4.
$$(3+2+3+2)$$

Let
 $\phi(0,x) = \sum_{n \in \mathbb{Z}} n^{-2} \sin(n) \frac{e^{inx}}{\sqrt{2\pi}}, \quad \phi(t,x) = \sum_{n \in \mathbb{Z}} c_n(t) \frac{e^{inx}}{\sqrt{2\pi}}, \quad \partial_t \phi(t,x) = 6\partial_{xx}^2 \phi(t,x).$

What ordinary differential equations are satisfied by the functions $c_n(t)$? (Do not forget the initial conditions!)

B Test 2, Diff.Eq., 2015.05.04. NEPTUN:

1. (2+1+2+3+1+1)Use the definition of the Laplace tr. for the computation of $F(s) = \mathcal{L}(f(t)) = \mathcal{L}(e^{5t-7})$. F(s) =

For what values of s does the improper integral exist?

Compute $c_5(6)$!

 $F(s) = \mathcal{L}(f(t)) = \mathcal{L}(H(-t-4)e^{-5t})$ (Here H is the Heaviside function.) F(s) =

Let $(f,g) = \int_0^{\pi} \overline{f}(x)g(x) dx$. Compute $(\sin(x), \sin(2x))!$

Compute $(\sin(x), \cos(x))!$

Compute the h = f * g convolution of f(t) = 4t and g(t) = 3!

Compute the h = g * f convolution of f(t) = 4t and g(t) = 3!

How much is $\mathcal{L}(f(t))\mathcal{L}(g(t)) - \mathcal{L}(h(t))$?

1

Name:

2. (2+2+3+3)Let $f_1 = (i/\sqrt{2}, i/\sqrt{2})^T$, $f_2 = (1/\sqrt{2}, z)^T$ be an orthonormal basis of \mathbb{C}^2 . How much is z? 3. (3+2+1+4) $y''-4y = (t+1)^2$, y(0) = 6, y'(0) = 7. How much is Y(s) = Y(s) = 0

The vector $v = (7,8)^T$ can be expressed as a linear combination $v = \alpha f_1 + \beta f_2$! Compute α !

Write down the partial fraction decomposition of Y(s) ! (Do not compute the coefficients!)

Let $f(x) = H(t)H(-t + \pi/2) = \sum_{n \in \mathbb{Z}} \hat{f}_n \frac{e^{inx}}{\sqrt{2\pi}}$, if $x \in (-\pi, \pi)$ Compute \hat{f}_5 !

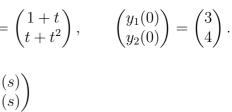
How much is y(t) ?

Let

$$\frac{d}{dt} \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} + \begin{pmatrix} 0 & 3 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Compute

 $\begin{pmatrix} Y_1(s) \\ Y_2(s) \end{pmatrix}$


(Do not compute the inverse matrix!)

Express $\hat{f}_{-5} \frac{e^{i(-5)x}}{\sqrt{2\pi}} + \hat{f}_5 \frac{e^{i5x}}{\sqrt{2\pi}}$ with the help of trigonometric functions!

$$\underline{d}\left(y_{1}\right)$$

$$dt \ \langle y_2(t) \rangle$$
e

s)?
$$(\mathcal{L}(t^n) = \frac{n!}{s^{n+1}})$$

