dyadic) product. We introduce the 

Euler tensor I as 

  ( , ) d ,y x x xy x y y x x y y

A

E x y A I I I    I R R e e e e e e e e  (6.1.16) 

where 

 2 2( , ) d , ( , ) d , ( , ) d .y xy x

A A A

I E x y x A I E x y xy A I E x y y A      (6.1.17) 

Let MT be defined as 

 ( , ) ( , ) ( , )d .z T

A

E x y x y T x y A  e M R  (6.1.18) 

In Eq. (6.1.15) the coefficient of λ1 vanishes, that is we have 

 2 .z T z    I λ e M e M  (6.1.19) 

Denote the unit vector in direction of 2λ  is ,x x y ym m m e e  which means that 2 2λ m . Let 

z x x y yn n   n m e e e  be. From Eq. (6.1.19) we get 

       2 2( ) ,z z T z z z T           I m e I n e ×M e e M e M M 2 .T   I n M M  (6.1.20) 

From Eq. (6.1.20) it follows that   

  1

2 .T   n I M M  (6.1.21) 

Eq. (6.1.21) gives a possibility to obtain the unit vector n  

 
 

 

1

1
.T

T





 


 

I M M
n

I M M
               (6.1.22) 
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On the other hand from Eq. (6.1.20) we have 

 2 ,T      n I n M n M n  (6.1.23) 

that is 

2 2

2 , 2 , , .Tn n
n x y xy y x y x Tn T n

n

M M
I I n I n n I n M M

I



          n I n M n M n  (6.1.24) 

In Eq. (6.1.11) 

      2 2 2 2 2 .z x y x yxm ym yn xn            λ R m R e n R  (6.1.25) 

Summarizing the obtained results the following formula can be derived for the axial normal stress 

σz 

  ( , ) .T n Tn
z x y

E n

F N M M
x y E yn xn T

A I
 

  
    

 
 (6.1.26) 

Here we note that the Lagrange multipliers λ1 and 2λ  have mechanical meanings. The stress-strain 

relation for one-dimensional problem of thermoelasticity is formulated as [52], [60] 

  ( , ) ( , ) ( , ) ( , ) .z zx y E x y x y T x y     (6.1.27) 

In Eq. (6.1.27) εz is the normal strain. Comparison of Eq. (6.1.10) with Eq. (6.1.27) gives 

 1 2 1 2( , ) .z x y        λ R m R  (6.1.28) 

Eq. (6.1.28) shows that λ1 is the normal strain at the E-weighted centre CE of the cross section and 

2λ  is the curvature vector of the deformed E-weighted centre line: 

 1 0 2(0,0) , ,z     λ m  (6.1.29) 

where κ is the curvature of the deformed longitudinal fiber determined by x=0, y=0 and 0 .z L 

The thermoelastic pure bending problem of nonhomogeneous prismatic bars, based on the Euler-

Bernoulli beam theory was analysed by Stokes [72]. Stokes paper uses a direct approach starting 

from the assumed form of normal strain which is 

 ( , ) n
z x y

R

 



 . (6.1.30) 

Here 

 
0

1
, , .N R

R
       m R  (6.1.31) 

The zero line of longitudinal strains is given by N . Our approach is different from the one 

presented by Stokes [72]. It demonstrates the efficiency of the variation method in solving the 

problems of mechanics of solids. 
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6.2. Thermoelastic problem of functionally graded beams using a direct 

approach 

 

In our second model the nonhomogeneous bar is subjected to a given temperature field T(x,y) and 

eccentric tension F, the sketch of the problem is shown in Fig. 6.2. The material parameters and 

the temperature field are functions of the coordinates x and y as in our previous problem. 
 

 

Figure 6.2. The sketch of the nonhomogeneous beam. 

 

The mechanical loading can be expressed as: 

 zFF e , zF M ρ e . (6.2.1) 

We will use a direct approach for the axial normal strain –according to Eqs. (6.1.30) and (6.1.31)- 

with the curvature and the longitudinal strain: 

 0z    . (6.2.2) 

The stress-strain relation for this case can be expressed as  

  0( , ) ( , ) ( , ) ( , ) ( , )z x y E x y E x y x y T x y      . (6.2.3) 

The stress vector associated with a plane with normal unit vector ez is  

 0 0( , ) .z z z z z zx y E E E T E E E T            p e R me e e n R e  (6.2.4) 

From the equilibrium equation -and taking into account Eq. (6.1.5)- we get 

 
0 d ,

A A

F EdA E T A     (6.2.5) 

the unknown ε0 can be determined as 

 
0 ,T

E

F F

A



  (6.2.6) 

where we have introduced the notations 

 d , d .E T

A A

A E A F E T A    (6.2.7) 

With the bending moment the following equation can be established 
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d ( )d d

( )d ,

d .

z z

A A A

T

A

T z

A

A E A E T A

E A

E T A

 





