
Classical error analysis 

 

Introduction 

 

During the practical, technical calculations we rarely have accurate data at hand; 

we mostly must calculate with approximate values. Inaccuracy of the samples 

results inaccurate result values. The classical error analysis deals primarily with 

the spreading of the errors hidden in the input data. They affect the calculation 

results, their impact exerted to the calculation results, since the approximations 

are viable only if we know some upper bound of the error. Fortunately, such 

bounds usually can be determined. 

Let 𝑥 be an accurate value, and 𝑎 the approximation of 𝑥. With the usual 

denotation: 𝑥 ≈ 𝑎. 

The 𝑥 − 𝑎 difference is called the error of the 𝑎 approximation. 

The |𝑥 −𝑎| number is called the absolute error of the 𝑎 approximation. 

The 𝛥𝑎 value (which stands for |𝑥 −𝑎| ≤ ∆𝑎 ) is called the bound of the 

absolute error of the approximation 𝑎. 

The relative error of some 𝑎 approximate value of number 𝑥 is the 
|𝑥−𝑎|

|𝑥|
 amount. 

We call the 𝛿𝑎 value (which stands for 
|𝑥−𝑎|

|𝑥|
≤ 𝛿𝑎), the relative error bound of 

the 𝑎 approximation. Since the accurate x value is usually not known, therefore 

we often use the approximation 𝛿𝑎 ≈
𝛥𝑎

|𝑎|
 for the relative error bound. 

Remarks: 

      1) |𝑥 − 𝑎| ≤ 𝛥𝑎 ⟺ 𝑥 ∈ [𝑎 − 𝛥𝑎, 𝑎 + 𝛥𝑎], therefore we often use the   

  𝑥 = 𝑎 ± 𝛥𝑎  reference as well. 

      2) The absolute error bound does not give any information about the real 

accuracy of the approximation, therefore we introduce the concept of relative 

error, which compares the error to the accurate value. For example, the same 

approximation with a 0.05 absolute error bound means an entirely different 

accuracy if we are talking about the approximation of a 

hypothetically 1000 magnitude value then if the magnitude of the approximated 

value is 0.001. 



      3) In the practice (inaccurately according to the definitions above) people refer 

to the absolute error bound as absolute error and to the relative error limit as 

relative error. 

      4) The relative error is a quantity without a unit of measurement; its value can 

also be given in percentage. 

 

Example: 

      Let the accurate value be 𝑥 = 𝜋. Its most frequently used approximation: 𝑎 =

3.14. We cannot define the extent of the 𝑥 − 𝑎 error and the |𝑥 − 𝑎| absolute 

error, since 𝜋 is an irrational number. We do not know its accurate value. We can 

estimate the upper bound of the absolute error. It will be 0.005 in case of the 

values rounded to two decimals. Thus the absolute error bound of the 

approximation: 𝛥𝑎 = 0.005, which means that the accurate value of π deviates at 

most by five thousands from the 3.14 approximate value: |𝜋 − 3.14| ≤ 0.005, 

so 𝜋 ∈ [3.135; 3.145], with the regular notation: 𝜋 = 3.14 ± 0.005. 

      We give the relative error bound (relative error) of the approximation with the 

quotient of the absolute error bound and the approximation:  

𝛿𝑎 ≈
𝛥𝑎

|𝑎|
= 0.0053.14 ≈ 0.00159 ≈ 0.16% 

The absolute error bounds of the basic operations 

 

Let 𝑥 and 𝑦 be accurate values, their approximations: 𝑥 ≈ 𝑎 and 𝑦 ≈ 𝑏, the 

absolute error bounds of the approximation in turn 𝛥𝑎 and 𝛥𝑏 respectively, 

namely |𝑥 − 𝑎| ≤ 𝛥𝑎 and |𝑦 − 𝑏| ≤ 𝛥𝑏. The equations below give the absolute 

error bounds of the result of base operators. 

 

Theorem: 

∆(𝑎 + 𝑏) = ∆𝑎 + ∆𝑏 

∆(𝑎 − 𝑏) = ∆𝑎 + ∆𝑏 

                                             ∆(𝑎𝑏) ≈ |𝑎| ∙ ∆𝑏 + ∆𝑎 ∙ |𝑏| 

             ∆ (
𝑎

𝑏
) ≈

|𝑎|∙∆𝑏+∆𝑎∙|𝑏|

|𝑏|2  

 



Proof: 

     Addition: (based on the triangle inequality)  

|(𝑥 + 𝑦) − (𝑎 + 𝑏)| = |(𝑥 − 𝑎) + (𝑦 − 𝑏)| 

                                                        ≤  |𝑥 − 𝑎| + |𝑦 − 𝑏| ≤ 𝛥𝑎 + 𝛥𝑏 

     Subtraction: 

|(𝑥 − 𝑦) − (𝑎 − 𝑏)| = |(𝑥 − 𝑎) − (𝑦 − 𝑏)| 

                                                        ≤ |𝑥 − 𝑎| + |𝑦 − 𝑏| ≤ 𝛥𝑎 + 𝛥𝑏 

     Multiplication:  

|𝑥𝑦 − 𝑎𝑏| = |((𝑥 − 𝑎) + 𝑎)((𝑦 − 𝑏) + 𝑏) − 𝑎𝑏 |     

                                            =  |(𝑥 − 𝑎)(𝑦 − 𝑏) + (𝑥 − 𝑎)𝑏 + 𝑎(𝑦 − 𝑏) + 𝑎𝑏 − 𝑎𝑏| 

                      ≤ 𝛥𝑎 ∙ 𝛥𝑏 + |𝑏| ∙ 𝛥𝑎 + |𝑎| ∙ 𝛥𝑏 ≈ |𝑎| ∙ 𝛥𝑏 + |𝑏| ∙ 𝛥𝑎 

                                    (we ignore the 𝛥𝑎𝛥𝑏 second order error member) 

