Kód: GE-MAN-278 |
Matematika VII.
|
Mat. VII.
|
2 előadás, 1 gyak. |
kredit: 3 |
Analízis Tanszék |
|
aláírás, gyak. VII. |
Tantárgyfelelős: Dr. Kovács Béla egyetemi docens
ajánlott félév: 7.
előfeltétel: GE-MAN-228
A tantárgy státusza:
kötelezően választható
A tantárgy feladata: A parciális differenciálegyenletek elméleti alapjainak elsajátítása és megoldási módszereinek begyakorlása.
Tematika:
A pde-knél szokványos jelölések, elnevezések PDE-k tipusai, alkalmazási területek. Kétváltozós kvázilineáris d.e.-k kanonikus alakja. Elliptikus, parabólikus és hiperbólikus tipusú d.e.-k kanonikus alakra hozatala. Elliptikus tipusu pde Diricklet feladata. Laplace egyenlet megoldásai. A Poisson-egyenlet megoldása. Neumann-féle feladat. A Laplace-egyenlet megoldása Green fv.-el. A Laplace-egyenlet megoldása Fourier-módszerrel. Poisson-egyenlet visszavezetése Laplace-egyenletre. A Laplace operátor sajátértékproblémája kör tartomány esetén. A Laplace operátor sajátértékproblémája téglalap alakú tartomány esetén.
Parabólikus tipusú kezdetiérték feladatok. Hiperbólikus tipusú kezdetiérték feladatok.
Számonkérés:
gyakorlat: két zárthelyi dolgozat legalább elégséges szintű megírása
vizsga -
Oktatási módszer: írásvetítővel fóliákról.
Oktatási segédletek: Dr. Szarka Zoltán: Alkalmazott Matematika
Jelentkezés és korlátozások: jelentkezés a regisztrációs héten, minimális létszám: 5 fő