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Chapter 1

Prologue

Dear Reader. This lecture notes on formal languages and automata is un-
conventional in a way that it does not merely focus on the topic from the
viewpoint of mathematical formalisms but also from a practical point of view.

This does not mean that we brush aside mathematical formalisms, since
that attitude would lead to no end. Formalisms and the definitions defined
with their help are integral parts of both mathematics and informatics and
also, without doubt, they are integral parts of all branches of science.

Therefore, on these pages, besides definitions, given with mathematical
formalisms, you can find practical examples and their implementation from
the field of informatics.

This lecture notes is mainly for students studying program developing,
but it can also be useful for language teachers or linguists.

We have tried to structure the sections logically, and to sort the definitions
and their explanations so that their content would be easy to comprehend
even for those who have never dealt with algorithms, linguistics or with the
theoretical problems of compiler and analytical programs before.

In numerous sections of the lecture notes there are also exercises to be
found. These are mainly found at the end of each section, complemented with
their solutions. However, in some sections we have altered this structure and
the exercises that help you understand the definitions and their solutions are
placed next to them.

Many have helped me to complete this lecture note. I wish to express
my gratitude to Dr. Zoltán Hernyák, whose lecture notes for students in
the teacher training program served as a basis for my work and to Prof.Dr.
Zoltán Csörnyei, whose book entitled Compiler Programs was the basis for
the implementation of the algorithms in the section about analytical meth-
ods.

At last but not least I would also like to express my gratitude to Dr.
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Attila Egri-Nagy, whose knowledge and examples from the field of discrete
mathematics also helped in the completion of this lecture notes.



Chapter 2

Introduction

2.1 From Mathematical Formula to Implemen-
tation

In the lecture notes and generally in fields close to mathematics it is unavoid-
able to use the denotations and forms which are used in discrete mathematics
and other fields of mathematics. It is especially true in the world of formal
languages and automata.

When defining a language and the programs analyzing them, we often use
the denotation system that we use in set theory and definitions are specified
with sets and the the definitions of their operations.

Before getting started, we should deal with sets a little bit and let us
get to implementation or at least to planning phase through some simple
examples.

Sets will be denoted with capital letters of the English alphabet:

A,B,C, . . . , Z.

Set items will be denoted with lowercase letters of the same alphabet:

a, b, . . . , z,

In numerous places, in formal and informal definitions we also give the
exact values of sets:

A := {a, b, c},

B := {1, 2, 3, . . . , n}.

9



10 CHAPTER 2. INTRODUCTION

Sets, especially sets containing a large number of items, or infinite sets,
are not given with the enumeration of their items but, for practical reasons,
they are given with defining the criteria of belonging to the set, namely with
an algorithm defining the generation of set items.

B = {1, 2, 56, 34, 123, . . .},

A = {a| a ∈ B ∧ a > 2}
This type of denotation system is much more expressive and shorter than

enumeration and on the other hand it is also useful as it helps us get closer
to implementation.

If you inspect the denotation above, you can see that in fact the algorithm,
or the program generating set items, is given.

This method is known in languages representing the functional language
paradigm, it is also called set expression or list generator and in its imple-
mented form it does not differ much from the mathematical formula:

set() ->
A = [1, 2, 56, 34, 123],
[a || a <- A, a > 2].

...

B = set(),

The imperative language implementation is much more complicated. One
of the reasons for that is the power of expression in imperative languages is
much weaker than that of functional languages. In these kind of exercises,
the other reason is that there are only a few languages in which you can find
versions of sets supplied by the library modules of the language.

Due to all this we must create algorithms for ourselves, but it is worth
learning how to do it anyway.

It is obvious from the beginning that we should choose an iteration control
structure since with that we can generate more data consecutively. However,
in order to store the data you must find a homogeneous complex data struc-
ture that can be indexed. Such data structure is the array or the list.
Let us try to plan the program that generates set

B = {a | a ∈ A, a > 2}
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from the elements of set

A = {1, 2, 56, 34, 123}

For the sake of illustration we give the items of A in a constant array or in
a list (according to the possibilities of the language use for implementation)
then traversing this list with a loop we place every single item that matches
condition a > 2 into an initially empty but continuously growing list.

INTEGER[] A = [1, 2, 56, 34, 123];
INTEGER Length = LENGTH(A);

INTEGER i, j = 0;

WHILE i < Length DO
IF A[i] > 2

B[j] = A[i];
j = j + 1;

IF END
j = j + 1;

END DO

This description language version is now easy to convert to a particular
programing language version. Obviously there are some minor changes that
we should implement in the program as you should exploit the possibilities
of the programing language used for the implementation.

...
int i = 0;
int[] A = new int[10] {1, 2, 56, 34, 123};

while (i < A.length)
{

if (A[i] > 2)
{

B.add(A[i]);
}

}
...
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We used int arrays instead of sets in the program code and instead of
function LENGTH we use the length property of the array (In Object Ori-
ented languages that is the common method to give the size of arrays) to
implement the iteration.

As you can see mathematical formulas do not make programming more
difficult rather they help us check the correctness of the program at an initial
planning phase.

Besides, you can compare the abstract mathematical model with the con-
crete implementation and you can debug its errors. This is called operation
verification in technical terms and it is an elemental part of planning proce-
dures involving the full life cycle of softwares.

2.2 Exercises

• Let us define set A , whose items are from the set of integers, con-
taining integers which are less than 100 and cannot be divided by
three,formally.

• Prepare the description language implementation of the former exercise
and then its concrete language implementation.

• Give the mathematical definition of the set that contains the digraphs
of Hungarian alphabet.

• Write a program that decides whether a set containing arbitrary type
items is empty or not.

• Write a program that decides whether the set that contains arbitrarily
chosen type items includes the item passed as a parameter or not.

• Write a program that gives the items of arbitrary type that can be
commonly found in two sets.

• Write a program that generates the union of two sets containing arbi-
trarily chosen type items.

• Write a program that generates the intersection of two sets containing
arbitrary type elements.

• Write a program that gives the relative complement of two sets con-
taining arbitrary type elements.



2.3. TYPE, OPERATION, STATE AND STATE SPACE 13

2.3 Type, Operation, State and State Space

In order to understand the definitions and their explanation in this section
better, besides studying mathematical formalisms, we must clarify some im-
portant concepts.

The first such concept is type. When we talk about data in mathematics
and in informatics, we usually give the type, namely the data type, in which
you can store these data, as well. We define the data type, whose informal
definition can be carried out with the following pair:

(A,M),

where the first element of the pair is the set of data and the second M
is the finite set of operations. Now let us have a look at some important
properties:

∀ m ∈M : m→ A,

Operations are interpreted on data and there must be at least one oper-
ation that is capable of generating all the data.

Mk ⊂M

This subset of operations is called constructive operation or constructor
(the name constructor is rather used with complex data types).

We can define the type of variables in our programs with the data type.
This is called declaration. By giving the data type we assign an invariant to
it. A variable declared with type can only be assigned values that match its
state invariant.

State is bound to a time interval which is generated by a m ∈M opera-
tion. State transition also happens due to operations. Operations can have
parameters, pre and postconditions and several other properties that are not
important to us.

State and state transition are important because these concepts will be
frequently referred to when discussing automata and their implementation.

Automata are characterized by their inner states and the recognition of
words and sentences is based on states as well. The states and full state
space of every automaton characterized by the sorted n-vectors of attribute
values of its actual states, if seen as a program, must be defined .

