1.

1. Compute the $f'_x, f'_y, f''_{xx}, f''_{xy}, f''_{yx}, f''_{yy}$ partial derivatives of the following function!

$$f = (x - 1)^5 y^8.$$

2. Suppose that we toss a fair coin two times. The number of heads is counted by the random variable X. Write down and plot the cumulative distribution function $F_X(x) = P(X \le x)$! Calculate the variance of X !

2.

1. Compute the $\int f(x) dx$ indefinite integrals of the following functions!

(a)
$$\frac{1}{4x^8} + \sqrt[3]{(2x)^4} + \frac{8}{\sqrt{x}}$$

(b) $\frac{3}{1+16x}$
(c) $\cos 3x + \sqrt{-3x}$

- 2. Compute $\int_0^{\pi} \cos(2x) dx$!
- 3. Compute $\int_0^\infty e^{-x} dx !$

3.

A. Study the monotonicity, convexity and local extremal values of the following function! $f(x) = x^2 - x^3$.

Draw its graph!

B. Study the boundedness and convergence of the following sequence!

$$a_n = \frac{3n}{2n+1}.$$

4.

A. Let
$$\bar{v_1} = \begin{pmatrix} 2\\2 \end{pmatrix}$$
, $\bar{v_2} = \begin{pmatrix} 4\\-4 \end{pmatrix}$ and $\begin{pmatrix} 8\\0 \end{pmatrix} = \alpha \bar{v_1} + \beta \bar{v_2}$. Compute $\begin{pmatrix} \alpha\\\beta \end{pmatrix}$!

B. Let T be a 2×2 matrix formed by the transition probabilities of a two state (labeled by 1 and 2) stochastic system, where

- $T(1 \leftarrow 1) = T_{11} = 0.6, \ T(2 \leftarrow 1) = T_{21} = 0.4, \ T(1 \leftarrow 2) = T_{12} = 0.5, \ T(2 \leftarrow 2) = T_{22} = 0.5.$
 - 1. Find an eigenvector \bar{v}_1 corresponding to the eigenvalue $\lambda_1 = 1$! (This is the equilibrium state.)
 - 2. Find the eigenvalue λ_2 of T corresponding to the eigenvector $\bar{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$!