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Alphabet, word
A (generally finite), not empty set is called alphabet.
Items of an alphabet (items comprising the set)are called
symbols (characters, letters, punctuation marks).
The finite sequence of items chosen from an alphabet is
called a word over the specific alphabet. Words are
denoted by a Greek letter. e.g.: α is a word over the A
alphabet. (α ≪ A)
The length of an α word over an alphabet is the number of
symbols in it.
The word ε over an alphabet is called empty word. The
symbol of the empty word is usually ϵ or ε a Greek letter
(epsilon).
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Finite Words
If A is a finite not empty set, it can bee seen as an alphabet. As
we have mentioned earlier items of an alphabet are called
letters or symbols. The sequence chosen from the elements
a0,a1, . . . ,an of set A are called words over alphabet A. Also,
as you could see earlier the length of such words is the same
as the number of symbols in them.
This can be given in the |a1 . . . an|, or the L(a1 . . . an) forms but
it is much easier to simply denote words with letters α, β, . . ..
Then the length of the word is given in the L(α), or in the |α|
form.
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Finite Words
A specific word comprises of the symbols of the particular
alphabet raised to a power:
A∗ means all the words over the A alphabet (including the
empty word).

A+ = A \ {ε},

and

An = {α ∈ A∗ | |α| = n} = {a1,a2, . . . ,an|ai ∈ A}.

This implies that the A+ is the set of words over A, except for
the empty word. An means the set of words with the length of n
and A0 = {ε}, where |ε|, namely L(ε) = 0.
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Concatenation
The first operation on words is concatenation (multiplication of
words), which simply means that we form new words from two
or more words (these can be seen as parts of a compound)
forming a compound.
Concatenation of the words α and β over alphabet A is the
word γ over alphabet A which we get by writing the symbols of
word β after the symbols of word α. Concatenation is denoted
with +.
Example: If α = "apple" and β = "tree" then α+ β =
"appletree".
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Concatenation
If you want to define operations informally, then the following
definition will be appropriate:
Definition 1 (Concatenation)
Consider α, and β words over the A alphabet, namely words
constructed from symbols of the alphabet. The result of α+ β
(or simply αβ) is the concatenation of the two words, so that
γ = αβ, where |γ| = |α|+ |β|, so the length of the new word is
the sum of the length of the two components.
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Concatenation
Now, let us have a look at the fully formal definition:
Definition 2 (Concatenation)
If α = a1,a2, . . . ,an, and β = b1,b2, . . . ,bm are words over
alphabet A then:

γ = αβ = a1a2 . . . anb1b2 . . . bm.
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Properties of Concatenation
Consider α ≪ A (word α over alphabet A):

α0 = ε (any word to the power of zero is the empty word).
αn = α+ αn−1 (n ≥ 1) (any word to the power of n is the n
times concatenation of the word)
word α is the prefix of γ and since the length of α is not
zero (|α| ≠ 0), this is a real prefix
word β is the suffix of γ and since the length of β is not
zero (|β| ≠ 0), it is a real suffix
the operation is associative so α(βγ) is equivalent with the
(αβ)γ operation.
the operation is not commutative so αβ ̸= βα.
the operation has a neutral element so εα = αε, and it is
monoid with the A∗ alphabet or more precisely with the set
operation

Associative, not commutative, there is a neutral element.
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Raising Words to a Power
Definition 3 (Power of Words)

α0 = ε

and
αn = αn−1α.

Then, if n ≥ 1, namely the nth power of word α is the n times
concatenation of the word.
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From this operation we can also conclude several things:
word α is primitive if it is not the nth power of any other
word, namely α is primitive if α = βn and β ̸= ε ⇒ n = 1.
For example α = abcdefgh is primitive but word
123123123 is not because α = (123)3

Words α, and β are each others’ conjugates, if there is a
α = γδ, and β = δγ.
α = a1,a2, . . . ,an is periodic if there is a k > 1 number, so
that for the ai = ai+k , i = 1,2, . . . ,n − k values, so that k is
the period of word α. The smallest period of word
α = 1231231 is 3.
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Reversal of Words
Definition 4 (Reversal of Words)
In case of word α = a1,a2, . . . ,am word αT = am,am−1, . . . ,a1
is the reversal of α. If αT = α, the word is a palindrome.