(Aact, I, [Vact])
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In which triplet the first element marks the actual state, the second marks
the remaining part of the input text (see: later). (The third element is only
involved in case of stack automata and contains the actual state of the stack.)

This means that upon defining the automaton class we define all of its
possible states, the initial state and the terminal state. In case of a stack
automaton, we also define the state of the stack and the input tape. These
states are stored in variables or in their sorted n-vectors.

The operation of analysis is also defined with the sorted n- vectors of
states (configuration), and the sequence of transitions that change these
states in every automaton class.

2.4 Exercises
• Give the formal definition of the known set complex data type (it is

not necessary to give the axiom that belong to the operations).

• Give the state invariant that belongs to the known stack type in a
general form. (The maximum number of stack items in a general form
n).

• Prepare the model of the stack data type with a tool of your choice.
This can be a programing language or a developer tool supporting
abstraction like UML.

In order to solve the exercise define a set, set operations and the con-
ditions describing the invariant property.



Chapter 3

ABC, Words and Alphabets

3.1 Operations with Words and Alphabets
Before investigating formal definitions any further let us inspect some state-
ments regarding alphabets and words. For better understanding, these will
be defined formally later on.

• A (generally finite), not empty set is called alphabet.

• Items of an alphabet (items comprising the set)are called symbols
(characters, letters, punctuation marks) .

• The finite sequence of items chosen from an alphabet is called a word
over the specific alphabet. Words are demegjd by a Greek letter. e.g.:
α « is a word over the A alphabet.

• The length of an α word over an alphabet is the number of symbols in
it.

• The word ε over an alphabet is called empty word. The symbol of the
empty word is usually ε, ε a Greek letter (epsilon).

In the following sections we are going to inspect the statements above
and where possible define the upcoming concepts.

3.2 Finite Words
If A is a finite not empty set, it can bee seen as an alphabet. As we have
mentioned earlier items of an alphabet are called letters or symbols. The
sequence chosen from the elements a0, a1, . . . , an of set A are called words

15
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over alphabet A . Also, as you could see earlier the length of such words is
the same as the number of symbols in them.

This can be given in the |a1 . . . an|, or the L(a1 . . . an) forms but it is much
easier to simply demegj words with letters α, β, . . . . Then the length of the
word is given in the L(α), or in the |α| form.

A specific word comprises of the symbols of the particular alphabet raised
to a power:

A+ = A∗ {ε},

and

An = {α ∈ A∗| |α| = n|},

namely

{a1, a2, . . . , an|ai ∈ A}.

This implies that the A+ is the set of words over A, except for the empty
word, and A∗ means all the words over the A alphabet including the empty
word. An means the set of words with the length of n and A0 = {ε}, where
|ε|, namely L(ε) = 0.

3.3 Operations with Finite Words

3.4 Concatenation

We can implement operations on words and these operations have also got
their properties, just like operations with numbers.

The first operation on words is concatenation (multiplication of words),
which simply means that we form new words from two or more words (these
can be seen as parts of a compound) forming a compound.

Concatenation of the words α and β over alphabet A is the word γ over
alphabet A which we get by writing the symbols of word β after the symbols
of word α. Concatenation is demegjd with +.

Note 1 So, if for example: α = "apple" and β ="tree" then α + β = "ap-
pletree".
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Always use + to demegj concatenation, α + β = αβ.

If you want to define operations informally, then the following definition
will be appropriate:

Definition 1 (Concatenation) Consider α, and β words over the A alpha-
bet, namely words constructed from symbols of the alphabet. The result of αβ
is the concatenation of the two words, so that γ = αβ, where |γ| = |α|+ |β|,
so the length of the new word is the sum of the length of the two components.

Now, let us have a look at the fully formal definition:

Definition 2 (Concatenated) If α = a1, a2, . . . , an, and β = b1, b2, . . . , bm
are words over alphabet A then:

γ = αβ = a1a2 . . . anb1b2 . . . bm.

The definition above has some consequences which are important to us:

3.5 Properties of Concatenation
Associative, not commutative, there is a neutral element.

Based on the properties there are other conclusions to draw:
Consider α « A (word α over alphabet A):

• α0 = ε (any word to the power of zero is the empty word).

• αn = α + αn−1 (n ≥ 1) (any word to the power of n is the n times
concatenation of the word)

• word α is the prefix of γ and since the length of α is not zero (|α| 6= 0),
this is a real prefix.

• word β is the suffix of γ and since the length of β is not zero (|β| 6= 0),
it is a real suffix.

• the operation is associative so α(βγ) is equivalent with the (αβ)γ op-
eration.

• the operation is not commutative so αβ 6= βα.

• the operation has a neutral element so εα = αε, and it is monoid with
the A∗ alphabet or more precisely with the set operation.
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3.6 Raising Words to a Power

Our next operation is raising words to a power, which operation is like the n
times concatenation of the word at hand. Using the operation of concatena-
tion, raising to a power is easy to understand and define formally.

Definition 3 (Power of Words)

α0 = ε

αn = αn−1α

Then, if n ≥ 1., namely the nth power of word α is the n times concate-
nation of the word.

From this operation we can also conclude several things:

• word α is primitive if it is not the nth power of any other word, namely
α is primitive if α = βn, β 6= ε⇒ n = 1. For example α = abcdefgh is
primitive but word 123123123 is not because α = (123)3.

• Words α, and β are each others’ conjugates, if there is a α = γδ, and
β = δγ.

• α = a1, a2, . . . , wordn is periodic if there is a k > 1 number, so that for
the ai = ai+k, i = 1, 2, . . . , n− k values, so that k is the period of word
α . The smallest period of word α = 1231231 is 3 (123).

3.7 Reversal of Words

Definition 4 (Reversal of Words) In case of word α = a1, a2, . . . , am word
αT = am, am−1, . . . , a1 is the reversal of α. If αT = α, the word is a palin-
drome.

It can also be derived from the above that (αT )T = α, so by reversing the
word α twice we get the original word.

For example word abccba is a palindrome word texts "asantatnasa", or
"amoreroma" are also palindrome texts and upper case and smaller case
letters are considered equivalent.
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3.8 Subwords
Definition 5 (Subword) Word β is subword of word α if there are words
γ, and δ in a way that α = γβδ, and γδ 6= ε, namely if β is a real subword
of α.

Definition 6 (Subwords with Various Length) Demegj the set of k length
subwords of word α Rk(α). R(α) is the set of all such subwords so

R(α) =

|α|⋃
k=1

Rk(α).

For example if we consider word α = abcd then the 1 length subwords of
the word are

R1(α) = {a, b, c, d},

the 2 length subwords are

R2(α) = {ab, bc, cd},

the 3 length are

R3(α) = {abc, bcd},

and the only 4 length subword is the word itself

R4(α) = {abcd}.

3.9 Complexity of Words
Just like everything in mathematics, words in informatics have a certain
complexity. Any form of complexity is measured in a metric system. The
complexity of words is based on the analysis of their subwords. Based on the
form of the word and its subwords, we can define the complexity of the word.

The complexity of a word is the multiplicity and variety of its subwords.
This implies that to measure the complexity of a word we have to look up
its subwords of various length and their occurrences.

Definition 7 (Complexity of Words) The complexity of a word is the
number of its subwords of different length. The number of k length subwords
of word α is rα(k).
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Learning the complexity of a word, we can interpret maximal complexity,
which can be defined as follows:

Definition 8 (Maximal Complexity) Maximal complexity can only be in-
terpreted on finite words and

Max(α) = max{rα(k)|k 6= 1}, α ∈ A∗,

where A∗ is the Kleene star derived from the particular alphabet. (On infinite
words we can interpret bottom or top maximal complexity.)