       

  

 

  





M R p R n R R e

R n R M

M R e

 (6.2.8) 

The combination of Eqs. (6.2.8) leads to 

 ˆ ,T   M M I n  (6.2.9)  

Here we note that in Eq. (6.2.9) we have introduced  

  ˆ .x x x xy x y y x y y yI I I   I e e e e e e e e  (6.2.10) 

The vector n can be determined according to Eq. (6.1.22) but with Î  instead of I. Equation (6.2.10) 

can be rewritten into  

 1 1ˆ ˆ
T     n I M I M , (6.2.11) 

From which we get 

 
   

 

1 1

1 1

ˆ ˆ ,

ˆ ˆ .

z z T

z z z T

F

F





 

 

     

      

m e I e ρ I M

m e I e ρ e I M
 (6.2.12) 

The combination of Eqs. (6.2.12), (6.2.6) and (6.2.3) leads to the axial normal stress:  

  1 1ˆ ˆT
z z z z T

F F
E F T

S
   

            
R e I e ρ R e I M . (6.2.13) 

where the following notations are introduced: 

   1 1 1ˆ
ˆ detdet

y xy

y x x xy x y y x x y y

xy x

I I
I I I

I I


 

     
 

I e e e e e e e e
II

, (6.2.14) 

 1

1

1ˆ
ˆdet

xy x

z

y xy

I I

I I


  

    
 

I e I
I

, (6.2.15) 

   2

1

ˆdet
y y y xy y x x y x x xI I I    I e e e e e e e e

I
. (6.2.16) 

The axial normal stresses can be calculated as 

 1 2

1T
z T

E E

F
E T F

A A
 

    
            

    
R I M R I ρ . (6.2.17) 

 

6.3. Determination of the displacement field in inhomogeneous beams  

 

In this section the determination of the displacement field in inhomogeneous prismatic bars is 

investigated when the material properties E(x,y) and α(x,y) and temperature field T(x,y) are 
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arbitrary functions of the cross-sectional coordinates x and y coordinates and do not depend on the 

axial coordinate. 

According to the Euler-Bernoulli beam theory, the assumed form of the displacement field is  

 ( , , ) ( ) ( ) ( , , ) ( ) ( , , )x y z zx y z u z v z w x y z z w x y z    u e e e U e . (6.3.1) 

The axial displacement can be expressed as 

 
0 0

( ) ( ) ( )
( , , ) ( ) ( )

u z u z z
w x y z x y w z w z

z z z

  
       

  

U
R . (6.3.2) 

The non-zero normal strain is 

 

2 2 2

0 0

2 2 2

( ) ( ) ( ) ( ) ( )
z

w u z u z w z z w z
x y

z z z z z z


     
        
     

U
R . (6.3.3) 

The constitutive equation for this case has the following form: 

 z
z T

E


   . (6.3.4) 

The combination of Eqs. (6.3.4) and (6.3.3) gives the axial normal stress for the inhomogeneous 

beam. 

 

2

0

2

( ) ( )
z

z w z
E E E T

z z
 

 
    

 

U
R . (6.3.5) 

The equilibrium equation gives the axial displacement of the centerline w0   

 0dz E T

A

w
A F A N

z



  

 , (6.3.6) 

 0
T

E

F N
w z

A


 . (6.3.7) 

For the moment M we have 

 dz z

A

A R e M , (6.3.8) 

 
2

0

2
d d d dz z

A A A A

w
A E A E A E T A

z z
 

 
      

    
U

e M R R R R R . (6.3.9) 

The combination of Eqs. (6.3.9), (6.1.18) and (6.1.5) leads to 

 

2

2
( )z T

z


   



U
e M M I . (6.3.10) 

From Eqs. (6.3.10) and (6.3.1) we get, that  

 
2 2

1

2 2

( ) ( )
( )z x y T

u z v z

z z

  
     

  
e e e I M M , (6.3.11) 

when M and MT are constant, 
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2
1( ) ( ) ,

2
T y

z
u z    I M M e  (6.3.12) 

 

2
1( ) ( ) .

2
T x

z
v z     I M M e  (6.3.13) 

 

6.4. Curved layered beams and strips 

 

In this section thermoelastic problems of curved beams are investigated for bimetallic curved strips 

and multilayered beams. The thermal stresses are caused by uniform temperature field. The 

functionally graded beam is approximated with the multilayered approach.   

 

6.4.1. Bimetallic beams and strips 

In this subsection a curved bimetallic beam is investigated, which can be seen in Fig. 6.3. The thin 

beam consists of two different elastic materials. 

 

Figure 6.3. Bimetallic curved beam with rectangular cross section. 

