Name:

- 1. A. Compute the derivatives of the following functions!
 - 1. $\ln x \sin(2x)$
 - 2. $\cos(4x)\ln(2x-1)$
 - 3. $\frac{\ln(2x)}{x^2-1}$

B. What is the prediction of the linear approximation of the function f(x) at $x = x_0$ for the value of $f(x_0 + \Delta x)$? $f(x) = 1/(x + 7), x_0 = e, \Delta x = 0.01.$

2. A. Study the monotonicity, convexity and local extremal values of the following function! $f(x) = e^{-5x}x$.

Draw its graph!

B. Study the monotonicity of the following sequence! $\frac{3n}{5n+6}$.

3.A. Compute the limit of the following sequence! $a_n = \left(1 + \frac{1}{3n}\right)^{3n-7} \frac{2n}{3n+1}$.

B. Let $\phi(x) = 1.1x + 1.6$, $x_0 = 13$, $x_{n+1} = \phi(x_n)$. What are ϕ^{-1} and $\phi^n(1) = x_n$?

- 1. Find the fixed point x_f of ϕ !
- 2. Introduce $\Delta x = x x_f$ and $\tilde{\phi}(\Delta x) = \phi(x_f + \Delta x) x_f$. Calculate $\tilde{\phi}$ and $\tilde{\phi}^n$!
- 3. Compute x_n !

4. A. Let
$$\bar{v_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $\bar{v_2} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 12 \\ 82 \end{pmatrix} = \alpha \bar{v_1} + \beta \bar{v_2}$. Compute $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$!

B. Let T be a 2 × 2 matrix formed by the transition probabilities of a two state (labeled by 1 and 2) stochastic system, where $T(1 \leftarrow 1) = T_{11} = 0.6, T(2 \leftarrow 1) = T_{21} = 0.4, T(1 \leftarrow 2) = T_{12} = 0.5, T(2 \leftarrow 2) = T_{22} = 0.5.$

- 1. Find an eigenvector \bar{v}_1 corresponding to the eigenvalue $\lambda_1 = 1$! (This is the equilibrium state.)
- 2. Find the eigenvalue λ_2 of T corresponding to the eigenvector $\bar{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$!
- 3. Calculate α and β in $\begin{pmatrix} 1\\ 0 \end{pmatrix} = \alpha \bar{v}_1 + \beta \bar{v}_2 !$
- 4. Calculate $T(\alpha \bar{v}_1 + \beta \bar{v}_2)$, $T^2(\alpha \bar{v}_1 + \beta \bar{v}_2)$, etc.