As a word can have maximal complexity, it can also have global maximal
complexity shown in the definition below:

Definition 9 (Global Maximal Complexity) Global maximal complex-
ity is the sum of the number of nonempty subwords of a word, namely

Tb(α) =

|α|∑
i=1

rα(i), α ∈ A∗.

3.10 Complexity of Sentences
In this section we do not specifically deal with with the complexity of sen-
tences of a spoken language but rather, for practical reasons, with the com-
plexity of sentences of programs.

More precisely, we deal with the language constructions of various pro-
graming languages characterizing the particular paradigm.

Every programming language contains numerous language elements which
can be embedded and which elements can be used one after the other. We
can create more complex constructions like functions or methods which also
consist of various language elements.

There is no generally set rule defining which language elements and in
what combination to use to achieve a particular programming objective.

Thus the complexity of programs can be varied, even among versions of
programs solving the same problem. This soon deprives the programmers
from the possibility of testing and correcting as programs become illegible
and too complex to handle.

Due to all this and due to the fact that in each section our goal is to reveal
the practical use of every concept, let us examine some concepts regarding
the complexity of program texts.

In the complexity of programs we measure the quality of the source text
based on which we can get an insight to its structure, characteristics and
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the joint complexity of programming elements. Based on complexity we can
estimate the cost of testing, developing and changing the program text.

Complexity of software can be measured based on the complexity (struc-
ture) and size of the program. We can observe the source text in development
phases (process metrics), or the ready program based on its usability. This
kind of analysis features the end product (product metrics), but it is strongly
tied to the source text and to the model based on which the source text was
built.

Structural complexity can also be measured based on the cost of develop-
ment (cost metrics), or based on the cost of effort (effort metrics) or based
on the advancement of development (advancement), or based on reliabil-
ity (non-reliability (number of errors)). You can measure the source text
by defining the rate of reusability numerically (reusable) or you can measure
functionality functionality, or usability, however, all complexity metrics focus
on the three concepts below:

• size,

• complexity,

• style.

Software complexity metrics can qualify programing style, the process
of programming, usability, the estimated costs and the inner qualities of
programs. Naturally, when programming we always try to achieve the rec-
onciliation usability metrics, the use of resources and the inner qualities of
the program.

We can conclude that one quality or attribute is not enough to typify a
program, moreover, collecting and measuring all the metrics is not enough
either. Similarly to the mapping of the relationship of programming elements,
it is only the mapping of relationship of metrics and their interaction that
can give a thorough picture of the software that is being analyzed.

3.11 Problems with Complexity
Thomas J. McCabe [?] pointed out how important the analysis of the struc-
ture of the source code was in 1976. In his article McCabe describes that
even the ideal 50 line long modules with 25 consecutive IF THEN ELSE con-
structions include 33.5 million branches. Such a high number of branches can
not be tested within the length of a human lifetime and thus it is impossible
to verify the propriety of the program .
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The problem reveals that the complexity of programs, the number of
control structures, the depth of embedding and all the other measurable
attributes of the source code have an important impact on the cost of testing,
debugging and modifying.

Since the length of this lecture megj does not allow us to discuss every
possible problems regarding complexity and their measurement, we will only
define one of the metrics, and in relation with the example we choose, it to
be McCabe’s cyclomatic complexity number:

McCabe’s Cyclomatic Complexity Number The value of the com-
plexity metric of mc_cabe is the same as the number of basic paths defined
in the control graph constructed by Thomas McCabe [?] , namely it is the
same as the number of possible outputs of the function disregarding the paths
of functions within the function. The Mc Cabe cyclomatic number originally
was developed to measure subroutines of procedural languages Thomas J.
Mc Cabe [?]. Mc Cabe The cyclomatic number of programs is defined as
follows:

Definition 10 [Mc Cabe’s cyclomatic number] The cyclomatic number V (G)
of control graph G = (v, e) is V (G) = e−v+2p, where p demegjs the number
of graph components, which is the same as the number of linearly coherent
cycles in a highly coherent graph.

Let us have a look at a concrete example of applying a cyclomatic number.
Consider our program has 4 conditional branches and a conditional loop with
a complex condition, with precisely 2 conditions.

Then the cyclomatic number is the number of conditional choices, so that
we add one to the number of conditional decisions and count the complex
condition twice. We must do so because we must count all the decisions in
our program, so the result of our calculation in this program is seven. In
fact we can also add the number of decisions in our exception handlers and
multiple clause functions (in case of OOP, or "overload" type functions in
the functional paradigm)as well just as we did with branches and loops.

3.12 Infinite Words

Besides finite words we can also interpret infinite words, which can also be
constructed from items of an alphabet, like finite ones. αw = a1a2 . . . an . . .
infinite words constructed from ∀a ∈ A symbols are right infinite, namely
the αw word is right infinite.
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Definition 11 (Infinite Words) Consider Aw to demegj the set of right
infinite words, and the set of finite and infinite words over the A alphabet
abécé is demegjd:

Aall = A∗ ∪ Aw.

In this case, the case of infinite words, we can also interpret concepts of
subword, prefix and suffix.

3.13 Operations with Alphabets

Besides words we can also carry out operations with alphabets. These oper-
ations are important because through their understanding we can get to the
definition of formal languages.

Definition 12 If A and B are two alphabets, then A ∗ B := {ab|a ∈ A, b ∈
B}. This operation is called complex multiplication.

Note 2 So the complex product of two alphabets is an alphabet whose char-
acters are couplets having the first symbol from the first alphabet and the
second one from the second alphabet.

E.g.: A := a, b, and B := 0, 1. C := A ∗ B := a0, a1, b0, b1. Based on
this, the word over alphabet C is for example α ="a0b0a1", and L(α) = 3,
as that word comprises of three symbols from C "a0", a "b0", and "a1".

At the same time however for example word "a0aba1" can not be a word
over "C" because it can not be constructed using the symbols of "C" only.

Definition 13 Consider an A alphabet. A0:= ε , so the zeroth power of
every alphabet is a set with one element the ε (empty word).

Definition 14 An := ∗An−1 where n ≥ 1. So the nth power of an alphabet
is the n times complex product of the alphabet. A0 = ε is necessary since
A1 = ∗A0, and we must get back A!

Note 3 Based on the above mentioned the 3rd power of the A alphabet is an
alphabet whose every element consists of three characters. Generally: the nth
power is an alphabet whose every element has the length of n.



24 CHAPTER 3. ABC, WORDS AND ALPHABETS

3.14 Kleene Star, Positive Closure

E.g..: if A=a,b, then e.g. A2 =aa,ab,ba,bb. This set can also be seen as the
set of words with a length of 2 over the A alphabet.

Definition 15 V:= α|α « A and L(α)=1 . So consider set V the set of
words of one length over the A alphabet. It is demegjd V ∗1 « A, or V for
short.

Definition 16 The contextual product over the V set V ⊗V := {αβ|α ∈ V }
and β ∈ V is the set containing words which are constructed from words in
a way that we concatenate every one of them with each other.

In fact set V consists of words with the length of one. Words with a
length of 2 comprise set V ⊗ V .

Definition 17 V 0 := {ε}, and V n := V ⊗ V n−1 , n ≥ 1, and The V ∗ :=⋃∞
i=0 V

0 = V 0 ∪ V 1 ∪ V 2 ∪ . . . set is called the Kleene star of "V".

Its elements are the empty word, the words with the length of one and
words with the length of two etc...