The governing equations and boundary conditions are formulated in the cylindrical coordinate 

system Orφz, and the plane z=0 is the symmetry plane of the two-layered curved beam for its 

geometrical properties. The connection between beam component 1 and beam component 2 at the 

common cylindrical boundary surface r=R2 is perfect, both the displacements and tractions have 

no jump at r=R2. There are no present body forces and the whole boundary of the bimetallic curved 

beam is stress free. This means that 

 1 3 1 3( , ) ( , ) ( , ) ( , ) 0, 0 ,r r r rR R R R                   (6.4.1) 

 1 3( , ) ( ,0) ( , ) ( ,0) 0, .r rr r r r R r R                 (6.4.2) 

In the framework of generalized plane stress model the boundary condition 
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1 3( , ) ( ,0) 0, ,r r R r R          (6.4.3) 

will be satisfied only in weak form such as 

 

3 3

1 1

( , )d ( ,0)d 0,

R R

R R

N r r r r          (6.4.4) 

 

3 3

1 1

( , )d ( ,0)d 0.

R R

R R

M r r r r r r          (6.4.5) 

The stress resultants and stress couple resultants vanish only at the end cross sections φ=0 and 

φ=ϑ. Initially the temperature of the two-layer composite beam is the reference temperature. Its 

temperature is slowly raised to a constant uniform temperature, where the temperature change is 

T. The deformations and stresses are caused by only the uniform change of temperature. The 

solution of this problem is derived from the next displacement field 

 1 2( , ) ( ) cos sin , ( 1,2),i iu r U r f f i         (6.4.6) 

 1 2 3( , ) sin cos , ( 1,2),iv r Cr f f f r i           (6.4.7) 

where the displacement in the radial direction is denoted by ui and the displacement in tangential 

direction is indicated by vi, furthermore lower index i refers to curved beam component i (i=1,2). 

In Eqs. (6.4.6), (6.4.7) f1, f2 and f3 are constants whose values obtained from the displacement 

boundary conditions (Fig. 6.3). 

 1 1 1 1 2 3( ,0) 0, ( ,0) 0, ( ,0) 0.u R v R v R      (6.4.8) 

The constant C will be determined from the stress boundary conditions (6.4.1), (6.4.4), (6.4.5) and 

the continuity conditions of displacements and normal stress field σr at the common cylindrical 

boundary between beam component 1 and beam component 2. From Eqs. (6.4.6), (6.4.7) it follows 

that the strains can be expressed in terms of Ui and C as 

 , , ( 1,2).i i
i ri

U dU
C i

r dr
        (6.4.9) 

Combination of Eq. (6.4.9) with Eq. (6.4.10) gives the strain compatibility equation 

 0, ( 1,2).
i

i ri

d
r C i

dr






         (6.4.10) 

In the present problem the constitutive law of linear thermoelasticity [52], [60] has the next form 

 , ( 1,2),i ri ri i i i iE E T i           (6.4.11) 

 , ( 1,2).i ri i i ri i iE E T i           (6.4.12) 

where σri, σφi denote the radial and circumferential normal stresses of the i-th layer (i=1,2). 

Substituting Eqs. (6.4.11), (6.4.12) into Eq. (6.4.10) yields 
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  
d

(1 ) (1 ) 0, ( 1,2).
d

i ri i i i i ri i i ir E T E C i
r

                     (6.4.13) 

In our case the equation of mechanical equilibrium is as follows 

 
d

0, ( 1,2).
d

ri iri i
r r

  
      (6.4.14) 

The general solution of Eq. (6.4.14) in terms of stress function Vi=Vi(r) can be given as 

 
( ) d

, , ( 1,2).
d

i i
ri i

V r V
i

r r
       (6.4.15) 

Combination of Eq. (6.4.13) with formulae of normal stresses leads to the following differential 

equation 

 

2
2

2

d d
0, ( 1,2).

d d

i i
i i

V V
r r V E Cr i

r r
       (6.4.16) 

The solution of Eq. (6.4.16) is as follows 

 2 1
1 1 1 2( ) ln , ,

2

c E C
V r c r r r R r R

r
        (6.4.17) 

 4 2
2 3 2 3( ) ln , .

2

c E C
V r c r r r R r R

r
        (6.4.18) 

Here, we note that the stress field and strain field are independent of the polar angle φ. A simple 

computation shows that 

    

2 2

1 1

2 1 2 1 1 1 3 2 3 2 2 2( )d ( )d ( ) ( ) ( ) ( ) 0

R R

r r r r r

R R

d
N r r r r R R R R R R R R

dr
                (6.4.19) 

if the stress boundary conditions 

 1 1 2 3( ) ( ) 0r rR R   ,  (6.4.20) 

and stress continuity condition 

 1 2 2 2( ) ( )r rR R    (6.4.21) 

are satisfied. To obtain the stress field we must determine the five constants c1, c2, c3, c4 and C. 

