Math.Econ.Anal.Test.1

- 1. (3+4+3 points)
 - A) $\overline{m} = (-2, 2)^T$, $\overline{p} = (2, 2)^T$. Solve $\alpha \overline{m} + \beta \overline{p} = (10, 4)^T$ for α and β !
 - B)Let $a_n = \frac{3n+2}{5n+4}$. Is a_n increasing or decreasing? (Prove it!)

Is a_n convergent as $n \to \infty$?

- If the answer is yes, what is the limit of a_n ? C) Compute $\lim_{n\to\infty} \left(1 \frac{6}{5n}\right)^{5n-2}$!
- 2. (2+4+4 points)
 - A) Let $\overline{r}_0 = (1,1,1)^T$ and $\overline{n} = (2,2,2)^T$. Find an equation of the plane that contains \overline{r}_0 and has normal vector \overline{n} !

Express the third coordinate z(x,y) of the point (x,y,z) of the plane with x and y!

- B) Let f(x) = 3x + 4. If $a_0 = 13$ and $a_{n+1} = f(a_n) = 3a_n + 4$, then how much is a_n ?
- B) How much is $|(3,4,5)^T|$? How much is $(3,1,4,5)^T(1,3,4,5)^T$?
- 3. $(5 \times 2 \text{ points})$
 - (a) Compute $(x^3\cos(4x))'$!
 - (b) Compute $(\cos(\sin(4x)))'$!
 - (c) Compute $((\sin(-2x))^2)'$!
 - (d) Compute $((-x)^3 + \sin(4x) \sqrt[3]{(3x)^5})'$!
 - B) Let $f(x) = e^{-x}$, $x_0 = 1$. What is the prediction of the linear approximation of f around x_0 for the value of $f(x_0 + \Delta x)$?
- 4. (3+2+5 points)
 - A) Let $f(x) = 2^x$, $x_0 = 1$. Compute $\frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$!
 - B) Compute $\lim_{n\to\infty} \left(0.4 \frac{6}{5n}\right)^{5n-2}$!
 - C) Study the monotonicity, convexity and the local extremal values of the function $f(x) = x x^2$! Draw the graphs of f and f' in the same coordinate system!
- 5. Compute

$$\int \frac{1}{x^2} + \sqrt[7]{(3x)^5} + \sin(7x - 1) \, dx, \quad \int e^{3x} x \, dx, \quad \int e^{3x^2} x \, dx$$

- 6. Solve the following differential equations:
 - y'(x) = 2x 77. What are the general solutions?
 - y'(x) = 2x 77, y(3) = 5. What are is the particular solution?