Differential equations. Quiz.2 problems

1. Let $u = (1, i)^T$, $v = (3 - i, 2 + 4i)^T$. Compute (u, v) and (v, u)!

Sol.
$$(u,v) = \overline{1}(3-i) + \overline{i}(2+4i) = 7-3i, (v,u) = \overline{(u,v)} = 7+3i.$$

2.
$$e_1 = \frac{1}{\sqrt{2}}(1,i)^T$$
, $e_2 = \frac{1}{\sqrt{2}}(i,1)^T$, $u = (3+i,4-2i)^T$, $u = \alpha_1 e_1 + \alpha_2 e_2$. Compute $\alpha_{1,2}$!

Sol. $e_{1,2}$ is an othonormed basis, so $\alpha_n = (e_n, u)$. In particular $\alpha_1 = \frac{1}{\sqrt{2}}(1 - 3i)$, $\alpha_2 = \frac{1}{\sqrt{2}}(5 - 5i)$.

3. If $e_1 = \frac{1}{\sqrt{2}}(i,i)^T$, $e_2 = \frac{1}{\sqrt{2}}(i,\alpha)^T$ is an orthonormed basis, then how much is α ?

Sol.
$$(e_1, e_2) = \frac{1}{2}((-i)i + (-i)\alpha) = 0 \implies \alpha = -i$$
.

4. Let

$$A = \begin{pmatrix} i & 3 - 2i \\ 4 + 2i & 8 - i \end{pmatrix}.$$

Compute $A^*!$

Sol. $(A^*)_{i,j} = \bar{A}_{ji}$, so

$$A^* = \begin{pmatrix} -i & 4-2i \\ 3+2i & 8+i \end{pmatrix}.$$

5.

$$B = \begin{pmatrix} 3 & 3 - 2i \\ 3 + 2i & 8 \end{pmatrix}.$$

If $\lambda_{1,2}$ are the eigenvalues of B, than how much is $Im(\lambda_1 - \lambda_2)$?

Sol. B is self-adjoint, so its eigenvalues are real numbers, consequently the answer is 0.

6.

$$B = \begin{pmatrix} 3i & 3i - 2 \\ 3i + 2 & 8i \end{pmatrix}.$$

If $\lambda_{1,2}$ are the eigenvalues of B, than how much is $Re(\lambda_1 - \lambda_2)$?

Sol. iB is self-adjoint, so the answer is 0.

- 7. We claim that the set of functions $e_n(x) = \sin(nx)$, n = 1, 2, ... is an orthogonal complete basis in $\mathcal{H} = L^2([0, \pi], dx)$. Construct an orthonormed basis in \mathcal{H} !
 - **Sol.** The average value of $\sin^2(x)$ and $\cos^2(x)$ is 1/2 over an interval of length π , since $\sin^2(x) + \cos^2(x) = 1$. So the basis $\tilde{e}(x) = \sqrt{\frac{2}{\pi}}\sin(nx)$, n = 1, 2, ... has the proper normalization.
- 8. Let f be a function on $[0, \pi]$ and express f(x) as $\sum_{n>0}^{\infty} \hat{f}_n \sin(nx)$. Compute \hat{f}_n ! (Repeat this exercise for different orthonormed basis functions (ex. 9-11)!)

Outline of the theory of orthogonal series (Fourier transform): Let e_n be an othonormed basis. Then a vector u can be expressed as $u = \sum_n \hat{f}_n e_n = \sum_n (e_n, u) e_n$. The application of this scheme for $L^2([-\pi, \pi], dx)$ (as known as the Fourier transform) is the following:

Othonormed basis: $e_n = \frac{1}{\sqrt{2\pi}}e^{inx}, n \in \mathbb{Z}.$

Fourier transform $f \to \hat{f}$:

$$\hat{f}_n = (e_n, f) = \int_{-\pi}^{\pi} \frac{1}{\sqrt{2\pi}} e^{inx} f(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{-inx} f(x) dx.$$

Inverse Fourier transform $\hat{f} \to f$:

$$f(x) = \left(\sum_{n \in \mathbb{Z}} \hat{f}_n e_n\right)(x) = \sum_{n \in \mathbb{Z}} \hat{f}_n \frac{1}{\sqrt{2\pi}} e^{inx}$$

If an orthogonal (but unnormalized) basis e_n was used, then we can use the following transformations

$$f(x) \xrightarrow{FT} \hat{f}_n = \frac{1}{(e_n, e_n)} (e_n, f) \xrightarrow{IFT} f = \sum_n \hat{f}_n e_n.$$

