Differential equations. I. Exercise set

1	D .	
ı	Review	evercises

I.) Compute the following indefinite integrals!

a)
$$x \ln(3x)$$
, b) $\sin(3x)\sqrt{\cos(3x)}$, c) $\frac{1}{(x-3)x}$

II.) Compute the Taylor series of the following functions around $x = x_0$!

a)
$$e^{3x}$$
, $x_0 = 0$; b) s

$$b) \sin(3x), x_0 = 0$$

$$c) \log(x), x_0 = 1;$$

$$d) \ \frac{1}{1-x}, \ x_0 = 0;$$

a)
$$e^{3x}$$
, $x_0 = 0$; b) $\sin(3x)$, $x_0 = 0$; c) $\log(x)$, $x_0 = 1$; d) $\frac{1}{1-x}$, $x_0 = 0$; e) $\frac{1}{x^2+1}$, $x_0 = 0$.

III.) Let f(x) equal to

a)
$$e^{x+y^2}$$
, b) $x\sin(y^2)$.

b)
$$x\sin(y^2)$$
.

Compute $f'_x, f'_y, f''_{xx}, f''_{xy}, f''_{yx}, f''_{yy}$! Compute $\frac{d}{dx} f(x, \ln(x))$!

2. Transform the following DE into time independent systems!

$$a) \ y' = xy^2 + x$$

$$b) \ y' = x - y;$$

a)
$$y' = xy^2 + x;$$
 b) $y' = x - y;$ c) $\frac{d}{dx} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} xy_1 + y_2 \\ y_1y_2 + x \end{pmatrix}$

3. Express the following DE as first order systems!

a)
$$y'' = -y' - 2y;$$

$$b) \ y''' = y + x;$$

a)
$$y'' = -y' - 2y;$$
 b) $y''' = y + x;$ c) $\frac{d^2}{dx^2} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1' - y_2 \\ y_2' y_1 \end{pmatrix}$

4.

a)
$$y' = f(x, y) = x - y;$$
 b) $y' = f(x, y) = y^2 + yx;$

How much are y'' and y'''? Write down y's third order Taylor polynom around x = 0, if y(0) = 5!

5.

a)
$$f(x) = \sin x$$
, $x_0 = \pi/2$; b) $f(x) = \sqrt{x}$, $x_0 = 9$; c) $f(x) = 1/x$, $x_0 = 2$;

b)
$$f(x) = \sqrt{x}, x_0 = 9$$
:

c)
$$f(x) = 1/x$$
, $x_0 = 2$

Compute f's linear approximation $f(x_0 + \Delta x) \approx T_1(x_0 + \Delta x)$ when $\Delta x = 0.1$! Compute $\max_{z \in [x_0, x_0 + \Delta x]} |f''(z)|$?! Give a nontrivial upper bound for the error $|\operatorname{err}(\Delta x)| = |f(x_0 + \Delta x) - T_1(x_0 + \Delta x)|$!

6. Use the Euler and the Heun methods for the following DE with $\Delta x = 0.1$ time step and y(2) = 3 initial condition!

a)
$$y' = f(x,y) = x - y;$$
 b) $y' = x - y^2;$

Do the same for

$$c) \ \frac{d}{dx} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ -y_1 \end{pmatrix}; \qquad d) \ \frac{d}{dx} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 - y_2 \\ y_1^2 + x \end{pmatrix}$$

with initial condition: $\begin{pmatrix} y_1(2) \\ y_2(2) \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

What are the predictions of these methods for y(2.1)?