The next equation will be used to get the value of the unknown constants 

 1 1 2 3 1 2 2 2( ) 0, ( ) 0, ( ) ( ),r r r rR R R R         (6.4.22) 

 

32

1 2

1 2 2 2 1 2( ) ( ), d d 0.

RR

R R

U R U R r r r r         (6.4.23) 
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We can reformulate Eq. (6.4.23)1 by the use of Eq. (6.4.9)1 as 

 
1 2 2 2( ) ( ).R R     (6.4.24) 

Eq. (6.4.24) in terms of stresses is expressed as 

 1 2 1 1 2 1 2 2 2 2 2 2

1 2

1 1
( ) ( ) ( ) ( ) .r rR R T R R T

E E
                      (6.4.25) 

The following system of linear equations can be derived from Eqs. (6.4.22), (6.4.23) and (6.4.25) 

 Mx f ,   (6.4.26) 

where 

    1 2 3 4, ( , 1,2,3,4,5), 0,0,0, ,0 , , , , , ,
T T

ijm i j f c c c c C     M f x    (6.4.27) 
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(6.4.28) 

After the solution of system of linear equation (6.4.26) we can compute the stresses and 

displacements by the next formulae 
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 1 1( ) ( ) ( )cos , ( 1,2),i iu r U r U R i      (6.4.34) 

 1 1( ) ( )sin , ( 1,2).iv r Cr U R i       (6.4.35) 

6.4.2. Strength of materials solution for curved beams 

 

According to paper by Ecsedi and Dluli [73] it is assumed that  

 
d

( ), ( )
d

U
u U v r  


      (6.4.36) 

is valid for the whole two-layer composite curved beam. From the strain-displacement 

relationships of linearized theory of elasticity we obtain 
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that is one strain component is different from zero. The next constitutive equation will be used 
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The stress- and stress-couple resultants vanish since there are no applied mechanical load (Fig. 

6.3), that is, we have  
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Here, the next notations are introduced 
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From Eqs. (6.4.40), (6.4.41) we get 
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Combination of Eq. (6.4.39) with Eq. (6.4.44) leads to the expression of circumferential normal 

stresses 
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Knowing σφi (i=1,2) we can determine the normal stress σri by the use of equation of equilibrium 
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A simple computation gives 
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Integration of Eq. (6.4.44) and using of boundary condition (6.4.8) lead to the expressions of radial 

and circumferential displacements 
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6.4.3. Radially graded strips 

In this subsection the problem of functionally graded strips in uniform temperature field will be 

approximated with a multilayered method based on the one presented in Subsection 6.4.1. Let us 

consider a layered curved strip with perfectly bonded homogeneous layers, the number of layers 

is denoted by n. According to Subsection 6.4.1 the equations for this case are:   
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The unknown constants c1i, c2i and C can be calculated from the boundary and fitting conditions 

similarly to Eqs. (6.4.22) and (6.4.23). 
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After the calculation of the stress field, the accuracy of the tangential normal stresses can be 

improved with curve fitting as we can see in Example 14. 

 

 

6.5. Numerical examples 

 

In this section four examples will be presented. In the first example a two-layered prismatic beam 

will be investigated in constant temperature field, in our second example a functionally graded 

beam will be examined loaded with concentrated force, moment and uniform temperature field. 

These problems will be solved with the method presented in Sections 6.1-6.3. In Subsection 6.5.3 

a bimetallic- , in 6.5.4 a radially graded curved strip will be investigated. 

6.5.1. Example 11 

For this numerical example the cross section of the considered bar is shown in Fig. 6.4. This cross 

section is made of two different homogeneous materials with Young moduli E1=E, E2=3E and the 

coefficients of linear thermal expansion are α1=α, α2=2α. There are no applied mechanical loads, 

that is ,F 0  .M 0  The temperature difference T is constant on the whole cross section. For 

homogeneous cross section the uniform temperature does not produce any stress field, the 

homogeneous bar is stress free. The position of the E-weighted centre of cross section is given in 

Fig. 6.4. The elements of Euler tensor are 
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4 4 4512 , 64 , 96 .x y xyI Ec I Ec I Ec     (6.5.1) 

A simple computation gives 

 2 248 , 72E TA Ec N E Tc  . (6.5.2) 

 

 

Figure 6.4. Nonhomogeneous cross section and its finite element model. 

 

By the use of above computed values we can determine the stress field of composite bar caused 

by uniform temperature field. We determine the normal stresses at points P(-4c, 2c) and Q(8c, -

2c). The computation gives 

 ( ) 20.002 ,z P E T  ( ) 5.0413 .z Q E T    (6.5.3) 

From the finite element simulations in Abaqus CAE we get ( ) 54.69MPa,z FE R 

( ) 45.33MPaz FE Q   , from our calculations we get ( ) 54.21MPa,z R  ( ) 45.87MPaz Q  

.  

