Test 2. Exercises 1. • Compute the $\int f(x) dx$ indefinite integrals of the following functions! 5, $$x$$, $x^2 - 2$, $x^2 - x$, $\sqrt[3]{2x^7} + \sqrt[3]{(2x)^7} + \frac{7}{x^7}$, $e^x + \sin(x)$, $e^{3x} + \sin(3x)$. • Find the general solutions of the following differential equations! $$y'(x) = 5, \ y'(x) = x, \ y'(x) = x^2 - 2, \ y'(x) = x^2 - x, \ y'(x) = \sqrt[3]{2x^7} + \sqrt[3]{(2x)^7} + \frac{7}{x^7},$$ $$y'(x) = e^x + \sin(x), \ y'(x) = e^{3x} + \sin(3x).$$ • Find the particular solutions of the following differential equations! $$y'(x) = 5$$, $y(1) = 4$, $y'(x) = x$, $y(-1) = 7$, $y'(x) = x^2 - 2$, $y(0) = 0$. 2. Compute the $\int f(x) dx$ indefinite integrals of the following functions! $$x \cdot e^{x}$$, $x \cdot \sin(x)$, $x \cdot \cos(x)$, $x^{3} \ln(x)$, $1 \cdot \ln(x)$, $x \cdot e^{-x}$, $x \cdot \sin(2x)$, $x \cdot \cos(3x)$, $x^{3} \ln(4x)$, $1 \cdot \ln(5x)$. - 3. (a) Compute $\int (1/5x)^3 + \exp(4x) 1/(5x)^3 dx$! - (b) Compute $\int x \sin(4x) dx$ and $\int x \cos(-x) dx$! - (c) Compute $\int x^2 \ln(x) dx$ and $\int x^3 \ln(5x) dx!$ - (d) Compute $\int (5x)^3 + \sin(4x) \sqrt[3]{x^5} \, dx$! - 4. Compute the area under the function f(x) on the interval [a, b]! (a) $$f(x) = 7$$, $[a, b] = [3, 9]$; $f(x) = 2x$, $[a, b] = [3, 9]$; $f(x) = e^{-2x}$, $[a, b] = [0, 4]$. (b) $$f(x) = -7$$, $[a, b] = [3, 9]$; $f(x) = 2x$, $[a, b] = [9, 3]$; $f(x) = -e^{-2x}$, $[a, b] = [0, 4]$. Discuss the signs of the corresponding definite integrals! - 5. Solve the following differential equations! - (a) y'(x) = 3; y'(x) = x 1; $y'(x) = e^{-3x}$. - (b) y'(x) = 3, y(1) = 2; y'(x) = x 1, y(1) = 2; $y'(x) = e^{-3x}$, y(1) = 2. - (c) y'(x) = 3y(x); y'(x) = -3y(x), y(0) = 77; y'(x) = -3y(x), y(1) = 77. - 6. Solve the y'(x) = -3y(x) + 12 differential equations! - (a) Find the equilibrium value y_f of the DE! - (b) What differential equation is satisfied by $\Delta y = y y_f$? - (c) What is the general solution y_{gen} of the original DE? - 7. Compute the $f'_x, f'_y, f''_{xx}, f''_{xy}, f''_{yx}, f''_{yy}$ partial derivatives of the following functions: $$x^{2} + y - 3$$, $x^{3}y^{-5}$, $x^{3}(3y)^{-5}$, $\sin(2x)\cos(3y)$. 8. The following functions have critical points at (x, y) = (0, 0). $$x^2 + y^2$$, $x^2 - y^2$, $-x^2 + y^2$, xy . Find the type of the critical points (preferably without calculation)! 9. Find the critical points of the following functions and determine their types! $$2x^2 + 3y^2 - 4x + 7$$, $x^2 - y^2 - 2x + 2y$, $x^2 + y^2 - 3xy$, $xy - x - y - 1$.