1. (3+2+3+2)The set of functions $\{\sin(nx) \mid n = 1, 2, ...\}$ forms an othogonal basis in $\mathcal{H} = L^2([0, \pi])$. Give an orthonormed basis in \mathcal{H} !

Let $f^2([-\pi,\pi])$ Let f(x) = 3, if $x \in [-1,0]$, otherwise assume that f(x) = 0, if $x \in [-\pi,\pi] \setminus [-1,0]$. If $f(x) = \frac{1}{\sqrt{2\pi}} \sum_{n \in \mathbb{Z}} \hat{f}_n e^{inx}$, then how much is $\hat{f}(-3)$?

 $\phi_t(t,x) = \phi_{xx}(t,x), \ \phi(0,x) = \exp(i(5x)) + \sin(2x).$ How much is $\phi(t,x)$?

 $\phi_t(t,x) = \phi_{xx}(t,x), \ \phi(0,x) = \sin(3x) + 5.$ How much is $\phi(t,x)$?

2. (2+1+(2+4+1) pont)If $y'' + 7y' + 8y = e^{i\omega t}$, $y = A(\omega)e^{i\omega t}$, then how much is $A(\omega)$?

Let f(x) = 2, if $x \in [-1, 1]$, otherwise f = 0. If $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(p) e^{ipx} dp$, then how much is $\hat{f}(-0.5)$?

Solve the following DE with the condition (G(t) = 0, if t < 0) ! $9G'' + 27G = \delta.$ Compute the following quantities! $G(0^+) - G(0^-) = G'(0^+) - G'(0^-) =$ How much is G(t) ?

What is the solution of 9y'' + 27y = f(t), if (y(t) = f(t) = 0, ha $t \ll 0)$?

3. (2+2+(3+2+1) pont)Compute the Laplace transform of f = 1 - H(t-1) !

Compute the convolution $f * g ! \quad f(t) = 2, \ g(t) = \sin 5t.$

 $y'' - 25y = (1 - t)^2$, y(0) = 2, y'(0) = 3. Compute $\mathcal{L}(y(t)) = Y(s) ! (\mathcal{L}(t^n) = \frac{n!}{s^{n+1}})$.

Write down the partial fraction decomposition of Y(s) ! (Do not compute the coefficients!)

How much is y(t) ?

4.(1+1+2+3+3 pont)

$$A = \begin{pmatrix} 2i & -3i \\ 3 & 4i \end{pmatrix}.$$

Compute A^* ?

Let $f_1 = (i/\sqrt{2}, i/\sqrt{2})^T$, $f_2 = (z, -1/\sqrt{2})^T$ be an othonormed basis. How much is z?

 $v = (2,3)^T$ can be expressed as $\alpha f_1 + \beta f_2$! How much is α ?

Assume that $\phi(t,x)$ satisfies $\partial_{tt}^2 \phi - \partial_{tx}^2 \phi + 8 \partial_{xx}^2 \phi = 0$. If $\phi(t,x) = e^{i(\omega t + kx)}$, find a relation between ω and $k \neq 0$.

Let

$$\frac{d}{dt}\bar{y} + \begin{pmatrix} 2 & 3\\ 3 & 2 \end{pmatrix}\bar{y} = \begin{pmatrix} t^2\\ t^4 \end{pmatrix}, \quad \bar{y}(0) = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

How much is $\overline{Y}(s)$? (The computation of the inverse matrix is not required.)