 

Figure 6.5. The displacement fields of the prismatic composite bar. 
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6.5.2. Example 12 

In this example a functionally graded prismatic beam will be considered. The geometry of the 

beam, the loadings and the material parameters are: 

 
11 6

0.5 m, 0.7 m, kN, 150 100 Nm, =100K,

1
( ) 2.1 10 (1 20 15 )Pa, ( ) 12 10 (1 20 15 ) .

K

z x ya b T

E r x y r x y 

    

       

F e M e e

 

The finite element model can be seen in Fig. 6.6. The FE model was built from homogeneous 

segments (element lines as we can see in Fig. 6.6) with discrete values of the material properties 

calculated in the middle of each segment. 

 
Figure 6.6. The finite element model of the functionally graded prismatic beam. 

 

The results of the finite element model are in good agreement with the ones calculated with the 

previously presented method. The axial normal stresses of the marked points (in Fig. 6.5) are 

   , , , 32.65,6.16, 60.3,9.91 MPaz A B C D   . 

6.5.3. Example 13 

In this example a bimetallic curved beam will be considered (Fig. 6.3). This problem is solved 

with the two methods presented in Sections 6.4.1 and 6.4.2, then these results are compared to the 

finite element calculations. The next data are used in the numerical example: 

1 2 3 1 2

6 3

1 2 1 2

0.5 m, 0.6 m, 0.7 m, 200 GPa, 70 GPa,

1 1 3
0.27, 0.33, 11 10 , 23 10 , 200K, .

K K 2

R R R E E

T      

    

       
 

In Figs. 6.7 and 6.8 the graphs of normal stresses σr and σφ are illustrated in comparison with FE 

solution - which was carried out by Abaqus CAE software / coupled temperature-displacement 

solver. 
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Figure 6.7. Plots of the radial normal stresses.  

 

Figure 6.8. Plots of the circumferential normal stresses. 

In Fig. 6.9 the finite element model of the problem and the von Mises equivalent stress field are 

presented, here we can see that the stress distribution does not depend on the polar angle φ except 

at the ends of the curved beam. 

 

Figure 6.9. The finite element model with the equivalent stress field. 
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Figure 6.10 shows the 3D graphs of displacements U(r, φ) and v(r, φ) obtained by the previously 

presented elasticity solution when 1 3 and 0R r R      . 

 

Figure 6.10. Plots of displacement field. 

6.5.5. Example 14 

In this example the problem of a functionally -radially- graded curved strip is replaced with the 

problem of a multilayered curved strip as we can see in Subsection 6.4.3, the number of layers is 

n and their thicknesses are equal. The next data are used in the numerical example: 

 

   

1

2 1

11 11 11 6 6 6

3
0.5 m, 0.7 m, , 100K, ( ) ,  ( ) 0.32 0.24 ( ) 0.24,

2

1
( ) 2.1 10 3.5 10 ( ) 3.5 10 Pa, ( ) 12 10 3.8 10 ( ) 3.8 10 .

K

m

m m

r R
a b T K r r K r

R R

E r K r r K r

  

   

 
        

 

           

 

The results were compared to finite element simulations and they are in good agreement (in the 

case of n=32 the maximum tangential stresses are σφ, FEmax=24.9MPa, σφ, multilayered max=24.01MPa). 

The graphs of the radial normal stress and displacement field are shown in Fig. 6.11.  

  

Figure 6.11. The radial normal stress and displacement field of the curved beam. 

 

With curve fitting the accuracy of the tangential normal stresses can be improved. In our current 

case the fitting function of the tangential normal stress has the following recommended form 

(m<10): 
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 2 3 4

0 1 2 3 4( )app r F Fr F r F r F r      , (6.5.4)  

the result can be seen in Fig. 6.12. 

 

 

Figure 6.12. The plot of the normal tangential stresses in the curved functionally graded strip. 
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7. Summary and theses 

 

The main goal of this dissertation was to present analytical and numerical methods to deal with 

the thermoelastic problem of composite and functionally graded simple structural components. 

The temperature-, displacement- and stress fields were determined in spherical bodies, disks and 

beams subjected to mechanical and thermal loads. Several methods were derived for steady-state 

thermoelastic problems of parts made from functionally graded materials, where the material 

properties are arbitrary functions of one (or two) coordinate(s) and the temperature field. The time-

independence of the functions involved separates the analysis of the temperature field from that of 

the elastic field, therefore these problems become uncoupled.  

After the introduction and the overview of the literature, the basic concepts and equations of 

thermoelasticity were presented in Chapter 2, such as the equilibrium equation and constitutive 

equations of linear thermoelasticity, functions of temperature-dependent material properties, etc. 

In Chapter 3 two analytical methods were derived for layered composite spheres, where one 

based on the superposition of the cases of pure mechanical and pure thermal loading while the 

other used a direct form of the displacement field. Then two additional analytical methods were 

presented for radially graded spheres with special -mostly power-law based- functions for the 

material properties. 

