Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u=4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1),(3,3),(5,2),(6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteliau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Mark: 0-11 (1), 12-15 (2), 16-18 (3), 19-21 (4), 22-24 (5)

Neptun code:

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u=4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1),(3,3),(5,2),(6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t=0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2, -1), (3, 3), (5, 2), (6, -4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Histogram calculation (2 points)

(2) Describe (by using mathematical formulas and/or pseudo code) the calculation of image histogram!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Linear convolution (2 points)

(2) Let describe the linear convolutional filter by using a two dimensional kernel matrix!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u=4!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u=4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2, -1), (3, 3), (-5, 2), (6, 4), (8, 4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Histogram calculation (2 points)

(2) Describe (by using mathematical formulas and/or pseudo code) the calculation of image histogram!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1),(3,3),(5,2),(6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Histogram calculation (2 points)

(2) Describe (by using mathematical formulas and/or pseudo code) the calculation of image histogram!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1),(3,3),(5,2),(6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) How can we obtain the tangent vectors in the case of splines, only using the neighbour points?
- (1) What is the Catmull-Rom spline? How can we calculate it?
- (2) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Histogram calculation (2 points)

(2) Describe (by using mathematical formulas and/or pseudo code) the calculation of image histogram!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Histogram calculation (2 points)

(2) Describe (by using mathematical formulas and/or pseudo code) the calculation of image histogram!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t=0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline ($\tau = 0.5$)!
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t=0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t=0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Splines (4 points)

- (1) How can we obtain the tangent vectors in the case of splines, only using the neighbour points?
- (1) What is the Catmull-Rom spline? How can we calculate it?
- (2) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u=4!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Linear convolution (2 points)

(2) Let describe the linear convolutional filter by using a two dimensional kernel matrix!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline ($\tau = 0.5$)!
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) How can we obtain the tangent vectors in the case of splines, only using the neighbour points?
- (1) What is the Catmull-Rom spline? How can we calculate it?
- (2) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Linear convolution (2 points)

(2) Let describe the linear convolutional filter by using a two dimensional kernel matrix!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1),(3,3),(5,2),(6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

(1) Let calculate the point of the Bézier curve at the parameter t=0.4 by using the de Casteljau algorithm!

- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Mark: 0-11 (1), 12-15 (2), 16-18 (3), 19-21 (4), 22-24 (5)

Name:

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Histogram calculation (2 points)

(2) Describe (by using mathematical formulas and/or pseudo code) the calculation of image histogram!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) How can we obtain the tangent vectors in the case of splines, only using the neighbour points?
- (1) What is the Catmull-Rom spline? How can we calculate it?
- (2) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline ($\tau = 0.5$)!
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2, -1), (3, 3), (-5, 2), (6, 4), (8, 4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2, -1), (3, 3), (-5, 2), (6, 4), (8, 4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) How can we obtain the tangent vectors in the case of splines, only using the neighbour points?
- (1) What is the Catmull-Rom spline? How can we calculate it?
- (2) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline ($\tau = 0.5$)!
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) How can we obtain the tangent vectors in the case of splines, only using the neighbour points?
- (1) What is the Catmull-Rom spline? How can we calculate it?
- (2) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Linear convolution (2 points)

(2) Let describe the linear convolutional filter by using a two dimensional kernel matrix!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Splines (4 points)

- (1) How can we obtain the tangent vectors in the case of splines, only using the neighbour points?
- (1) What is the Catmull-Rom spline? How can we calculate it?
- (2) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Mark: 0-11 (1), 12-15 (2), 16-18 (3), 19-21 (4), 22-24 (5)

Neptun code:

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline ($\tau = 0.5$)!
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let define the Bernstein polynomial (of degree n)!
- (1) Let describe the parametric form of the Bézier curve by using Bernstein polynomials!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1),(3,3),(5,2),(6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Linear convolution (2 points)

(2) Let describe the linear convolutional filter by using a two dimensional kernel matrix!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1),(3,3),(5,2),(6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t=0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Histogram calculation (2 points)