Sol.

$$\hat{f}_n = \frac{1}{(e_n, e_n)}(e_n, f) = \frac{1}{\pi/2} \int_0^{\pi} \sin(nx) f(x) dx.$$

- 9. We claim that the set of functions $\cos(nx)$, n=0,1,2,... is an orthogonal complete basis in $\mathcal{H}=L^2([0,\pi],dx)$. Construct an orthonormed basis in \mathcal{H} !
 - **Sol.** Orthonormed basis: $\frac{1}{\sqrt{\pi}}$, $\sqrt{\frac{2}{\pi}}$ $n = 1, 2, \dots$
- 10. We claim that the set of functions $\sin(nx)$, n = 1, 2, ... is an orthogonal complete basis in $\mathcal{H} = L^2([0, \pi], dx)$. Construct an orthonormed basis in $L^2([0, 88], dx)$!
- 11. We claim that the set of functions $\sin(nx)$, n = 1, 2, ... is an orthogonal complete basis in $\mathcal{H} = L^2([0, \pi], dx)$. Construct an orthonormed basis in $L^2([-77, 88], dx)$!
 - **Sol.** Orthonormed basis: $\sqrt{\frac{2}{(88-(-77))}}\sin((\pi/(88-(-77)))\cdot n(x-(-77)), n=1,2,...$
- 12. In the sequel the characteristic function χ_D is defined as $\chi_D(x)=0$ if $x\notin D$, otherwise $\chi_D(x)=1$. Let $f(x)=\chi_{[0.1]}(x), f(x)=\sum_{n\in\mathbb{Z}}\hat{f}_n\frac{e^{inx}}{\sqrt{2\pi}}$. Compute \hat{f}_5 !

Sol.

$$\hat{f}_5 = \int_{-\pi}^{\pi} \frac{1}{\sqrt{2\pi}} e^{i \cdot 5x} f(x) \, dx = \frac{1}{\sqrt{2\pi}} \int_0^1 e^{-i \cdot 5x} \cdot 1 \, dx = \frac{e^{-i \cdot 5x}}{-i5} \Big|_0^1 = \frac{i}{5} (e^{-i \cdot 5} - 1).$$

13. Let $f(x) = \chi_{[0.1]}(x) \in L^2(\mathbb{R}, dx)$. Compute $\hat{f}(2.3)$!

Sol.

$$\hat{f}(2.3) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i \cdot 2.3x} f(x) \, dx = \frac{1}{\sqrt{2\pi}} \int_{0}^{1} e^{-i \cdot 2.3x} \cdot 1 \, dx = \frac{e^{-i \cdot 2.3x}}{-i \cdot 2.3} \Big|_{0}^{1} = \frac{i}{2.3} (e^{-i \cdot 2.3} - 1).$$

14. If $\phi(x,t)$ satisfies $(\partial_{tt}^2 - 9\partial_{xx}^2)\phi = 0$ and $\phi(x,t) = e^{i(kx+\omega t)}$, then what is the relation between k and ω ?

Sol.
$$\partial_{tt}^2 e^{i(kx+\omega t)} = (i\omega)^2 e^{i(kx+\omega t)}, \ \partial_{xx}^2 e^{i(kx+\omega t)} = (ik)^2 e^{i(kx+\omega t)}, \text{ so } \omega^2 - 9k^2 = 0 \implies |\omega| = 9|k|.$$

- 15. If $\phi(x,t)$ satisfies $(\partial_{tt}^2 9\partial_{xx}^2 \partial_{xt}^2)\phi = 0$ and $\phi(x,t) = e^{i(kx+\omega t)}$, then what is the relation between k and ω ?
- 16. $\partial_t \phi(t, x) = \partial_{xx}^2 \phi(t, x), \ \phi(0, x) = \sin(4x) + 5\cos(6x)$. Compute $\phi(t, x)$!
 - **Sol.** $\sin(4x)$ and $\cos(6x)$ are eigenfunctions of the operator ∂_{xx}^2 :

$$\partial_{xx}^2 \sin(4x) = -4^2 \sin(4x), \quad \partial_{xx}^2 \cos(6x) = -6^2 \sin(4x).$$

So the solution is

$$\phi(t,x) = e^{-4^2t}\sin(4x) + 5e^{-6^2t}\cos(6x).$$