Definition 18 The V+ :=
⋃∞
i=0 V

0 = V 1 ∪V 2 ∪V 3 ∪ . . . set is the positive
closure of "V". namely V* = V+ ∪ε,

Elements of V+ are words with the length of one,length of two etc., so
V+ does not include the empty word. Let us have a look at some simple
examples:

• If V:=’a’,’b’. Then V*=ε,’a’,’b’,’aa’,’ab’,’ba’,’bb’,’aaa’,’aab’,.... and
V+=’a’,’b’,’aa’,’ab’,’ba’,’bb’,’aaa’,’aab’,....

• α ∈ V* means that α is a word of arbitrary length L(α) ≥ 0.

• α ∈ V+ means that α is a word of arbitrary length but it can not be
empty, so L(α) ≥ 1.

• If V= 0, 1 , then V* is the set of binary numbers (and contains ε too).

• If V= 0 , W= 1 , then (V ∪ W) * = (01)n | n ∈ N .
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In order to fully comprehend the concepts of the Kleene star and posi-
tive closure, for our last example we should look at a simple already known
expression that connects the concept of closure with the concept of regular
expressions.

In the example having set S := 0, 1, . . . , 9 as a basis, let us write the
regular expression that matches every integer number:

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)+

Note the (+) sign at the end of the expression, which is there to demegj
the positive closure of the set (expression). Positive closure means that the
expression can not generate the empty word, namely you must always have
at least one digit, or any number of digits in an arbitrary order.

If you put the ∗ megj to the end of the expression, it allows us not to
write anything, which can lead to several problems in practice.

By the way, the concept of Kleene star can be familiar from mathematics
or from the field of database management where we explore the relationship
of attributes of relations in order to normalize them. In those cases we also
use closures. The only difference is that there we look for all the relation
attributes in the dependencies and not the possible variations of elements of
a set.

We talk about closures when we want to find the paths starting from a
call in a function in our program, namely when we want to find the paths
that lead us from the initial function to other functions.

These fields are related because their operations and implementation are
all based on concepts of set theory.

3.15 Formal Languages

Definition 19 Consider V ∗1 « A. We call an L ⊆ V* set a formal lan-
guage over alphabet "A".

Note 4 In fact a formal language is the subset of the set of words of arbitrary
length over a particular alphabet, namely a formal language is a defined set
of words constructed from symbols of a particular alphabet.

Note 5 A formal language can consist of a finite or infinite number of words
and it can contain the empty word as well.

Let us once again examine some simple examples:
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• A:=a,b, V*1«A. Then the L:=’a’,’ab’,’abb’,’abbb’,’abbbb’,... language
is a formal language over "A" alphabet which contains an infinite num-
ber of words (a language containing words beginning with ’a’ and con-
tinuing with an arbitrary number of ’b’s).

• A:=a,b, V*1 « A . Then L:=’ab’,’ba’,’abab’,’baab’,’aabb’,... is a formal
language over alphabet "A" containing an infinite number of words
(words in which there are as many ’a’s as ’b’s).

Definition 20 If L1,L2 are two formal languages, then L1*L2:= αβ | α ∈
L1 and β ∈ L2. This operation is called contextual multiplication of lan-
guages.

Contextual multiplication is distributive: L1* (L2 ∪ L3) = L1*L2 ∪
L1*L3.

A formal language can be defined in many ways:

1. With enumeration.

2. We can give one or more attributes the words of the language all share,
but other words do not.

3. With the textual description of the rules for constructing words.

4. With the mathematical definition of the rules for constructing words.

5. With Generative Grammar.

Enumeration of the elements is not the most effective tool and is only
possible in case of finite languages, but it is not always simple even with
them.

L1 = {a, b, c, d, . . . , z},

L2 = {0, 1, 2, 3, 4, . . . , 9},

or
L2 = {a, ab, abc, . . .}.

Textual description could be a little bit better solution but it has the
drawback of ambiguity and it is also very hard to create an algorithm or pro-
gram based on it.. To comprehend all this, let us have a look at the example
below:
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"Consider L1 a language that includes integer numbers but only the ones
that are greater than three...".

Another example is when we define a language, with some attributes,
using a mathematical formula.

When we define a language with some attributes, like in the following
example.

• Consider L3 := L1*L2 a language (a language of odd numbers that
include at least one even digit). This form contains textual definition
which can be completely omitted in case of mathematical formulas.

• L := 0n10n|n ≥ 1, namely there is a 1 in the middle of the number with
the same amount of 0s before and after it.

• L4 = {anbn|n = 1, 2, 3, . . .}

3.16 Exercises
1. Raise the word "pear" to its 4th power.

2. Give the number of subwords in word: "abcabcdef"

3. Decide which word has a greater complexity, "ababcdeabc" or "1232312345".

4. Give the Descartes product of the following two alphabets: A = {0, 1},
és B = {a, b}.

5. Give the complex product of the two sets defined in the previous exer-
cise.

6. Define the set which contains even natural numbers.

7. Give the textual definition of the following language: L1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

8. Give the mathematical definition of the language which consists of
words with the length of 2 where the first symbol of every word is
a 0 and the second symbol is an arbitrary symbol from the English
alphabet.
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Chapter 4

Generative Grammars

4.1 Generative Grammars
So far we have dealt with simple definitions of languages. With that we
can define a formal language as a set, enumerating its elements the words.
However, with this method we can only define finite languages, with a small
number of elements. Languages with a lot of, or infinite number of, words
can not be defined this way. We could see examples of infinite languages
before but the generating rule was given with simple textual description or
with difficult mathematical notations and rules.

In order to be able to deal with languages from a practical point of view,
we must find a general and practical method to define languages.

The definition must contain the symbols of the language, the grammar
with which they can be matched together and the variables which help us to
assemble the elements of the language or to check them.

By checking we mean the implementation of the method with which we
can decide if a word is in a language or not.

It is important because in informatics formal languages and their analyzer
algorithms are used for analyzing languages or more precisely for analyzing
programming languages and in order to do so we must know the structure of
various languages and grammars to know which group of grammar to use to
solve a specific analyzing problem (lexical, syntactic or semantic analysis) .

If we know which grammar, analytical method and its algorithm we need,
we do not have to bother with how to construct the syntax analyzer of a
programming language.

Definition 21 (Generative Grammars) A G(V,W, S, P ) formal quadru-
ple is called a generative grammar, where:

• V : is the alphabet of terminal symbols,

29
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• W : is the alphabet of nonterminal symbols,

• V ∩W = , the two sets are disjunct, thy have no shared element,

• S : S ∈ W is a special nonterminal symbol, the start symbol,

• P : is the set of replacement rules, if A := V ∪W , then P ⊆ A ∗ xA∗

If V := a, b and W := S,B, and P := (S, aB), (B, SbSb), (S, aSa), (S, ε,
then the G := (V,W, S, P ) quadruple defines a language. The words of this
language consists of symbols "a" and "b". Symbols "S" and "B" do not
appear in the final words, they are only used as auxiliary variables during
generating the word in transitional states. The symbols of auxiliary variables
are capital letters (S,B), while the terminal symbols of the language are
lowercase letters (a, b). We can immediately see that a "aaSabSb" symbol
sequence is not finished as it contains variables. Variables are nonterminal
symbols , they are not terminal since the generation of the word is not over
yet. Symbol sequence "aaabb" only contains terminal symbols and they
are elements of the alphabet comprising the language. Th previous symbol
sequence does not contain nonterminal symbols, so the generation of the
word is over. The P set above is a Descartes product and all of its elements
are in a couplet, for example (S,aB), form. From here on we will denote it
as S → aB. Thus set P can be defined as:

P := {(S → aB), (B → SbSb), (S → aSa), (S → ε)}.