It can also be derived from the above that (αT )T = α, so by
reversing the word α twice we get the original word.

Examples
word abccba is a palindrome word texts asantatnasa, or
amoreroma are also palindrome texts and upper case and
smaller case letters are considered equivalent.
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Subwords
Definition 5 (Subword)
Word β is subword of word α if there are words γ, and δ in a
way that α = γβδ, and γδ ̸= ε, namely if β is a real subword of
α.

Subwords
Definition 6 (Subwords with Various Length)
Denote the set of k length subwords of word α by Rk (α).
R(α) is the set of all such subwords so

R(α) =

|α|⋃
k=1

Rk (α).
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Example
Let α = abcd . Then

the 1 length subwords of the word are R1(α) = {a,b, c,d},
the 2 length subwords are R2(α) = {ab,bc, cd},
the 3 length are R3(α) = {abc,bcd},
and the only 4 length subword is the word itself
R4(α) = {abcd} = α.
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The complexity of words is based on the analysis of their
subwords. Based on the form of the word and its subwords, we
can define the complexity of the word. The complexity of a word
is the multiplicity and variety of its subwords.

Complexity of Words
Definition 7 (Complexity of Words)
The complexity of a word is the number of its subwords of
different length. The number of k length subwords of word α is
rα(k).
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Maximal Complexity
Definition 8 (Maximal Complexity)
Maximal complexity can only be interpreted on finite words and

Max(α) = max{rα(k) | k ̸= 1}, α ∈ A∗,

where A∗ is the Kleene star derived from the particular
alphabet. (On infinite words we can interpret bottom or top
maximal complexity.)
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As a word can have maximal complexity, it can also have global
maximal complexity shown in the definition below

Global Maximal Complexity
Definition 9 (Global Maximal Complexity)
Global maximal complexity is the sum of the number of
nonempty subwords of a word, namely

Tb(α) =
|α|∑
i=1

rα(i), α ∈ A ∗ .
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Complexity of Sentences
Now we deal with the complexity of sentences of programs
more precisely the language constructions of various
programming languages characterizing the particular paradigm.
Every programming language contains numerous language
elements which can be embedded and which elements can be
used one after the other. We can create more complex
constructions like functions or methods which also consist of
various language elements.
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Complexity of Sentences
In the complexity of programs we measure the quality of the
source text based on which we can get an insight to its
structure, characteristics and the joint complexity of
programming elements. Based on complexity we can estimate
the cost of testing, developing and changing the program text.
Complexity of software can be measured based on the
complexity (structure) and size of the program. We can observe
the source text in development phases (process metrics), or the
ready program based on its usability. This kind of analysis
features the end product (product metrics), but it is strongly tied
to the source text and to the model based on which the source
text was built.
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Complexity of Sentences
Structural complexity can also be measured based on the cost
of development (cost metrics), or based on the cost of effort
(effort metrics) or based on the advancement of development
(advancement), or based on reliability (non-reliability (number
of errors)). You can measure the source text by defining the
rate of reusability numerically (reusable) or you can measure
functionality functionality, or usability, however, all complexity
metrics focus on the three concepts below:

size
complexity
style.
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Problems with Complexity
Thomas J. McCabe pointed out how important the analysis of
the structure of the source code was in 1976.
In his article McCabe describes that even the ideal 50 line long
modules with 25 consecutive IF THEN ELSE constructions
include 33.5 million branches. Such a high number of branches
can not be tested within the length of a human lifetime and thus
it is impossible to verify the propriety of the program .
The problem reveals that the complexity of programs, the
number of control structures, the depth of embedding and all
the other measurable attributes of the source code have an
important impact on the cost of testing, debugging and
modifying.
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McCabe’s Cyclomatic Complexity Number
The value of the complexity metric of mccabe is the same as
the number of basic paths defined in the control graph, namely
it is the same as the number of possible outputs of the function
disregarding the paths of functions within the function.
The Mc Cabe cyclomatic number originally was developed to
measure subroutines of procedural languages.
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The cyclomatic number of programs is defined as follows:

McCabe’s Cyclomatic Complexity Number
Definition 10 [Mc Cabe’s cyclomatic number]
The cyclomatic number V (G) of control graph G = (v ,e) is

