1. Metric Spaces

- a) Show that $d_1(x, y) = \sqrt{|x y|}$ defines a metric on the set of all real numbers.
- b) Does $d_2(x,y) = |x-2y|$ define a metric on the set of all real numbers? And $d_3(x,y) = \frac{|x-y|}{1+|x-y|}$?
- c) Prove that l^p is a metric space!

2. Convergence and Cauchy Sequence in Metric Spaces

- a) If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges. Give illustrative examples!
- b) Let (X, d) be a metric space and $(x_n) : \mathbb{N} \to X$. If (x_n) is Cauchy sequence and has a convergent subsequence, show that (x_n) is convergent with the limit x.
- c) If d_1 and d_2 are metrics on the same set X and there are positive numbers α and β such that for all $x, y \in X$,

$$\alpha d_1(x, y) \le d_2(x, y) \le \beta d_1(x, y),$$

show that the Cauchy sequences in (X, d_1) and (X, d_2) are the same.

3. Vector Spaces, Banach Spaces, Hilbert spaces

a) If $S \subset V$ be a linear subspace of a vector space show that the relation on V

$$v_1 \sim v_2 \quad \Leftrightarrow \quad v_1 - v_2 \in S$$

is an equivalence relation and that the set of equivalence classes, denoted usually V/S, is a vector space in a natural way.

- b) Can every metric on a vector space be obtained from a norm? Reason for your answer!
- c) Show that an normed space L is a Banach space if and only if from the convergence of $\sum ||x_i||$ we get the convergence of the serie $\sum x_i$ in L.
- d) Prove that the space l^p with $p \neq 2$ is not a Hilbert space.