Let us observe how we can use the definition above in a concrete practical
example. As you can see we generate words starting from the start symbol.
As "S" is a nonterminal symbol we must continue the generation until we do
not find nonterminal symbols in the expression that we generate. There are
two possible outcomes during generation.

• In the first case we get to a symbol (terminal symbol) to which we can
not find a rule. Then we have to think over if the word is not in the
language or we made a mistake during the replacement.

• In the second case we find a replacement rule and apply it. Applying
the rule means that we replace the proper nonterminal symbol with the
rule (we overwrite it).

e.g.: In sequence aSa S is replaced with rule S → ε . Then our sentence
looks like: aa, as we have replaced the nonterminal S symbol with the
empty word.
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The next replacement is A→ aB. Now the generated sentence based on
A→ aB is "aB". "B" is a nonterminal symbol so the generation of the word
must be continued.

Let us proceed with applying the B → SbSb rule. In this transitional
state symbol S appears twice as a nonterminal symbol so we must proceed
in two threads.

At this point we can realize that the generation of the word is basically the
same as building up a syntax tree. The nodes of a syntax tree are nonterminal
symbols and we expect terminal symbols to appear in the leaf elements. If
we read the terminal symbols in the leaf elements from left to right, we get
the original word that we wanted to generate implying that the replacement
was correct and the word can be generated with the grammar.

Replace the first "S" nonterminal symbol S → aSa-t, namely apply rule
aSbSb → aaSabSb on the first "S" nonterminal. At this point by replacing
all the other nonterminals with rules we can proceed in various ways and
thus we can generate various words with the grammar. That is why this
system is called generative productive grammar. The words generated by
the grammar comprise the language and thus all the words of the language
can be generated by it.

The most important item in generative grammar is the set of replace-
ment rules. The other three items help us to build the symbol sequence
constructing the rules and defines which is the start symbol, which symbols
are terminal and nonterminal.

Such construction of words or sentences is called generation. However, in
the practical use of grammars it is not the prime objective to build words
but to decide if a word is in the language or not. You have two options to
carry out this analysis.

• The first method with which we try to generate the phrase to be an-
alyzed, by applying the grammar rules in some order, is called syntax
tree building.

• The second method is when we try to replace the symbols of the phrase
with grammar rules. Here the objective is to get to the start symbol.
If we manage, then phrase is in the language, namely it is correct.
This method is called reduction and truthfully, this method is used in
practice, in analyzer algorithms of programming languages.

Now, that we are familiar with the various methods of applying grammars,
let us examine some rules regarding derivability.
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Definition 22 (Rule of Derivability) Consider G(V,W, S, P ) generative
grammar and X, Y ∈ (V ∪ W )∗. From X Y is derivable if X ⇒ +Y or
X = Y . It is denoted: X ⇒ ∗Y .

Definition 23 (Derivable in One Step) Consider G(V,W, S, P ) genera-
tive grammar and X, Y ∈ (V ∪W )∗. X = αγβ, Y = αωβ form words where
α, β, γ, ω ∈ (V ∪W )∗. We say that Y can be derived in one step, if there
is ak γ → ω ∈ P . It is denoted: X → Y .

The previous definition is valid if X and Y are two symbol sequences
(word or sentence), which contain terminal and nonterminal symbols and X
and Y are two neighboring phases in the derivation. Y can be derived from
X in one step, namely we can get to Y from X with replacing one rule if the
γ symbol sequence comprising X can be replaced with the required ω symbol
sequence. The criterion of this is that we find such rule in the grammar.

Still considering the previous example, from "aSbSb" "aaSabSb" can be
derived in one step . X="aSbSb", namely α="a", γ="S" and β="bSb".
Going on Y="aaSabSb", namely ω="aSa". Since there is a γ → ω rule, Y
can be derived fom X in one step.

Note 6 Notice that the subword ,before and after α and β, to be replaced
can also be an empty word.

Definition 24 (Derivable in Multiple Steps) Consider G(V,W, S, P ) gen-
erative grammar and X, Y ∈ (V ∪W )∗. Y can be derived from X in multiple
steps if (n ≥ 1), there is ∃X1, X2, ..., Xn ∈ (V ∪W )∗, so that X → X1 →
X2 → X3 → . . .→ Xn = Y . It is denoted: X → +Y.

As you could see in the generation of words, we use variables and terminal
symbols. The generated sentence can be two different types. The first type
still contains terminal symbols, the second does not.

Definition 25 (Phrase-structure) Consider G(V,W, S, P ) generative gram-
mar. G generates a X ∈ (V ∪ W )∗ word if S ⇒ ∗X. Then X is called
Phrase-structure.

Phrase-structures can contain both terminal and nonterminal symbols.
This is in fact the transitional state of derivation which occurs when the
generation is not over. When we finish replacement, you get the phrase (if
you are lucky).
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Definition 26 (Phrase) Consider G(V,W, S, P ) generative grammar. If G
generates an X word and X ∈ V ∗ (it does not contain nonterminal symbols),
then X is called a phrase.

Now that we have examined the difference between a phrase and a phrase-
structure, let us define the language generated by a generative grammar,
which definition is important to us for practical reasons.

Definition 27 (Generated Language) Consider G(V,W, S, P ) generative
grammar. The L(G) = {α|α ∈ V ∗} and S → α language is called a gener-
ated language by grammar G.

The meaning of the definition is that we call the language, that consists
of words generated from the start symbol of G, a generated language. So
every word of L must be derivable from S and every word derived from S
must be in the language.

In order to understand the rule better let us examine the P1 = {S →
00, S → 11, S → 0S0, S → 1S1, S → ε} rule set where 0,1 are terminal
symbols.

The words that can be derived with the rule system are the following:
L(G) = ””, ”00”, ”11”, ”0000”, ”010010”, . . .. The language generated by rule
system P2 = {S → 0S0, S → 1S1, S → ε} consists of these words but rule
system P2 is simpler.

From all this we can see that more generative grammars can belong to
a language and with them we can generate the same words. We can give a
rule to this attribute as well, defining the equivalence of grammars.

Definition 28 (Rule of Equivalence) A G1(V,W1, S1, P1) generative gram-
mar is equivalent to a G2(V,W2, S2, P2) generative grammar if L(G1) =
L(G2), namely if the language generated by G1 is the same as the language
generated by G2.

Thus grammars are equivalent if they generate the same words. Obviously
the two languages can only be the same and the grammars can only be
equivalent if the terminal symbols are the same (that is why there is no V1
and V2, only V). They can differ in everything else for example in the number
and type of their terminal symbols, in their start symbol and in their rules.

Observing the couplets constructing the rule system we can see regularity
in the grammars and their form. Based on these regularities the grammars
generating languages can be classified from regular to irregular.

Since the rule system also specifies the language itself, languages can also
be classified. Naturally, the more regular a grammar is the better, making
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the language more regular and easier to use when writing various analyzer
algorithms.

Before moving on to the classification of languages, we must also see that
languages and grammars do not only consist of lower and upper case letters
and they are not generated to prove or to explain rules.

As we could see earlier, with the help of grammars, we can not only
generate simple words consisting of lower and upper case letters but also
phrases that consist of sets of words.

This way (and with a lot of work) we can also assemble the rule of liv-
ing languages just like linguists or creators of programming languages do to
create the syntax definition of the languages.