In Chapter 4 numerical methods were presented for determining the temperature-, 

displacement- and stress field within functionally -radially- graded spherical components, when 

the material properties are arbitrary functions of the radial coordinate and temperature. The 

possibility of approximating this one-dimensional static thermoelastic problem of functionally 

graded spheres with multilayered approach was investigated. A second method was derived which 

solves the problem of radially graded spheres with a coupled system of ordinary differential 

equations containing the radial displacement and stress function and transforms the two point 

boundary value problem to an initial value problem. This chapter contained special problems of 

functionally graded spherical bodies, such as incompressible materials or piezoelectric, radially 

polarized materials. 

In Chapter 5 two numerical methods were developed for thin functionally graded rotating disks 

with arbitrary thickness profile when the material properties are arbitrary functions of the radial 

coordinate and the temperature field. There were combined thermal and mechanical loads on the 

cylindrical boundary surfaces. One method used the multilayered approach and the principle of 

superposition of the thermal and mechanical loads, while the other is an initial value method. The 

multilayered approach was applied to a generalized plane strain problem of radially bonded 

layered cylindrical bodies with axisymmetric loading which did not depend on the axial 

coordinate. 

Chapter 6 dealt with the calculation of thermal stresses and displacements in nonhomogeneous 

prismatic bars caused by mechanical and thermal loads when the cross section of the bar is an 

arbitrary bounded plain domain, the material properties and the temperature field do not depend 

on the axial coordinate. Then the problem of curved layered composite and functionally graded 

curved beams was investigated when the structural components were subjected to special thermal 

and mechanical loads.  

Furthermore numerical examples were presented in the end of each chapter to verify the 

developed methods, to demonstrate their accuracy, etc. The result were compared to each other, 

analytical solutions, to results obtained from the literature and FE simulations. 
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Theses 

 

Thesis 1 

I have derived two analytical methods to determine the displacements and stress field in layered 

composite spherical bodies subjected to axisymmetric mechanical and thermal loads exerted on 

the inner and outer boundary surfaces. The homogeneous layers were perfectly bonded. The first 

method uses a direct form of the displacement field, the second model derives the solutions of the 

combined loading from the superposition of the cases when there is only mechanical load and 

when there is only thermal load. An analytical solution is presented for the case when the 

distribution of the Young modulus is described by a certain power-law function, moreover the 

coefficient of thermal expansion depends on the radial coordinate and on the temperature in a 

prescribed way. I have solved the thermoelastic problem of radially graded spheres with stress 

function when the material properties follow a power-law distribution. I have investigated the 

possibilities of modelling the functionally graded spheres with the method of layered composite 

spheres. The developed methods have been verified by data obtained from the literature and 

comparisons have been made with each other and they have led to the same results. 

 

Thesis 2 

 

I have elaborated two numerical methods to deal with the thermoelastic problem of functionally 

graded spherical bodies subjected to axisymmetric thermal loading and constant pressure. The 

temperature field, displacements and normal stresses are determined when the material properties 

are arbitrary functions of the radial coordinate and temperature. The first model is based on the 

multilayered approach of Thesis 1. The second method uses a coupled system of ordinary 

differential equations containing the radial displacement and stress function and transforms the 

two point boundary value problem to an initial value problem. I have derived a numerical solution 

for radially graded piezoelectric spherical actuators and an analytical method for incompressible 

functionally graded spheres. By means of numerical examples the accuracy of the developed 

numerical methods have been investigated, compared to the analytical solutions of Thesis 1 and 

have been verified by finite element simulations. According to these, it turns out that the numerical 

models have good accuracy. 

 

Thesis 3 

 

 I have derived two numerical methods for the thermoelastic analysis of thin functionally graded 

rotating disks subjected to combined axisymmetric thermal and mechanical loads. The 

temperature-dependent material properties of the rotating disk vary arbitrarily along the radial 

coordinate, moreover the thickness of the disk is an arbitrary function of the radial coordinate. The 

equations of the steady-state temperature fields have been presented for three cases with different 

thermal boundary conditions. In the first novel method the displacements and the normal stresses 

are determined by a multilayered approach which can be used as an analytical solution for layered 

composite disks with constant thickness. This method has been modified to tackle some 

thermoelastic problems of multilayered tubes which consist of radially bonded homogeneous 

layers. Furthermore, the tubes are loaded with constant temperature field and pressure. The second 

developed method uses a coupled system of ordinary differential equations containing the radial 

displacement and stress function which transforms the two point boundary value problem to an 
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initial value problem. An analytical method is proposed for the case when the distribution of the 

material properties are prescribed as power-law functions of the radial coordinate. The developed 

numerical methods have been compared to my analytical solution and finite element simulations. 

The results shows that the models have high accuracy. 