     Division: In the case of division, we obviously suppose that the denominator 

is not zero and we obtain 

|
𝑥

𝑦
−

𝑎

𝑏
| = |

𝑎 + ∆𝑎

𝑏 + ∆𝑏
−

𝑎

𝑏
| = |

−𝑎 ∙ ∆𝑏 + 𝑏 ∙ ∆𝑎

𝑏(𝑏 + ∆𝑏)
|                                   

≤
|𝑎| ∙ |∆𝑏| + |𝑏| ∙ |∆𝑎|

𝑏2 ∙ |1 +
∆𝑏
𝑏

|
≤

|𝑎| ∙ |∆𝑏| + |𝑏| ∙ |∆𝑎|

𝑏2
 

Here we can ignore the 
𝛥𝑏

𝑏
 member next to the 1. This is how we get the statement. 

Example: 

Let 𝑥 = 20 ± 0.5, and   𝑦 = 5 ± 0.1. 

Then  

        𝑎 = 20, 𝛥𝑎 = 0.5  

and  

         𝑏 = 5, 𝛥𝑏 = 0.1. 

In the case of addition and subtraction: 

𝛥(𝑎 + 𝑏) = 𝛥𝑎 + 𝛥𝑏 = 0.5 + 0.1 = 0.6 



 

𝛥(𝑎 − 𝑏) = 𝛥𝑎 + 𝛥𝑏 = 0.5 + 0.1 = 0.6 

Important: In the case of subtraction, the absolute errors are cumulated as well! 

Let us think it through. If the value of 𝑥 is the greatest possible (20.5) and 𝑦 the 

value of (4.9), then the difference of the accurate values is 15.6, namely it differs 

by 0.6 from the difference of the approximation values, from 15. (The situation 

is the same if 𝑥 is the minimum, and 𝑦 is the maximum value.) 

In the case of multiplication and division: 

∆(𝑎𝑏) ≈ |𝑎| ∙ ∆𝑏 + ∆𝑎 ∙ |𝑏| = 20 ∙ 0.1 + 5 ∙ 0.5 = 4.5 

∆ (
𝑎

𝑏
) ≈

|𝑎| ∙ ∆𝑏 + ∆𝑎 ∙ |𝑏|

|𝑏|2
=

20 ∙ 0.1 + 5 ∙ 0.5

52
= 0.18 

 

Let's examine how much the maximum value can be in case of multiplication! For 

this both factors have to be maximal, namely 20.5 ⋅ 5.1 = 104.55 is the 

maximum of the multiplication, namely the difference from the multiplication of 

the approximation values is 4.55, namely the accurate value of the absolute error 

limit of the multiplication. Our formula gives only the approximation of this 

value. It can be seen from the proof that we have ignored the multiplication of the 

error members, in our case the 0.5 ⋅ 0.1 = 0.05 amounts, which is just the 

difference of the result calculated in the two ways. In practice generally there is 

no other way to accurately calculate the errors (and usually it is enough to give 

only their magnitude), therefore we settle for the approximate results given in the 

formula. 

 

Remark: 

      The absolute error bound of the division in case of b close to 0 can be 

extremely large, therefore our algorithms must be adjusted in such a way that we 

divide with the number with the greater absolute value! 

 

 



 

 

The relative error bounds of the basic operations 

 

The relative error bounds of basic operations can be obtained, if we divide the 

absolute error bound for the operation by the absolute value of the approximation 

value to the operation. In case of addition, however, instead of the  

𝛿(𝑎 + 𝑏) 

 |𝑎 + 𝑏|
=

(𝛥𝑎 + 𝛥𝑏)

 |𝑎 + 𝑏|
 

correlation we use a rougher estimation, using the fact that the relative error of the 

value cannot be greater than the greatest of the relative errors of the members. In 

the other operations, we apply the definition of the relative error, and simplify 

where possible. 

Theorem: 

                                         
∆(𝑎+𝑏)

|𝑎+𝑏|
= 𝑚𝑎𝑥 { 

∆𝑎

|𝑎|
,

∆𝑏

|𝑏|
 } 

∆(𝑎 − 𝑏)

|𝑎 − 𝑏|
=

∆𝑎 + ∆𝑏

|𝑎 − 𝑏|
 

                                    
∆(𝑎𝑏)

|𝑎𝑏|
≈

∆𝑎

|𝑎|
+

∆𝑏

|𝑏|
 

         
∆(

𝑎

𝑏
)

|
𝑎

𝑏
|

≈
∆𝑎

|𝑎|
+

∆𝑏

|𝑏|
 

 

 

 



 

 

 

 

Exercises: 



 

 

  



 

 

 

 

 

 

 

 