To see a practical example let us give the rule system defining the syntax
of an imaginary programming language without knowing the tools of syntax
definition. The language only contains a few simple language constructions
precisely as many as necessary for the implementation of sequence, selection
and iteration in imperative languages and it contains some simple numeric
and logical operators to be able to observe the syntax of expressions as well.

For the sake of expressiveness we put lexical items, namely terminal sym-
bols in "" and nonterminals are denoted with capital letters. The language
also contains rules that contain the | (logical or) symbol. With that we sim-
ply introduce choice in the implementation of a rule, or else we contract rules
to one rule.

program ::= "begin" "end" of forms "end"
forms ::= form

| forms
form ::= emptyexpression

|"identifier" "=" expression
|read "identifier"
|loop expression form endofloop
|if expression then form toendif
|print expression

toendif ::= form endif

expression ::= "identifier"
|"consantnumber"
|"(" expression ")"
| expression "+" expression
| expression "-" expression
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| expression "*" expression
| expression "/" expression
| expression "<" expression
| expression ">" expression
| expression "<=" expression
| expression ">=" expression
| expression "!=" expression
| expression "==" expression

The syntax definition of the grammar also contains parts which are not
rules of the grammar but they are elements of rules . These are terminal
symbols which are not atomic and can be further divided. We can define
the structure of elements, that can be viewed as terminal symbols regarding
syntax definition grammar, with an other grammar type which we have not
defined yet but we will in the next section.

Now, we only have to select these elements and define their structure,
namely the grammar with which they can be generated.

We have some terminal symbols which we do not want to divide any
further. These are "begin" , "end" and "if" and all the terminals which are
the keywords of the programming language defined by the grammar.

There are some like "constantnumber" and "identifier", which can be as-
signed various values. "contsantnumber" can be assigned values 123, or 1224.
Obviously, as we have noted it earlier, enumeration in case of languages with
so many elements is not effective , so rather we should write the expression
that generates all such numbers.

"identifier" can in fact be the name of all the variables or, if they were
included in the grammar, it could be the name of all the functions or meth-
ods. Thus identifiers must contain all the lower and upper case characters,
numbers and the underline symbol if possible. A possible expression, that
defines all this, looks as the following:

(a− zA− Z0− 9_)+.

This expression can contain any of the symbols given in brackets but it
must contain at least one of them.

Notice that the set with the + symbol in the end is in fact the positive
closure of the set items.

Using the same principle it is easy to write the general form of constants
as well, which can look something like this:

(0− 9)+.



36 CHAPTER 4. GENERATIVE GRAMMARS

This closure covers all the possible numbers that can be constructed by
combining the numbers, but it lacks the sub-expression defining sign. If we
include that the expression can look like this:

(+| − |ε)(0− 9)+.

This expression allows the writing of signed and unsigned numbers in
our future programming language which is easy to create now that we know
the syntax and the lexical elements, but for the implementation, it is worth
getting to know the various types of grammars and the analyzer automata
which belong to them.

In the syntax definition grammar above, all other lexical elements (non-
terminal) define themselves, namely they only match themselves, we do not
have to define them or deal with them in detail.

Besides the grammar descriptions in this example, the syntax definition
and the definition of the lexical elements, in a general purpose program-
ming language we should be able to give the rules of semantics as well. For
this purpose we would need yet another type of grammar to be introduced.
Semantics is used for the simple description of axioms that belong to the
functioning of processes, defined in a programming language, and for ana-
lyzing semantic problems. This is a complicated task in a program and this
lecture note is too short for its explanation.

4.2 Classification of Grammars
As we could see in earlier examples, we used different grammar descriptions
for describing various theoretical problems and languages. Now, let us look
at the how the grammars used for defining these grammars, or more precisely
languages, differ from each other.

In case of two equivalent languages (equivalent grammars) their terminal
symbols must be the same. We do not have to prove this, since if the terminal
symbols of two languages differ, then it is impossible to generate the same
words with them, using the grammar rules.

There is no such restriction for nonterminals but if the number of rules
differ in two equivalent grammars then possibly the number of nonterminals
will also differ.

The start symbol is basically irrelevant from this aspect and it can either
be the same or differ in the two grammars, since its only role is to start
replacement to generate sentences.

The most important item is the set of rules in a grammar. This set is
where grammars differ a lot. At this point, what is more important is not
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the set of rules but the form of words that are in the set, since based on that
we can differentiate and classify languages (grammars).

Considering the form of rules, languages belong to four big groups, into
which groups all languages can be classified.

4.3 Chomsky Classification of Grammars
Consider a G(V,W, S, P ) generative grammar and sentence forms α, β, γ ∈
(V ∪W )∗ which can also take value ε and consider an ω ∈ (V ∪W )+ phrase-
structure that can not be ε. We also need the A,B ∈ W , nonterminal symbols
and the a, b ∈ V terminal ones.

Based on that we can define the following, regarding the various classes
of grammars:

Definition 29 (Phrase-structure Languages) An arbitrary language is
type-0 or phrase-structure if every rule generating the language is in the
αAβ → γ form.

The rule system of phrase-structure languages is very permissive and does
not really contain any restrictions on which rules to apply. The languages
spoken today belong to this group. Their analysis is very difficult due to
the irregularity of rules. Conversion or translation of such languages requires
huge resources even for such a complicated automaton as the human brain.

In type-0 languages basically there are no restrictions on rules, as the
restriction defining that on the left side of the rule system there must be
at least on nonterminal symbol, is a restriction that makes the rule system
usable.

Definition 30 (Context Sensitive Languages) An arbitrary language is
type-1 or context sensitive if every rule of the grammar generating the
language is in the αAβ → αωβ form, and the use of rule S → ε is allowed.

The rules of context sensitive grammars, like in case of rule αAβ → αωβ
if the phrase-structure that belongs to the left side is given and you want to
replace the A nonterminal , then applying any of the rules the beginning of
the phrase-structure α and the subwords β on the left side of the nonterminal
A, can not change.

To put it differently, to decide if a subword or word is correct we must
know its context. This is where the name of the class comes from.

Let us have a look at an example. In order to be able to check the
correctness of assignment a = 2 written in a general purpose programming
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language we must know the declaration introducing variable a and the type
defined there preceding the assignment a. If the type of the variable is
integer, the assignment is correct. If it is not, we found an error, although
this instruction is syntactically correct.

Context sensitive languages and their grammars are tools of semantic
analysis in practice and in the semantic analyzers of the interpreters of pro-
gramming languages this grammar type is implemented.

In type-1 languages it is important that the context of symbols, after
replacing the nonterminal symbols, does not change (the subword before and
after it) (α and γ). The word can only be longer (A → ω and ω can not
be the empty word, so every nonterminal symbol must be replaced with a
symbol sequence that is at least the length of 1), so these grammars are called
growing grammars.

The only exception is the S start symbol which can be replaced with an
empty word, if this rule is included in the rule system. However, growing
still takes effect since we must keep the sections before and after S.

In such grammars, if the beginning of the word is formed (there are only
terminal symbols in the beginning of the word) it will not change.

Definition 31 (Context Free Languages) An arbitrary language is type-
2 or context free if every rule of the grammar generating the language is in
the A→ ω form and rule S → ε is allowed.

Context free languages, as we could see earlier, are tools of syntax defini-
tion and analysis. On the left side of the rules there can only be a nonterminal
symbol which lets us define rules of programming languages.

