Differential equations. quiz.2.problems

- 1. Let $u = (1, i)^T$, $v = (3 i, 2 + 4i)^T$. Compute (u, v) and (v, u) !
- 2. $e_1 = \frac{1}{\sqrt{2}}(1,i)^T$, $e_2 = \frac{1}{\sqrt{2}}(i,1)^T$, $u = (3+i,4-2i)^T$, $u = \alpha_1 e_1 + \alpha_2 e_2$. Compute $\alpha_{1,2}$!
- 3. If $e_1 = \frac{1}{\sqrt{2}}(i,i)^T$, $e_2 = \frac{1}{\sqrt{2}}(i,\alpha)^T$ is an orthonormed basis, then how much is α ?
- 4. Let

$$A = \begin{pmatrix} i & 3-2i \\ 4+2i & 8-i \end{pmatrix}.$$

Compute A^* !

5.

$$B = \begin{pmatrix} 3 & 3-2i \\ 3+2i & 8 \end{pmatrix}.$$

If $\lambda_{1,2}$ are the eigenvalues of B, than how much is $Im(\lambda_1 - \lambda_2)$?

6.

$$B = \begin{pmatrix} 3i & 3i-2\\ 3i+2 & 8i \end{pmatrix}.$$

If $\lambda_{1,2}$ are the eigenvalues of B, than how much is $Re(\lambda_1 - \lambda_2)$?

- 7. We claim that the set of functions $\sin(nx)$, n = 1, 2, ... is an orthogonal complete basis in $\mathcal{H} = L^2([0, \pi], dx)$. Construct an orthonormed basis in \mathcal{H} !
- 8. Let f be a function on $[0, \pi]$ and express f(x) as $\sum_{n>0}^{\infty} \hat{f}_n \sin(nx)$. Compute \hat{f}_n ! Repeat this exercise for different orthonormed basis functions (ex. 9-11)!
- 9. We claim that the set of functions $\cos(nx)$, n = 0, 2, ... is an orthogonal complete basis in $\mathcal{H} = L^2([0, \pi], dx)$. Construct an orthonormed basis in \mathcal{H} !
- 10. We claim that the set of functions $\sin(nx)$, n = 1, 2, ... is an orthogonal complete basis in $\mathcal{H} = L^2([0, \pi], dx)$. Construct an orthonormed basis in $L^2([0, 88], dx)$!
- 11. We claim that the set of functions $\sin(nx)$, n = 1, 2, ... is an orthogonal complete basis in $\mathcal{H} = L^2([0, \pi], dx)$. Construct an orthonormed basis in $L^2([-77, 88], dx)$!
- 12. In the sequel the characteristic function χ_D is defined as $\chi_D(x) = 0$ if $x \notin D$, otherwise $\chi_D(x) = 1$. Let $f(x) = \chi_{[0,1]}(x), f(x) = \sum_{n \in \mathbb{Z}} \hat{f}_n \frac{e^{inx}}{\sqrt{2\pi}}$. Compute \hat{f}_5 !
- 13. Let $f(x) = \chi_{[0,1]}(x) \in L^2(\mathbb{R}, dx)$. Compute $\hat{f}(2.3)$!
- 14. If $\phi(x,t)$ satisfies $(\partial_{tt}^2 9\partial_{xx}^2)\phi = 0$ and $\phi(x,t) = e^{i(kx+\omega t)}$, then what is the relation between k and ω ?
- 15. If $\phi(x,t)$ satisfies $(\partial_{tt}^2 9\partial_{xx}^2 \partial_{xt}^2)\phi = 0$ and $\phi(x,t) = e^{i(kx+\omega t)}$, then what is the relation between k and ω ?
- 16. $\partial_t \phi(t, x) = \partial_{xx} \phi(t, x), \ \phi(0, x) = \sin(4x) + 5\cos(6x).$ Compute $\phi(t, x)$!