1. Metric Spaces

- a) Show that $d_1(x, y) = |x y|$ defines a metric on the set of all real numbers.
- b) Does $d_2(x, y) = (x y)^2$ define a metric on the set of all real numbers? And $d_3(x, y) = |x^2 y^2|$? Give reason for your answer!
- c) Let (X, d) be a metric space and

$$\tilde{d}: X \times X \to \mathbb{R}, \qquad \tilde{d}(x,y) := \frac{d(x,y)}{1+d(x,y)}.$$

Show that (X, \tilde{d}) is a metric space.

2. Convergence and Cauchy Sequence in Metric Spaces

- a) Let (X, d) be a metric space and $(x_n), (y_n) : \mathbb{N} \to X$. If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that the real sequence (a_n) , where $a_n = d(x_n, y_n)$, converges.
- b) Let (X, d) be a metric space and $(x_n) : \mathbb{N} \to X$. If (x_n) is a Cauchy sequence and has a convergent subsequence, show that (x_n) is convergent.

3. Vector Spaces, Banach Spaces, Hilbert spaces

a) Show that if V is a vector space and $S \subset V$ is a subset which is closed under addition and scalar multiplication:

(that is: $v_1, v_2 \in S, \lambda \in \mathbb{K} \implies v_1 + v_2 \in S$ and $\lambda v_1 \in S$),

then S is a vector space as well.

- b) Can every metric on a vector space be obtained from a norm? Give reason for your answer!
- c) Show that a normed space L is a Banach space if and only if from the convergence of $\sum ||x_i||$ we get the convergence of the serie $\sum x_i$ in L.
- d) Prove that the space l^p with $p \neq 2$ is not a Hilbert space.