4a.
$$(1+1+1+2 \text{ pont})$$

 $y' = (-y^2 + 4)$.

Find the fixed points of the DE!

If y(0) = 0, compute

$$\lim_{x\to\infty} y(x) = ?$$

and

$$\lim_{x \to -\infty} y(x) = ?$$

Sketch the y(x) solution curves of the DE!

4b. (2+3 pont)

$$\frac{d}{dt} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -y_1 + 2 \\ 2y_2(-y_1 - 3y_2). \end{pmatrix}$$

Find the fixed points of the DE!

Write down the linearized DE around the fixed points!

1.
$$(4+(3+3) \text{ pont})$$

$$\frac{d}{dx}y = f(x,y) = x^2 + y - 2;$$

How much is y''? Write down the second order Taylor polynomial of y(x) around x = 0, if y(0) = 3!

b) Apply the Euler and the Heun methods for the following DEs with stepsize $\Delta x = 0.01$!

$$\frac{d}{dt}y = y^2 + t^2, \quad ,y(2) = 3.$$

What are the predictions for y(2.01)?

Euler:

Heun:

2.
$$(4+3+3 \text{ pont})$$

$$\frac{d}{dt}\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -y_1 + 2y_2 \\ 2y_1 - y_2 \end{pmatrix} = A\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \qquad \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Find the eigenvalues and eigenvectors of A!

Write down the general solution of the DE!

Compute the particular solution!

$$((3+2)+2+3 \text{ pont})$$

$$A = \begin{pmatrix} -1 & 0 \\ 6 & -1 \end{pmatrix}$$

How much is e^{tA} ?

Express the solution of the following DE

$$\frac{d}{dt} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -y_1 \\ 6y_1 - y_2 \end{pmatrix}, \qquad \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

with e^{tA} !

3b) Express the following DE as a first order system!

$$\frac{d^2}{dt^2}\begin{pmatrix}y_1\\y_2\end{pmatrix}=\begin{pmatrix}{\dot{y_1}}^2-y_2\\2\dot{y}_2-3\dot{y}_1\end{pmatrix}$$

3c)

Let $x_{n+1} = 1.2x_n - 20$, $x_0 = 1234$. How much is x_n ?