 

Thesis 4 

 

I have elaborated methods to determine the displacement- and stress field of functionally graded 

prismatic bars whose cross section is an arbitrary bounded plain domain. The material properties 

and the temperature field are arbitrary functions of the cross-sectional coordinates and do not vary 

in the axial direction. I have derived a model based on the principle of minimum of complementary 

energy for the case, when the prismatic bar is subjected to certain mechanical and thermal loads. 

Furthermore a method has been developed using a direct form of the axial normal strain. I have 

presented the equations for layered curved beam and I have focused on the problem of bimetallic 

curved beam in uniform temperature field. The method was extended to approximate the 

thermoelastic behaviour of functionally -radially- graded curved strips. The developed methods 

were verified by literature and finite element simulations. 
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Magyar nyelvű összefoglaló (Summary in Hungarian) 

 

Napjainkban a modern mérnöki anyagok alkalmazása igen széles körben elterjedt. Gondoljunk 

például a kompozitok térhódítására, vagy a funkcionálisan gradiens anyagok és ezzel együtt az 

inverz tervezési eljárás előretörésére, melynek oka az ezen anyagokból készült szerkezeti elemek 

kiváló hő és mechanikai tulajdonságai. A tervezési folyamat során az anyagi viselkedés leírása 

kiemelt jelentőséggel bír, napjainkban egyre több könyv és folyóiratcikk foglalkozik a modern 

mérnöki technológiák anyagainak mechanikájával.    

A disszertáció hő és mechanikai terhelésnek alávetett kompozit és funkcionálisan gradiens 

szerkezeti elemek hőrugalmasságtani problémáinak megoldásával foglalkozik. A vizsgálat tárgyát 

egyszerűbb geometriájú alkatrészek képezik, mint például tárcsák, gömb alakú testek és tartályok, 

rudak, bimetál szalagok és hengeresen rétegzett testek. A mérnöki gyakorlatban a funkcionálisan 

gradiens alkatrészeken belül általában egy irányban változik az anyagi összetétel, és ezzel az 

anyagjellemzők, emiatt a vizsgált problémák nagy részében -a rudak kivételével- ezt az esetet 

vizsgáltam. A folyamatok időtől való függésétől eltekintettem, így az eredetileg kapcsolt 

problémákat szét tudtam választani egy hővezetési és egy hőrugalmasságtani feladatra.  

Funkcionálisan gradiens anyagok esetén az analitikus megoldások előállítása leszámítva 

néhány speciális eloszlás esetét, rendkívül körülményes. Éppen ezért a szakirodalomban fellelhető 

problémák különféle feltételezésekkel élnek. Ide sorolhatjuk például: 

- speciális függvények  -legtöbbször hatványfüggvény- által leírható anyagi eloszlás, 

- a hőmérséklettől való függés elhanyagolása,  

- geometriai egyszerűsítések, 

- terhelésbeli megszorítások stb.  

Ennek tükrében a célkitűzéseim: 

(a) analitikus megoldások keresése rétegzett kompozit és funkcionálisan gradiens szerkezeti 

elemekben kialakuló hőmérséklet-, elmozdulás- és feszültségmező számítására, 

(b) numerikus modellek kidolgozása funcionálisan gradiens alkatrészek problémáinak 

megoldására, amikor az anyagjellemzők a kitüntett koordináta –vagy koordináták- és a 

hőmérséklet tetszőleges függvényei, 

(c) néhány speciális eset vizsgálata, mint például az összenyomhatatlan, vagy a 

piezoelektromos anyagok avagy a bimetal görbe rudak leírása, 

(d) a kidolgozott módszerek pontosságának vizsgálata, összevetésük egymással, a 

szakirodalomban fellelhető és kereskedelmi szoftverekkel végrehajtott végeselemes 

szimulációk eredményeivel. 
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Tézis 1 

Levezettem két analitikus módszert többrétegű, gömb alakú testek elmozdulásmezőinek és 

feszültségeinek meghatározására abban az esetben, amikor azokat forgásszimmetrikus, állandósult 

állapotú hő és mechanikai terhelések érik. A homogén gömbi rétegeket tökéletesen kapcsolatnak 

tekintettem. Az egyik módszer az elmozdulásmező egy feltételezett alakjából kiindulva, a másik 

módszer a tisztán hő és tisztán mechanikai terheléseket tartalmazó alesetek szuperpozíciójából és 

illesztéséből származtatja a feladat megoldását. Analitikus megoldás lett előállítva arra az esetre, 

mikor az anyagjellemzők a Poisson szám kivételével a helykoordinátának speciális alakú 

hatványfüggvényei és a lineáris hőtágulási együttható a hőmérséklet lineáris függvénye. Majd 

feszültségfüggvények alkalmazásával került kidolgozásra egy másik analitikus modell a hatvány 

függvény eloszlású anyagi összetétel esetére. Vizsgáltam a lehetőségeit a funkcionálisan gradiens 

anyagú gömbök hőrugalmassági feladatának közelítésére többrétegű gömbök modelljeivel. A 

levezetett módszereket összehasonlítottam egymással és szakirodalomban fellelhető 

eredményekkel, melyek kapcsán azonos eredményeket kaptam. 