(2) Describe (by using mathematical formulas and/or pseudo code) the calculation of image histogram!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) How can we obtain the tangent vectors in the case of splines, only using the neighbour points?
- (1) What is the Catmull-Rom spline? How can we calculate it?
- (2) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1),(3,3),(-5,2),(6,4),(8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Histogram calculation (2 points)

(2) Describe (by using mathematical formulas and/or pseudo code) the calculation of image histogram!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Histogram calculation (2 points)

(2) Describe (by using mathematical formulas and/or pseudo code) the calculation of image histogram!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t=0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Linear convolution (2 points)

(2) Let describe the linear convolutional filter by using a two dimensional kernel matrix!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Interpolation (4 points)

- (1) Let introduce the problem of the interpolation!
- (2) Show the solution of the interpolation by using Lagrange interpolation (polynomials)!
- (1) Mention some benefits and drawbacks of using this method!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) How can we obtain the tangent vectors in the case of splines, only using the neighbour points?
- (1) What is the Catmull-Rom spline? How can we calculate it?
- (2) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2,-1), (3,3), (-5,2), (6,4) on the plane, and the corresponding parameter values 1,3,5,6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u=4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u=4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Linear convolution (2 points)

(2) Let describe the linear convolutional filter by using a two dimensional kernel matrix!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Splines (4 points)

- (1) What are the advantages of using the splines?
- (1) How can we construct splines by using Hermite arcs?
- (1) What are the Bessel parabolas?
- (1) How can we use the Bessel parabolas in the case of splines?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Image formats (2 points)

- (1) Let overview the main image formats and their commonly used classification!
- (1) List the most frequently used file formats and describe them (with mentioning the abbreviations)!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Histogram calculation (2 points)

(2) Describe (by using mathematical formulas and/or pseudo code) the calculation of image histogram!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Histogram calculation (2 points)

(2) Describe (by using mathematical formulas and/or pseudo code) the calculation of image histogram!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Overhauser spline (4 points)

- (1) What is the Overhauser spline?
- (2) How can we calculate it (in parametric form)?
- (1) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (Overhauser) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (3) Let calculate the Overhauser spline!
- (1) Let plot the spline (and the Bessel parabolas)!
- (1) Let determine the tangent vectors at the parameter values!
- (1) Let calculate the point of the curve at the parameter u = 4!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (Bézier) (6 points)

Let given the points (2,-1), (3,3), (5,2), (6,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t=0.4 by using the Bernstein polynomials!
- (1) Let plot the Bézier curve!
- (1) Let plot the used Bernstein polynomials!
- (1) Let calculate the normal vector at the endpoints of the curve!
- (2) Elevate the degree of the curve! Let draw a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Splines (4 points)

- (1) How can we obtain the tangent vectors in the case of splines, only using the neighbour points?
- (1) What is the Catmull-Rom spline? How can we calculate it?
- (2) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) How can we split the Bézier curve at the parameter $c \in \mathbb{R}!$
- (1) How can we elevate the degree of a Bézier curve?
- (2) Let illustrate the methods by figures!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Median filter (2 points)

- (1) Let define the method of median filtering!
- (1) Describe the main characteristics of the median filtering!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Splines (4 points)

- (1) How can we obtain the tangent vectors in the case of splines, only using the neighbour points?
- (1) What is the Catmull-Rom spline? How can we calculate it?
- (2) Let draw a figure as part of the answer!

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Swept surfaces (4 points)

- (1) How can we obtain swepts surfaces?
- (1) Let write its parametric form!
- (1) Let draw figure!
- (1) Mention some surfaces which can be created by using this method!

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

${\bf Task~6~Numerical~exercise~(Catmull-Rom)~\it (6~points)}$

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let name the frequently used point-wise properties of the spatial curves!
- (1) What is the curve length and how can we calculate it?
- (1) Let define the curvature!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) Let introduce the de Casteljau algorithm!
- (1) Illustrate the algorithm on a figure!
- (2) Let describe (at least 4 of) the main properties of the Bézier curves!

