A. Test 2. Econ.Anal 13.dec.02. . NEPTUN: ‘ Name:

1. Fmd the extremal value (and determine its type) of the function f (a:, y) 222 — zy + 2% - 2r+
4y + 22 ! - S
(a) Compute the partial derivatives of f up to second order!
(b) Find the location of the extremal value!
(c) Determine the type of the extremal value!

2. (a) Compute the [ f(z) dz indefinite integrals of the following functions!
i \/E + /G + &

. THET
jii. cos3z + sin(~3z)

(b) Compute fi sm(-a:)dz !
3 (a) There are 10 black and 5 white balls in a box. Suppose that we DO put back the balls after
the drawings.
i. What is the chance of drawing ﬁrstly 3 white and then 2 black balls?
ii. What is the chance of drawing 3 white and then 2 black balls if the order is irrelevant?

(b) Consider a sample space () comprising four possible outcomes Q = {w, w2, ws,ws }. Suppose
that to the four possible outcomes the following probabilities are assigned:

Plun) = 2/10, P(wg) 3/10, Ploy) =1/10, P(w;)—-4/1o

Define two events E= {w,,wg}, E = {ws, ws} Compute P(ElF), the conditional probability
of E given F |

4. (a) Compute the following improper mtegml' 1 /:z:"da:

(b) There are two urns containing colored balls. The first urn contains 100 red balls and 0
blue balls. The second urn contains 10 red balls and 90 blue balls. One of the two urns is
randomly chosen (both urns have probability 50% of being chosen) and then a ball is drawn
at random from one of the two urns. If a red ball is dravm, what is the probabxlity that xt
comes from the ﬁrst um? .



A. Test 2. Econ.Anal 13.dec02. -~ NEPTUN: Name:

1. Find the extremal value (and determine its type) 'of the functlon f (a:, y) = 9.1:2 —ay+2° 20+
dy+2z! ‘

21y 2y*
(a) Compute the partial denvatwm of f up to second order' <4 \1 t V + & y
(b) Find the location of the extremal value!

(¢) Determine the type of the extremal value!
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2. (a) Compute the [ f(z)dz mdeﬁﬁté integra.ls of the following ‘functions!' ‘
i. ‘\/——+V. (3$)7+;1 (342+2)+ 3 PO'I‘A{S
* 11627 ,
jit. cos3x + sin(~3x) ‘
(b) Compute fo" sin(—z)d:n!
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3. () There are 10 black and 5 white balls in a box. Suppose that we DO put back the balls after
the drawings.
1. What is:the chance of drawing firstly 3 white and then 2 black balls? ‘
ii. What is the chance of drawing 3 white and then 2 black balls if the order is irrelevant?
(b) "Consider a sample space {2 comprising four possible outcomes: Q= = {uwy, we, ws,wy}. Suppose
that to the four possible outcomes the followmg proba.blhtles are assigned:
P(wy) = 2/10, Pmﬂ 3/10, Pluws)=1/10, Pluy) = 4/10.

Define two events: E = {wy, wg} X {wz, wa} Compute P(E|F), the conditional probabihty
_ of E given F'!
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4. (a) Compute the following improper mtegral' 1/ dx
(b) There are two urns containing colored balls. The first urn contmns 100 red balls and 0
blue balls. The second urn contains 10 red balls and 90 blue balls. One of the two urns is.
randomly chosen (both urns have probability 50% of being chosen) and then a ball is drawn
at random from one of the two urns. If a red ball is drawn, what is the proba.bxhty that it
comes from the ﬁrst; urn? o
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C. Test 2. Econ.Anal 13.dec.00. ~ NEPTUN: " Name:

\

1, (a) Let X be & discrete random variable. Let its support Rx be: Rx = {0,1,2, 3} Let its
probablhty mass function be:

1/4 ifze Ry
(m) { if z © Ry.

Compute the mean and the variance of bd
(b) What is the chance of winning the lottery grand prize if you need to guess 6 numbers. correctly
out of 607 (Do not compute the numerical answer!)

2. Find the extremal value (and determme its type) of the function f(z,y) = —.'éz +ay— 2% —
4y +2z | '

(a) Compute the partial derivatives of f up to second order!
(b) Find the location of the extremal value! |
(¢) Determine the type of the extremal value!

3. (a) Compute the B il ,j’m +y Partial derivatives of the followmg function!
f=9/2 o Y

(b) Suppose that we toss a fair dice two times. The number of heads is counted by the random
variable X. Compute the variance of X | v . :

4. (a) Compute the f f(:c) dz indefinite mtegra.ls of the follbwing ftmctions‘

L B+ YT +

o
iid. e3‘+sm(—-3z)

(b) Let X be a discrete random va.nable Let 1ts support Rx be Rx = {1,2,3}. Let its |
probability mass function be:

| _J=/6 ifn:_eRx
pla)= {-o itz ¢ Ry.

Compute the mean of X.



C. Test 2. Econ.Anal 13.dec.09. NEPTUN:

Name:

. (a) Let X be a discrete random vana.ble Let its support Rx be: Rx = {0,1,2,3}. Let its
probabihty mass function be:

_ 1/4 ifz € Ry
' p(m)—{o if 25 Ry. -
Compute the mean and the variance of X!

(b) What is the chance of winning the lottery grand prize if you need to guess 6 numbers correctly
out of 60? (Do not compute the numerical answer!)
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~ 2. Find the extremal value (a.nd determine its type) of the function f (z, y) -z + iy 2y2 2z+

4+2z! ,
= X AXY -2y 4 by
(a) Compute the pa.rtml derivatives of f up to second order!
(b) Find the location of the extremal value!

(c) Determine the tyﬁe of the extremal value!
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3. (a) Compute the f3, fy, fzz, fays fyzs [, PaTtial derivatives of the following function!
=t S
coin

(b) Suppose that we toss a fair dise two times. The number of heads is counted by the random
‘variable X. Compute the variance of X !
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4: (a) Compute the [ f{z) dz indefinite integrals of the following functions!
i \/ +\’/(3:v)7+—s |
1, m g
iii. €% + gin(—3z) y _
(b) Let X be a discrete random variable. Let its support Rx be: Rx = {1,2,3}. Let its
probability mass function be: ' : ' S e L

_ :L'/ﬁ if-'lfeRx
p(m)“'{o if z & Ry.

Compute the mean of X,
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