7. Solve the DE with y(0) = 1 initial codition! Study the unicity of the solutions!

$$a) \ y'=y, \qquad b) \ y'=y^2, \qquad c) \ y'=y^{11/10}, \qquad d) \ y'=\sqrt{|y|}, \quad y\geq 0 \quad e) \ y'=|y|^{9/10},$$

8. Draw the velocity field and solution curves of the y' = f(x) DE!

a)
$$y' = 1$$
,

b)
$$y' = x$$
.

c)
$$y' = 1 - x$$
,

$$l) y' = x^2,$$

a)
$$y' = 1$$
, b) $y' = x$, c) $y' = 1 - x$, d) $y' = x^2$, e) $y' = 1 - x^2$,

9. Draw the velocity field and solution curves of the y' = f(y) DE! Find the fixpoints of the dynamics and write down the linearized DE around the fixpoints! Study the stability of the fixpoints!

a)
$$y' = 1$$
, b) $y' = y$, c) $y' = -y$, d) $y' = y + 1$,
e) $y' = -1 + y^2$, f) $y' = y(1 - y)$, g) $y' = y(1 - y)(1 + y)$.

10. Find the eigenvectors and eigenvalues of A! Find the similarity transformation S which diagonalize A, i.e. $D = S^{-1}AS$ where D is diagonal! Express v as the linear combination of the eigenvectors! Compute $A^{13}v$!

a) (7) b)
$$\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$
 c) $\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}$ d) $\begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$ e) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ f) $\begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}$ g) $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{pmatrix}$ h) $\begin{pmatrix} 2 & -3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 7 \end{pmatrix}$

Here v is:

a)
$$v = (8);$$
 $b - f)$ $v = \begin{pmatrix} 3 \\ 4 \end{pmatrix};$ $g - h)$ $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

11. Solve the following DE for the A matrices of the previous exercises!

$$\frac{d}{dx}y = Ay, \ y(0) = v$$

Write down the general and the particular solutions.

Compute $\exp(xA)$! Express the particular solution with the help of $\exp(xA)$! Study the stability of the y=0 fixpoint!

- 12. y'' = -y. Write down the characteristic equation and the general solution of the DE! Write the DE as a first order sysyte, solve it and compare the solutions!
- 13. Find the eigenvalues and eigenvectors of A!

a)
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$ d) $\begin{pmatrix} 7 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix}$

Compute $\exp(xA)$!

14. Solve the following DE for the A matrices of the previous exercise

$$\frac{d}{dx}y = Ay, \ y(0) = v$$

write down the particular solution with the help of e^{xA} , if v is:

$$(a-c)$$
 $v = \begin{pmatrix} 3\\4 \end{pmatrix};$ $d)$ $v = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$

- 15. Damped oscillator: y'' = -y ky'. Find the general solution! How much is k if the char.eq. has only one solution? In that case write the DE as a first order system, and study the coefficient matrix' Jordan normal form.
- 16. $y'' = y y^3$. introduce p = y'. Show that the DE can be written in the following Hamiltonian form:

$$y' = \frac{\partial H}{\partial p}, \qquad p' = -\frac{\partial H}{\partial y}.$$

Compute H! Show that H'=0!

Write the DE as a first order system, find its fixed points, write down the linearized DE around the fixed points and study the stability of the fixed points!

17. Write down the Euler-Lagrange equations for the Lagrangians L and M!

$$(y')^{2} - y^{2}, \quad y' + 8, \quad (y')^{2} + y', \quad L = (y')^{4} + (y - 1)^{2},$$

$$M = ((y'_{1})^{2} + (y'_{2})^{2})/2 - V(y_{1}, y_{2}),$$

$$((y'_{1})^{2} + (y'_{2})^{2})/2 + A_{1}(y_{1}, y_{2})y'_{1} + A_{2}(y_{1}, y_{2})y'_{2}$$

18. Let $S[u] = \int_0^1 (y'(x))^4 + xy(x) dx$ where u is defined on [0,1] and vanishes at the endpoints. Let V be defined on [0,1], assume that it vanishes at the endpoints and is continuous. Assume also that elements of V are piecewise affine on the [0,1/3], [1/3,2/3], [2/3,1] intervals. Let ϕ_1 and ϕ_2 be a basis of V, such that $\phi_1(1/3) = \phi_2(2/3) = 1$ and $\phi_2(1/3) = \phi_1(2/3) = 0$. Let $u_h = c_1\phi_1 + c_2\phi_2$. Compute the $S[u_h] = s(c_1,c_2)$ two variable function! (For the computation of the xy(x) term in the integral use some approximate method!)