Name:

1. A. Compute the derivatives of the following functions!

- 1. $e^x \cos(2x 1)$ 2. $e^7 \ln(2x - 1)$
- 3. $\frac{\ln(2x)}{\ln(x)}$

B. What is the prediction of the linear approximation of the function f(x) at $x = x_0$ for the value of $f(x_0 + \Delta x)$? $f(x) = \ln x, x_0 = e, \Delta x = 0.1.$

2. A. Study the monotonicity, convexity and local extremal values of the following function! $f(x) = 2x^3 - 3x^2.$

Draw its graph!

B. Study the monotonicity of the following sequence! $\frac{3n+4}{5n+6}$.

3. A. Compute the limit of the following sequence! $a_n = \left(1 + \frac{4}{3n}\right)^{3n-7}$.

B. Let $\phi(x) = 3x - 9$, $x_0 = 13$, $x_{n+1} = \phi(x_n)$. What are ϕ^{-1} and $\phi^n(1) = x_n$?

- 1. Find the fixed point x_f of ϕ !
- 2. Introduce $\Delta x = x x_f$ and $\tilde{\phi}(\Delta x) = \phi(x_f + \Delta x) x_f$. Calculate $\tilde{\phi}$ and $\tilde{\phi}^n$!
- 3. Compute x_n !

4. A. Let $\phi\left(\begin{pmatrix} x\\ y \end{pmatrix}\right) = \begin{pmatrix} -y\\ x+2y \end{pmatrix} = A\begin{pmatrix} x\\ y \end{pmatrix}, \phi\left(\begin{pmatrix} x\\ y \end{pmatrix}\right) = \begin{pmatrix} 2x+4y\\ +y \end{pmatrix} = B\begin{pmatrix} x\\ y \end{pmatrix}$. Calculate A and B! Let $\phi\left(\psi\left(\begin{pmatrix} x\\ y \end{pmatrix}\right)\right) = C\begin{pmatrix} x\\ y \end{pmatrix}$. Compute C!

B. Let $\phi\left(\begin{pmatrix} x\\ y \end{pmatrix}\right) = \begin{pmatrix} 2y\\ 7x+y \end{pmatrix} = A\begin{pmatrix} x\\ y \end{pmatrix}$. Calculate the A^{-1} matrix of the inverse ϕ^{-1} mapping!

- 1. Calculate det(A) ! Does A^{-1} exist? Why?
- 2. Write down the matrix equation that defines A^{-1} !
- 3. Write down and solve the corresponding linear system of scalar equations!
- 4. Use A^{-1} to find the solution of the system of equations

$$2y = 12$$
$$7x + 1y = 13$$