I.

- A. Compute the derivatives of the following functions!
 - $\sqrt[3]{x^7} \frac{3}{\sqrt[6]{x^6}} + \cos(3x)$
 - $\ln x \sin (-x-1)$
 - $\frac{\sin(2x)}{1-x^2}$
- B. Compute the following definite integrals!
 - $\int_0^1 e^{-x} + \sin(3x) dx$ • $\int_0^1 x^2 - 2x dx$

2.

• Plot the solution set of the following differential equation! Find the equilibrium positions and determine their stability!

$$y' = -y^2 + y.$$

- There are 9 black and 4 white balls in a box. Suppose that we DO NOT put back the balls after the drawings. What is the chance of drawing firstly 2 white and then 3 black balls? What is the chance of drawing 2 white and then 3 black balls if the order is irrelevant?
- A firm undertakes two projects, A and B. The probabilities of having a successful outcome are $\frac{1}{4}$ for project A and $\frac{1}{3}$ for project B. The probability that both projects will have a successful outcome is $\frac{1}{16}$. Are the two outcomes independent?

3.

A. Let $f(x) = 3x^2 + 7$. Compute $\frac{f(2+\Delta x_n)-f(2)}{\Delta x_n}$! What is the limit of this fraction if $\Delta x_n = 1/n$? How much is f'(2)?

B. Study the monotonicities and the limits of the following sequences!

a)
$$\frac{2n}{3n+6}$$
, b) $\frac{3}{n^2+1}(-1)^n$.

4.

A. Compute
$$C = \begin{pmatrix} -1 \\ -2 \end{pmatrix} \begin{pmatrix} 1 & -3 \end{pmatrix}$$
.

B. Compute the Eucledian length of $\{2,0,-1,-2\}^T$!

C. Let T be a 2×2 matrix formed by the transition probabilities of a two state (labeled by 1 and 2) stochastic system, where

 $T(1 \leftarrow 1) = T_{11} = 0, \ T(2 \leftarrow 1) = T_{21} = 1, \ T(1 \leftarrow 2) = T_{12} = 0.5, \ T(2 \leftarrow 2) = T_{22} = 0.5.$

- 1. Find an eigenvector \bar{v}_1 corresponding to the eigenvalue $\lambda_1 = 1$! (This is the equilibrium state.)
- 2. Find the eigenvalue λ_2 of T corresponding to the eigenvector $\bar{v}_2 = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$!
- 3. Calculate α and β in $\begin{pmatrix} 0\\1 \end{pmatrix} = \alpha \bar{v}_1 + \beta \bar{v}_2 !$
- 4. Calculate $T(\alpha \bar{v}_1 + \beta \bar{v}_2)$, $T^2(\alpha \bar{v}_1 + \beta \bar{v}_2)$, etc.