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (de Casteliau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Mark: 0-11 (1), 12-15 (2), 16-18 (3), 19-21 (4), 22-24 (5)

Name:

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Curve parametrization (4 points)

(4) What are the commonly used parametrization methods in the case of spline interpolation?

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5

Grayscale mapping (2 points)

(2) Let define at least 3 calculation methods, which are able to map an RGB color to a grayscale color!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

- (1) Let calculate the point of the Bézier curve at the parameter t = 0.4 by using the de Casteljau algorithm!
- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Mark: 0-11 (1), 12-15 (2), 16-18 (3), 19-21 (4), 22-24 (5)

Name:

Neptun code:

Exam GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve description methods (4 points)

- (1) Let introduce the description methods of the planar and spatial curves!
- (1) Let define the tangent vector and the binormal vector!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Gaussian filter (2 points)

- (1) What is the Gaussian filter?
- (1) Show an example as an approximation by using discrete linear convolution!

Task 6 Numerical exercise (de Casteljau) (6 points)

Let given the points (2,1), (3,3), (5,2), (6,4), (8,-4) on the plane!

(1) Let calculate the point of the Bézier curve at the parameter t=0.4 by using the de Casteljau algorithm!

- (1) Let mention the steps of the calculations and plot the resulted curve!
- (1) Let determine the equation of the tangent line at the given point!
- (1) Let calculate the normal vector at the given point!
- (2) Let split the curve at the given parameter! Write the control points of the resulted curves and illustrate the splitting process with a figure!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Frennet-Serret Frame (4 points)

- (1) Let define the Frennet-Serret Frame for the spatial curves $\mathbf{r}(t), t \in [a, b]$.
- (1) Let name its vectors and
- (1) planes.
- (1) Let visualize it on a figure!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Parametric surfaces (4 points)

- (1) How can we describe the surfaces (from mathematical standpoints)?
- (1) What is the differential geometric definition of the surface?
- (2) What are the commonly used point-wise properties of the surfaces?

Task 5 Noise types (2 points)

(2) List at least 4 types of noises and their reasons!

Task 6 Numerical exercise (Lagrange) (6 points)

Let given the points (2, -1), (3, 3), (-5, 2), (6, 4) on the plane, and the corresponding parameter values 1, 3, 5, 6.

- (2) Let calculate the Lagrange interpolation curve!
- (1) Let plot the curve!
- (1) Let calculate and draw the tangent vectors at the interpolation points!
- (1) Let calculate the point of the curve at the parameter u = 4!
- (1) Let determine the normal vector at the given point!

Neptun code:

Exam

GEOMETRIC MODELING AND ITS APPLICATIONS (GEAGT232-M)

Task 1 Curve properties (4 points)

- (1) Let define the tangent line!
- (1) Let define the curvature!
- (1) Let define the osculating circle!
- (1) Let draw figures for the mentioned concepts!

Task 2 Hermite arcs (4 points)

- (1) What is the Hermite arc?
- (1) Let introduce the constrainst and illustrate with a figure!
- (1) How can we solve it (by using matrix form)?
- (1) Let define the Hermite polynomials of degree 3!

Task 3 Bézier curve (4 points)

- (1) What are the connections between the de Casteljau algorithm and the Bernstein polynomial form of the Bézier cuve?
- (1) How can we calculate the derivative of the Bézier curve?
- (1) Let define the hodograph!
- (1) What does the variation diminishing property means?

Task 4 Ruled surfaces (4 points)

- (1) What are the ruled surfaces?
- (2) Let mention the two, frequently used ways how can we obtain them!
- (1) Let create figures!

Task 5 Histogram operations (2 points)

- (1) Let describe the histogram stretching and histogram equalization methods!
- (1) Let illustrate it by drawing a figure!

Task 6 Numerical exercise (Catmull-Rom) (6 points)

Let given the point (2,-1), (3,3), (-5,2), (6,4), (8,4) on the plane.

- (2) Let calculate the tangent vectors of the Catmull-Rom spline $(\tau = 0.5)!$
- (1) Let plot the curve and the tangent vectors!
- (3) Let determine the uniform, the cord length proportional, the centripetal parametrization!