Diff. Eq. sample test 2.

The second test might contain variations of the exercises 3a, 4b, 5, 8, 9, 10, 12.

- 1. (a) Let $(\partial_{xx}^2 \partial_{tt}^2 3\partial_{xt}^2) e^{i(kx-\omega t)} = 0$. What algebraic equation is satisfied by k and ω ? Let $y'' - 3y' + y = e^{5it}$. Find a solution!
 - (b) Let $\partial_{xt}^2 e^{i(kx+\omega t)} = 0$. What algebraic equation is satisfied by k and ω ? Find the solutions!

2.
$$(a)$$

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 4y_1 \\ 4y_1 + 4y_2 \end{pmatrix} = A \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \qquad \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

How much is e^{tA} ? Find the particular solution of the DE!

(b)

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 5y_1 - 4y_2 \\ 4y_1 + 5y_2 \end{pmatrix} = A \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \qquad \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

Find the eigenvalues and eigenvectors of A ! Find the general solution of the DE! How much is e^{tA} ? Use e^{tA} to write down the particular solution!

3. (a) $y_t(t,x) = y_{xx}(t,x), y(0,x) = \cos(7x)$. How much is y(t,x)?

(b)
$$y_{tt}(t,x) = y_{xx}(t,x), y(0,x) = \cos(7x), y'(0,x) = \sin(5x).$$
 How much is $y(t,x)$?

4. (a) Let

$$\phi(0,x) = \sum_{n \in \mathbb{Z}} e^{-|n|} \frac{e^{inx}}{\sqrt{2\pi}}, \qquad \phi_t(0,x) = \sum_{n \in \mathbb{Z}} e^{-2|n|} \frac{1}{n^8} \frac{e^{inx}}{\sqrt{2\pi}}$$
$$\phi(t,x) = \sum_{n \in \mathbb{Z}} c_n(t) \frac{e^{inx}}{\sqrt{2\pi}}, \qquad \partial_{tt} \phi(t,x) = \frac{1}{4} \partial_{xx}^2 \phi(t,x).$$

What ordinary differential equations are satisfied by the functions $c_n(t)$? (Do not forget the initial conditions!)

(b) Legyen

$$\phi(0,x) = \sum_{n \in \mathbb{Z}} e^{-|n|} \frac{e^{inx}}{\sqrt{2\pi}}, \qquad \phi(t,x) = \sum_{n \in \mathbb{Z}} d_n(t) \frac{e^{inx}}{\sqrt{2\pi}}, \qquad \partial_t \phi(t,x) = \frac{1}{2} \partial_{xx}^2 \phi(t,x).$$

What ordinary differential equations are satisfied by the functions $d_n(t)$? (Do not forget the initial conditions!)

5. (a) • Legyen

$$A = \begin{pmatrix} 2i & 1-2i \\ -i-1 & -3 \end{pmatrix}.$$

How much is A^* ?

- What is the inner product of $v = (2+3i, 4-i)^T$ and $w = (4, i)^T$?
- Let $f_1 = (\sin(30^\circ, i\cos(30^\circ)^T), f_2 = (\cos(30^\circ, z)^T)$ be an orthonormed basis. How much is z?
- The vector $v = (5, 6)^T$ can be expressed as $v = \alpha f_1 + \beta f_2$! How much is α ?
- (b) Let $f(x) = \sin(4x) = \sum_{n \in \mathbb{Z}} \hat{f}_n \frac{e^{inx}}{\sqrt{2\pi}}$, if $x \in (-\pi, \pi)$ How much is \hat{f}_2 es \hat{f}_4 ?
 - Legyen $f(x) = H(t-1)H(2-t) = \sum_{n \in \mathbb{Z}} \hat{f}_n \frac{e^{inx}}{\sqrt{2\pi}}$, if $x \in (-\pi, \pi)$ How much is \hat{f}_2 es \hat{f}_3 ?
 - Let f(x) = 1, if $0 \le x \le \pi$, otherwise zero. If $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(p) e^{ipx} dx$, then how much is $\hat{f}(1)$?

- 6. (a) Solve it! y'' 25y = 0, y(0) = 0, y'(0) = 1.
 - Solve it! $G'' 25G = \delta$, and G(t) = 0 for negative t.
 - Use G to write down the solution of y'' 25y = f(t), if y(t) = f(t) = 0 for negative t.
 - (b) Solve it! y'' + 25y = 0, y(0) = 0, y'(0) = 1.
 - Solve it! $G'' + 25G = \delta$, and G(t) = 0 for negativ t.
 - Use G to write down the solution of y'' + 25y = f(t), if y(t) = f(t) = 0 for negative t.
- 7. (a) Solve it! y' 25y = 0, y(0) = 0.
 - Solve it! $G' 25G = \delta$, and G(t) = 0 for negative t.
 - Use G to write down the solution of y' 25y = f(t), if y(t) = f(t) = 0 for negative t.
- 8. (a) Use the definition of the Laplace transform for the computation of $\mathcal{L}(\sin(2t))$.
 - Use the definition of the Laplace transform for the computation of $\mathcal{L}(H(-t+4)e^{-5t})$.
 - Let f(t) = H(t-3) and $g(t) = e^{5t}$. Compute the h = f * g convolution!
 - How much is $\mathcal{L}(f(t))\mathcal{L}(g(t)) \mathcal{L}(h(t))$?
 - (b) se the definition of the Laplace transform for the computation of $\mathcal{L}(tH(t-2))$.
 - se the definition of the Laplace transform for the computation of $\mathcal{L}(H(-t-4)e^{-5t})$
 - Let $f(t) = \sin(t)$ and $g(t) = e^{5t}$. Compute the h = f * g konvolution!
 - How much is $\mathcal{L}(f(t))\mathcal{L}(g(t)) \mathcal{L}(h(t))?$

9. (a) y' - 4y = 3, y(0) = 2.

- Compute the Y(s) Laplace transform of y(t) !
- Compute the partial fraction decomposition of Y(s) !
- How much is $\mathcal{L}^{-1}(Y(s))$?
- How much is y(t) ?

10. (a)
$$y'' - 4y = 3$$
, $y(0) = 2$, $y'(0) = 20$

- Compute the Y(s) Laplace transform of y(t) !
- Compute the partial fraction decomposition of Y(s) !
- How much is y(t) ?
- (b) y'' + 4y = 3, y(0) = 2, y'(0) = 20
 - Compute the Y(s) Laplace transform of y(t) !
 - Compute the partial fraction decomposition of Y(s) !
 - How much is y(t) ?
- 11. (a) Solve it! y'' 25y = 0, y(0) = 10, y'(0) = 20.
 - (b) Solvi it with the method of the variation of the constant! y' + 3y = 5.
- 12. (a) Let

$$\frac{d}{dt} \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} + \begin{pmatrix} 0 & 3 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} = \begin{pmatrix} 1+t \\ t+t^2 \end{pmatrix}, \qquad \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
$$\begin{pmatrix} Y_1(s) \\ Y_2(s) \end{pmatrix} \quad ?$$

How much is

(Do not compute the inverse matrix!)

13. (a) Let

$$\frac{d}{dt} \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} + \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} = \begin{pmatrix} f_1(t) \\ f_2(t) \end{pmatrix}, \qquad f_1(t) = f_2(t) = y_1(t) = y_2(t) = 0, \text{ ha } t < 0.$$

Find the fundamental solution and use it express the solution of the DE!