Analysis of such languages is relatively easy and fast, due to the freedom
of context, since they do not require backtrack. After analyzing the beginning
of any text, it can be discarded as the remaining part of the analysis does
not depend on the already analyzed part and the part that we have already
analyzed is certainly correct.

The syntax analyzers of interpreters use this grammar type to carry out
grammar analysis. During analysis we can use syntax tree generation or
reduction to decide if the analyzed phrase is correct or not. In the first case
the symbols of the analyzed phrase appear in the leaf elements of the syntax
tree, while in the second one we have to reduce the analyzed text with the
replacement of terminals to the start symbol.

It is important in type-2 languages that on the left side of the rules
there can only be one nonterminal symbol which must be replaced with
some symbol sequence with the length of at least. Here, we do not have to
deal with the context before and after the text, only with the symbol. These
grammars can be seen as not length-reducing grammars.
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Definition 32 (Regular Languages) An arbitrary language is type-3 or
regular if every rule of the grammar generating the language is in the A→ a
and A→ Ba, or A→ a and A→ aB form. In the first case we call it right
regular language and in the second one we call it left regular language.

It is important in type-3 languages that the construction of the word is
one way. First, the left side of the word is formed, as during replacement we
write a new terminal symbol into the generated word and a new nonterminal
one to the right side of the terminal one. In transitional states you can only
have one nonterminal symbol and always on the right end of the transitional
word.

This grammar type does not include restrictions on rule S → ε because
generation can be abandoned any time.

However it is important to have left or right regular rules in a particular
grammar, as if both appear in the same grammar then it will not be regular.

Regular grammars are important parts of the lexical components of in-
terpreters but they also appear in various other fields of informatics. We use
regular expressions in operating system commands for defining conditions of
a search or to define conditions of pattern based search in various program-
ming languages. We will discuss the practical use of regular languages in
detail later.

4.4 The Importance of Chomsky Classification

As we could see it in this section, various grammars can be used to solve
various analyzing problems. Context sensitive grammars are capable of im-
plementing semantic analysis, context free grammars are tools of syntactical
analysis, and regular languages, besides being used for lexical analysis, are
very useful in giving the parameters of most search operations.

If we know the type of problem to be solved (lexical, search, semantic or
syntactic), then we have the key to the solution, the type of grammar and the
solving algorithm based on the type of grammar (the automata class which
is the analyzer of a particular grammar). Thus, we do not have to come up
with a new solution to every single problem.

On the other hand algorithms are sequences of steps for solving problem
types (problem classes). Several problems arise regarding generative gram-
mars that can be computed, by computers, creating algorithms. It is very
important to decide if an algorithm created to solve a particular problem of
a particular generative grammar can be used to solve the same problem of a
different grammar and how to modify it. If two grammars are in the same
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Chomsky class, then a the sketch of a well-written algorithm, disregarding
parameters, will be applicable in theory.

The third important reason for knowing the Chomsky class of a grammar
is that it can be proven that there is no general solving algorithms for some
problem groups.

4.5 Statements Regarding Chomsky Classes

The classification of languages and the definitions of that part have some
consequences.

• G(V,W, S, P ) is a left regular grammar ⇔ if ∃ G′(V,W ′, S ′, P ′) right
regular grammar, so that L(G) = L(G′), namely the language gener-
ated by G, and G′ is the same.

• A K language is type-i (i ∈ 0, 1, 2, 3), if there is a G(V,W, S, P ) gener-
ative grammar that L(G) = K, and the rule system of G is in the in
Chomsky class.

Based on that in case of K2 language K is context free, as there is a
grammar that is in 2nd Chomsky class and generates K.

Since multiple generating grammars can belong to the same language, it
can happen that they belong to different Chomsky classes. So in case of K2

language K is at least context free but if we find a grammar that is regular
and generates the same language then it can be proven that K is regular. The
higher class a language can be classified into, the more simple the grammar
and the more permissive the language is.

Based on this we can conclude that languages are subsets of each other
from a certain point of view.

We can also observe that there are more and more severe restrictions on
rules of generating grammars but these do not contradict. If a rule system
matches the restrictions of the 2nd class, then it matches those of the 1st
and 0th class too (as they are more permissive). Thus L3 ⊆ L2 ⊆ L1 ⊆ L0
is true.

If language L is type i ∈ {0, 1, 2, 3} then ⇒ L ∈ ε and L{ε} are also
type-i, so in defining the class of a language, ε has no role.

Let us check the following statement. If L1 and L2 are regular languages,
then ⇒ L1 ∪ L2 is also regular. This means that if L1 is regular then there
is a G1(V,W1, S1, P1) regular grammar that belongs to it. Similarly there is
a regular grammar G2(V,W2, S2, P2) to L2, too.
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Based on this we can conclude that W1 and W2 are disjunct sets, so they
do not have a common element (otherwise we can index common elements).
We can also suppose that G1 and G2 are right regular.

Language L1 ∪ L2 contains words which are elements of either L1 or L2.
If they are elements of L1 then there is a rule in form S1 → . . .. According to
right regular grammar rules this rule is either in form S1 → a, or in S1 → B1a.
Similarly there is an initial step in the form of S2 → a or S2 → B2a for words
in L2.

The statement claiming that L1∪L2 is regular is easy to prove if we can
define a regular grammar that precisely generates the words of L1 ∪ L2.

As an example, consider G3(V,W3, S3, P3) a generative grammar where
W3 := W1∪W2∪{S3}/{S1, S2}, namely it contains terminal symbols of W1

and W2 except for the original S1 and S2 start symbols, and we add a new
symbol S3 which will be the start symbol of G3.

We should build the rules of S3 ∈ W3P3 in a way that we take all the
rules in P1 and we replace every S1 with S3, and similarly we take all the
rules of P2 and replace every S2 with S3. This ensures that the nonterminal
symbol set defined above W3 will be proper.

The G3 above generates the words of L1 ∪ L2 precisely since the rule
systemP3 created based on the above, can generate words both in L1 and L2

starting from S3.
The form of the rule system in P3 is also right regular as disregarding

replacements like S1− > S3 and S2− > S3 all the rules were right regular.2

• If L1 and L2 are regular, then ⇒ L1 ∩ L2 is also regular.

• If L1 and L2 are regular languages , then ⇒ L1 ∗ L2 is also regular.

• If L is regular, then L1∗ is regular.

• Every finite language is type-3 or regular.

• There is a type-3 language that is not finite.

The third statement should be explained a little bit. If L is a regular
language, then there is a G(V,W, S, P ) generative grammar that is regular
and generates the L language precisely. We can assume that the rules in P
are right regular and every rule is in form S → a, S → Ba.

Consider P ′ to be a rule system in grammar G′(V,W, S, P ′) where the
V,W, S components of the grammar are from the original G grammar but
we create P ′ in a way that we take the rules from P and expand them, and
the set containing them, with new rules, so that in case of every S → a form
rule we include a S → aS rule too.
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This way grammar G′ remains right regular and generates the words of
language L1∗. The latter are words which are generated with the n times
concatenation of words in L1 (n = 1, 2, . . .).

4.6 Chomsky Normal Form
Def : A G(V,W,S,P) generative grammar is in Chomsky normal form if every
rule in P is in form A→ BC or A→ a (where A,B,C ∈ W,a ∈ V ).

It can be important, regarding many reasons, to minimize a grammar,
namely to rid it from unnecessary nonterminal symbols which do not appear
in any terminating derivations.

An "A" nonterminal can be unnecessary for two reasons:

• "A" can not be introduced into a phrase-structure, so there is no rule
sequence that starts from "S" phrase symbol and ends in the A phrase
from (e.g.: with some a, b ∈ (V ∪W )∗ words).

