- 1. A. Compute $C = \begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$.
- B. Compute the square of the Eucledian length of $\{1, 1, 1, 0\}^T$!
- C. Compute $\begin{pmatrix} 4 & 0 \\ 1 & 2 \end{pmatrix}^{-1}$.
- 2. A. Let f(x) = 1 3x. Compute $\frac{f(5 + \Delta x_n) f(5)}{\Delta x_n}$! What is the limit of this fraction if $\Delta x_n = 1/n$? What is f'(5)?
- B. Study the monotonicity and the limit of the following sequences!
- a) $\frac{4-n}{5n+6}$, b) $\frac{3n}{5}$.
- 3.A. Compute the limit of the following sequence! $a_n = \left(1 + \frac{1}{3n}\right)^{3n-7} \left(\frac{2n^2}{3n^2+1}\right)$.
- B. Let $\phi(x) = -3x + 2$, $x_0 = 2$, $x_{n+1} = \phi(x_n)$. What are ϕ^{-1} and $\phi^n(x_0) = x_n$?
 - 1. Compute ϕ^{-1} !
 - 2. Find the fixed point x_f of ϕ !
 - 3. Compute x_n !
- 4. A. Let $\bar{v_1} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$, $\bar{v_2} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 8 \end{pmatrix} = \alpha \bar{v_1} + \beta \bar{v_2}$. Compute $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$!
- B. Let T be a 2×2 matrix formed by the transition probabilities of a two state (labeled by 1 and 2) stochastic system, where

$$T(1 \leftarrow 1) = T_{11} = 0, T(2 \leftarrow 1) = T_{21} = 1, T(1 \leftarrow 2) = T_{12} = 0.2, T(2 \leftarrow 2) = T_{22} = 0.8.$$

- 1. Find an eigenvector \bar{v}_1 corresponding to the eigenvalue $\lambda_1 = 1$! (This is the equilibrium state.)
- 2. Find the eigenvalue λ_2 of T corresponding to the eigenvector $\bar{v}_2 = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$!
- 3. Calculate α and β in $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha \bar{v}_1 + \beta \bar{v}_2$!
- 4. Calculate $T(\alpha \bar{v}_1 + \beta \bar{v}_2)$, $T^2(\alpha \bar{v}_1 + \beta \bar{v}_2)$, etc.