V (G) = e − v + 2p,

where p denotes the number of graph components, which is the
same as the number of linearly coherent cycles in a highly
coherent graph.
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McCabe’s Cyclomatic Complexity Number
Example
Let us have a look at a concrete example of applying a
cyclomatic number. Consider our program has 4 conditional
branches and a conditional loop with a complex condition, with
precisely 2 conditions.
Then the cyclomatic number is the number of conditional
choices, so that we add one to the number of conditional
decisions and count the complex condition twice. We must do
so because we must count all the decisions in our program, so
the result of our calculation in this program is seven.
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Infinite Words
Besides finite words we can also interpret infinite words, which
can also be constructed from items of an alphabet, like finite
ones.

αw = a1a2 . . . an . . .

infinite words constructed from ∀a ∈ A symbols are right
infinite, namely the αw word is right infinite.
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Infinite Words
Definition 11 (Infinite Words)
Consider Aw to denote the set of right infinite words, and the
set of finite and infinite words over the A alphabet is denote

Aall = A∗ ∪ Aw .

In this case, the case of infinite words, we can also interpret
concepts of subword, prefix and suffix.
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Besides words we can also carry out operations with alphabets.
These operations are important because through their
understanding we can get to the definition of formal languages.

Operations with Alphabets
Definition 12
If A and B are two alphabets, then

A ∗ B := {ab |a ∈ A,b ∈ B}.

This operation is called complex multiplication.
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Note
So the complex product of two alphabets is an alphabet whose
characters are couplets having the first symbol from the first
alphabet and the second one from the second alphabet.

Example

Let A := {a,b}, and B := {0,1}. Then

C := A ∗ B := {a0,a1,b0,b1}.

Based on this, the word over alphabet C is for example
α = ”a0b0a1”, and L(α) = 3, as that word comprises of three
symbols from C”a0”, a ”b0”, and ”a1”.
At the same time however for example word ”a0aba1” can not
be a word over C because it can not be constructed using the
symbols of C only.

Attila Házy

Formal Languages and Automatons



Operations with Words and Alphabets Operations with Finite Words Complexity Formal Languages

Definition
Definition 13
Consider an A alphabet. A0 := ε, so the zeroth power of every
alphabet is a set with one element the ε (empty word).

Definition
Definition 14
An := A ∗ An−1 where n ≥ 1. So the nth power of an alphabet is
the n times complex product of the alphabet.

A0 = ε is necessary since A1 = A ∗A0, and we must get back A!
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Note
Based on the above mentioned the 3rd power of the A alphabet
is an alphabet whose every element consists of three
characters.
Generally: the nth power is an alphabet whose every element
has the length of n.

Example

If A = {a,b}, then A2 = {aa,ab,ba,bb}. This set can also be
seen as the set of words with a length of 2 over the A alphabet.
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Definition
Definition 15
Let V := {α |α ≪ A and L(α) = 1. So consider set V the set of
words of one length over the A alphabet. It is denoted V ∗1 ≪ A
or V for short.

Definition
Definition 16
The contextual product over the V set

V ⊗ V := {αβ |α ∈ V and β ∈ V}

is the set containing words which are constructed from words in
a way that we concatenate every one of them with each other.
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Note
In fact set V consists of words with the length of one. Words
with a length of 2 comprise set V ⊗ V .

Definition
Definition 17
V 0 := {ε}, and V n := V ⊗ V n−1 if n ≥ 1. Then

V∗ :=
∞⋃

i=0

V i = V 0 ∪ V 1 ∪ V 2 ∪ . . .

set is called the Kleene star of "V".
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Its elements are the empty word, the words with the length of
one and words with the length of two etc...

Definition
Definition 18
The

V+ :=
∞⋃

i=1

V i = V 1 ∪ V 2 ∪ V 3 ∪ . . .

set is the positive closure of of "V".

It is easy to see: V∗ = V + ∪ε.
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Example
Elements of V+ are words with the length of one,length of two
etc., so V+ does not include the empty word.

