Econ.Math.Test.1

- 1. Write down the y = f(x) equation of the straight line going through the points (4,0) and (0,3).
 - What is the slope of f(x)?
 - Express x with y !
 - What is the $f^{-1}(x)$ inverse of the function f(x)?
 - Plot f(x) and $f^{-1}(x)$ together!
- 2. Let $f(x) = 4 \cdot 2^{x+1}$.
 - Compute $f^{-1}(x)$!
 - Plot f(x) and $f^{-1}(x)$ together!
- 3. Let $x_0 = 0$, $x_{n+1} = f(x_n) = 3x_n + 2$.
 - If $f(x_{fix}) = x_{fix}$, then how much is x_{fix} ?
 - How much is x_n ?
 - If $x_3 = 33$, then how much is x_2 ?
- 4. Study the following sequences with regard to:
 - monotonicity (only for (1-2n)/(3n-2)),
 - boundedness,
 - limit, convergence.

$$\frac{1-2n}{3n-2}, \quad (-1)^n \frac{1-2n}{3n-2}, \quad (-1)^n \frac{3n^2-n+3}{n+5n^2+1}, \quad (1-3/(4n))^{-3n+77}, \quad (1/3-3/(4n))^{-3n+77} = (1/3-3/(4n))^{-3n+77}$$

- 5. Let $f(x) = x 3x^2 + 2$, $x_0 = 3$.
 - Compute

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

- What is the limit of the previous expression as $\Delta x \to 0$?
- What is the prediction of the linear approximation of f(x) around x_0 for the value of $f(x_0 + 0.01)$?
- 6. Compute the derivatives of the following functions:

$$\frac{1}{(3x)^2 + 1} \frac{\sqrt[3]{x} + 1}{\sqrt[3]{5x}},$$

$$\cos(4x + 1)/x^3,$$

$$\ln\left((\ln(4x + 1))^2\right).$$

7. Study the monotonicity, convexity and the local extremal values of f(x)! Find its limits as $x \to \pm \infty$! Draw also the graphs of f(x) and f'(x) in the same coordinate system!

$$(x+1)e^{x+1}.$$