Tézis 2 

Kidolgoztam két numerikus módszert funkcionálisan gradiens gömbök egydimenziós 

hőrugalmassági feladataira, amikor a testet forgásszimmetrikus hő és mechanikai terhelések érik. 

A hőmérsékletmezők, elmozdulások és feszültségek számítására szolgáló modellek abban az 

esetben érvényesek, ha az anyagjellemzők a sugárkoordináta és hőmérsékletmező –amely szintén 

csak a sugárkoordinátától függ- tetszőleges függvénye. Az egyik módszer a funkcionálisan 

gradiens anyagot az első tézisben ismertetett analitikus, többrétegű gömbre vonatkozó 

megoldással közelíti. A másik modell a feszültségfüggvényt és az elmozdulásmezőt, mint 

ismeretleneket tartalmazó kapcsolt egyenletrendszer segítségével kezdeti érték problémára 

vonatkozó, numerikus megoldásként oldja meg a feladatot. Egy-egy numerikus módszer lett 

kidolgozva a piezoelektromos, radiálisan polarizált, funkcionálisan gradiens, gömb alakú testek 

esetére és összenyomhatatlan gömbök problémáira is. Számpéldákon keresztül vizsgáltam a 

kidolgozott numerikus módszerek pontosságát, összevetve azokat az első tézisben kidolgozott 

analitikus megoldásokkal. A leírt modelleket végeselemes szimulációkkal is összevetettem és jó 

egyezés tapasztalható. Vizsgáltam a módszerek pontosságnövelésének lehetőségeit közelítő 

polinomok illesztésével. A numerikus példákból jól látszik, hogy a kidolgozott módszerek 

kielégítő pontosságúak. 

Tézis 3 

Levezettem két numerikus módszert vékony, forgó, funkcionálisan gradiens tárcsákra, amelyeket 

kombinált hő és mechanikai terhelések érnek. Az anyagállandók a hőmérsékletnek és a 

sugárkoordinátának, a tárcsa vastagsága a radiális koordináta tetszőleges függvényei. Az 

állandósult állapotú hőmérsékletmező három esetben lett kidolgozva három hőtani peremfeltétel-

kombináció esetén. Az első numerikus módszer a radiálisan gradiens, változó profilú,  forgó tárcsát 

több homogén rétegből felépített komponensként kezeli és a tisztán hő és tisztán mechanikai 

terheléseket tartalmazó alesetek szuperpozíciójából és illesztéséből származtatja a feladat 

megoldását. Ezen modell analitikus megoldásként alkalmazható állandó vastagságú, 

koncentrikusan rétegzett tárcsák hőrugalmasságtani feladataihoz, valamint ki lettek terjesztve 

többrétegű hengeres testek azon eseteire, amikor a rétegek radiálisan kapcsoltak, de axiálisan nem. 

Egy másik numerikus modellt vezettem le vékony, forgó, funkcionálisan gradiens tárcsák esetére, 

amely feszültségfüggvényt és az elmozdulásmezőt tartalmazó egyenletrendszer segítségével 
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kezdeti érték problémára transzformálja a feladatot, majd megoldja azt. Megadtam az analitikus 

megoldást hatvány függvény eloszlás esetére. Végezetül a numerikus modellek pontosságát 

vizsgáltam az analitikus megoldás segítségével, majd az eredményeket összevetett végeselemes 

szimulációkkal, és kiderült, hogy kielégítő pontosságúak. 

Tézis 4 

Kidolgoztam funkcionálisan gradiens prizmatikus rudak elmozdulás és feszültségmezőinek 

leírására szolgáló egyenleteit abban az esetben, amikor az anyagjellemzők és a hőmérsékletmező 

a keresztmetszeti koordináták tetszőleges függvényei, a keresztmetszet tetszőleges és a rudat 

koncentrált erő és nyomaték terheli. Az egyik módszer a kiegészítő energia minimuma elvet 

használja, a másik esetben az axiális nyúlás és elmozdulásmező egy adott alakjából indulva 

oldottam meg a feladatot. Levezettem egy modellt a többrétegű, görbe vonalú rudak 

hőrugalmasságtani feladatainak megoldására az általánosított síkfeszültségi állapot feltételezéseit 

használva. Részletesen megadtam a bimetál görbe vonalú szalagokra vonatkozó megoldást, majd 

kiterjesztettem a módszert radiális irányban gradiens görbe vonalú vékony rudakra is. Az 

eredményeket összevetettem kereskedelmi forgalomban kapható végeselem szoftverekkel végzett 

szimulációkkal és jó egyezést tapasztaltam. 
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