If V := {a,b}. Then

V∗ = {ε,a,b,aa,ab,ba,bb,aaa,aab, . . .}

and
V+ = {a,b,aa,ab,ba,bb,aaa,aab, . . .}

α ∈ V∗ means that α is a word of arbitrary length L(α) ≥ 0.
α ∈ V+ means that α is a word of arbitrary length but it
can not be empty L(α) ≥ 1.
If V = {0,1}, then V∗ is the set of binary numbers (and
contains ε too).
If V = {0}, W = {1}, then (V ∪ W )∗ = {(01)n|n ∈ N}.
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Example

Let S := {0,1, . . . ,9} as a basis, let us write the regular
expression that matches every integer number:

(0,1,2,3,4,5,6,7,8,9)+

Note the (+) sign at the end of the expression, which is there to
denote the positive closure of the set (expression). Positive
closure means that the expression can not generate the empty
word, namely you must always have at least one digit, or any
number of digits in an arbitrary order.
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Definiton
Definition 19
Consider V ∗1 ≪ A. We call an L ⊆ V∗ set a formal language
over alphabet A.

Note
In fact a formal language is the subset of the set of words of
arbitrary length over a particular alphabet, namely a formal
language is a defined set of words constructed from symbols of
a particular alphabet.

Note
A formal language can consist of a finite or infinite number of
words and it can contain the empty word as well.
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Definiton
Definition 19
Consider V ∗1 ≪ A. We call an L ⊆ V∗ set a formal language
over alphabet A.

Note
In fact a formal language is the subset of the set of words of
arbitrary length over a particular alphabet, namely a formal
language is a defined set of words constructed from symbols of
a particular alphabet.

Note
A formal language can consist of a finite or infinite number of
words and it can contain the empty word as well.
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Examples

A := {a,b}, V ∗1 ≪ A. Then the

L := {a,ab,abb,abbb,abbbb, . . .}

language is a formal language over A alphabet which
contains an infinite number of words (a language
containing words beginning with a and continuing with an
arbitrary number of bs).
A := {a,b}, V ∗1 ≪ A. Then the

L := {ab,ba,abab,baab,aabb, . . .}

is a formal language over alphabet A containing an infinite
number of words (words in which there are as many as as
bs).
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Definition
Definition 20
If L1,L2 are two formal languages, then

L1 ∗ L2 := {αβ |α ∈ L1 and β ∈ L2}.

This operation is called contextual multiplication of
languages.

Contextual multiplication is distributive:

L1 ∗ (L2 ∪ L3) = L1 ∗ L2 ∪ L1 ∗ L3.
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A formal language can be defined in many ways:
With enumeration.
We can give one or more attributes the words of the
language all share, but other words do not.
With the textual description of the rules for constructing
words.
With the mathematical definition of the rules for
constructing words.
With Generative Grammar.
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Enumeration of the elements is not the most effective tool and
is only possible in case of finite languages, but it is not always
simple even with them.

L1 = {a,b, c,d , . . . , z},
L2 = {0,1,2,3,4, . . . ,9},
or
L2 = a,ab,abc, . . ..
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Textual description could be a little bit better solution but it has
the drawback of ambiguity and it is also very hard to create an
algorithm or program based on it. To comprehend all this, let us
have a look at the example:
Consider L1 a language that includes integer numbers but only
the ones that are greater than three...
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Another example is when we define a language, with some
attributes, using a mathematical formula.
When we define a language with some attributes, like in the
following example.

Consider L3 := L1 ∗ L2 a language (a language of odd
numbers that include at least one even digit). This form
contains textual definition which can be completely omitted
in case of mathematical formulas.
L := {0n10n |n ≥ 1}, namely there is a 1 in the middle of
the number with the same amount of 0s before and after it.
L4 = {anbn |n = 1,2,3, . . .}
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Exercises
Raise the word "pear" to its 4th power.
Give the number of subwords in word: "abcabcdef"
Decide which word has a greater complexity, "ababcdeabc"
or "1232312345".
Give the Descartes product of the following two alphabets:
A = {0,1} and B = {a,b}.
Give the complex product of the two sets defined in the
previous exercise.
Define the set which contains even natural numbers.
Give the textual definition of the following language:
L1 = {0,1,2,3,4,5,6,7,8,9}.
Give the mathematical definition of the language which
consists of words with the length of 2 where the first
symbol of every word is a 0 and the second symbol is an
arbitrary symbol from the English alphabet.
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