• We can not terminate from "A", so there is no such a ∈ V ∗, so that
A→ ∗a exists.

The unnecessary nonterminals that belong to the first group can be de-
fined as follows in a G = (V,W, S, P ) grammar:

Consider U0 = {S} and

Ui + 1 = Ui ∪ {A|∃BaAb ∈ P,A ∈ W,B ∈ Ui, a, b ∈ (V ∪W )∗}, (i >= 0).

Then, since W is finite, there is an i so that Ui = Ui + 1. Then non-
terminals W 6= Ui are unnecessary because they can not be reached with
derivations starting in S.

The unnecessary nonterminals of the second group in a G = (V,W, S, P )
grammar can be defined in the following (recursive) way:

Consider U0 = {A|considerA→ a ∈ P,A ∈ W,a ∈ V ∗} and

Ui + 1 = Ui ∪ {A|∃A→ b ∈ P,A ∈ W, b ∈ (Ui ∪ V )∗}, (i >= 0).

Then, due to the finite W, there is an i,so that Ui = Ui + 1, and then
the W Ui nonterminals are unnecessary because it is not possible to derive a
terminal subword (or empty) from them. If S is not in set Ui, the generated
language is empty.
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If G generates a nonempty language, it is clear by omitting the nontermi-
nals, defined this way, and all rules that do not contain such nonterminals, the
G′ grammar is equivalent with the original and the terminating derivations
remain, not changing the generated language.

Definition 33 (Normal Form) A context free grammar is in Chomsky nor-
mal form if its every rule is in form A→ a or A→ BC where A,B,C ∈ W
and a ∈ V .

Every ε -free context free language can be generated by a grammar that is
in Chomsky normal form, or else there is an equivalent context free grammar
in normal form to every G context free grammar.

Definition 34 Every, at least type-2 (context free) Chomsky class grammar
can be modified to be in Chomsky normal form.

4.7 Exercises
1. exercise: Form words from symbols 0,1 which are the length of even and
symmetric. Solution: P := S → 0S0, S → 1S1, S −→ ε Note: the solution
above is type-2. Solution: P := S −→ 0B,B −→ S0, S −→ 1C,C → S1, S −→ ε
Note: the soution above is once again type-2.

2. exercise: Form positive integers from symbols 0,1,. . . ,9 . Solution:
P := S → 0S, S → 1S, . . . , S → 9S, S −→ ε Note: the solution above is type-
2. Solution:

P := {S → 0S, S → 1S, . . . , S → 9S, S → 0,

S → 1, ..., S → 9}

Note: the solution above is type-3.

3. exercise: Form positive integers from symbols 0,1,. . . ,9 so that they
can not begin with 0. Solution: P := {S → 1B, S → 2B, . . . , S → 9B,
S → 1, S → 2, . . . , S → 9, B → 0, B → 1, . . . , B → 9, B → 0B,B →
1B, . . . , B → 9B} Note: the solution above is type-3.

4. exercise: Form complex mathematical expressions with x, *, + and
with ( ). Solution:

P := {S → A, S → S + A,A→ A ∗B,
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A→ B,B → X,B → (S)}

Note: the solution above is type-2.

5. exercise: Form words that can begin with an arbitrary number
(even 0) of 0s and end in an arbitrary number (even 0) of 0s. Solution:
P := S → 0S, S → 1A,A→ 1A,A→ 1, S → 0, S → 1 Note: the solution
above is type-3.

6. exercise: Form words that can begin with an arbitrary number
(even 0) of 0s and end in at least as many or more 1s. Solutions: P :=
S → 0S1, S → S1, S → ε Note: the solution above is type-2. Solution: P :=
S → 0B,B → S1, S → ε Note: the solution above is type-2.

7. exercise: Form words in which there are an odd number of 1s from
symbols 0,1. Solution: P := S → 0S, S → 1A, S → 1, A→ 1S,A→ 0A,A→ 0
Note: the solution above is type-3.

8. exercise: Form words from symbol 1 which contain an odd number
of letters. Solution: P := S → 1A,A→ 1S, S → 1 Note: the solution above
is type-3.

9. exercise: Form words from symbols 0,1 which start with at least two
1s. Solution:

P := {S → 1A,A→ 1B,A→ 1,

B → 1B,B → 0B,B → 0, B → 1}

Note: the solution above is type-3.

10. exercise: Form words of symbols 0,1 which end in at least two 1s.
Solution: P := S → 0S, S → 1S, S → 1A,A→ 1 Note: the solution above is
type-3.
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Regular Expressions

5.1 Regular Expressions

Regular expressions can be found in almost any fields of informatics. Es-
pecially on console windows of operating systems of computers where we
execute searches. Such regular expression can be like when we search for
every .txt extension file or files beginning with k and files with extension
.doc on our hard drive. In the first case we apply pattern ∗.txt, while in the
second case we apply pattern k ∗ .doc in the command line of the particular
operating system (after giving the right command).

In such searches we do not give all the appearances of the text that we
are looking for, but their general form, namely a pattern which is matched
by all the expressions that are valuable for us.

Think over how difficult it would be to find every car brands in a relatively
long text where there is a color attribute before car brands or imagine that
color can be given with a numeric code or with text format and we do not
necessarily use accents in the colors.

In such and similar cases, the use of regular expressions is very useful,
since we do not have to define every possible case to implement the search ,
we only need a regular expression that defines all the possibilities.

Besides searches, an important component of interpreters also uses this
type of grammar to recognize grammar constructions, namely program el-
ements. This component is called lexical analyzer, which will be discussed
later on.

5.2 Regular Expressions and Regular Grammars

Before moving on, let us give the informal definition of regular languages.

45
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Definition 35 Consider A an alphabet abc, and V « A. Then, the following
are considered a regular set:

• - ∅ empty set

• - {ε} a set with only one element ε

• - {a|a ∈ V } the set containing the only word with the length of one

Note 7 The sets above can be seen as formal languages since they are sets
of words. It is easy to accept that all of them are type-3, namely regular
languages.

If P and Q are regular sets, then the following are also regular:

• a, P ∪Q which set is denoted P +Q,

• b, {ab|a ∈ P, b ∈ Q}, which is denoted P ∗Q, and

• also c, P∗

Set operations implemented on regular sets are called the generation of
regular expressions.

e.g.: L := (++−+ ε)× (0 + 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9)× (0 + 1+
2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)∗

So the first character of the word is either "+" or "-" or the empty symbol,
the second is a numeral in base 10 system, and the list can be continued with
an arbitrary number of numerals, so it is essentially the language of numbers
in base 10 system positive or negative, signed or unsigned.

Note 8 In the example above, for the sake of simplicity sets with one element
are denoted without set denoting symbols. The form given properly starts like
this:

({+}+ {−}+ {ε})× ({0}+ {1}+ {2}+ {3} . . .
or it can be defined as:

• A := {+,−, ε}

• B := 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• L := A×B ×B∗
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5.3 Applying Regular Expressions

In order to learn the creation of regular expressions from formulas, given
in mathematical notation, to their implementation, let us have a look at a
simple example from the previous section defining signed integer numbers.

Let us consider our options to give the general form. Signed integers can
start (contain) with +, and − symbols and all the numerals can be given
with 0, 1, . . . , 9 symbols.

(For practical reasons, to avoid the implementation to be too complicated,
we omitted unsigned cases.)

Numerals are worth being denoted by a set. This momentum will come
up again in the implementation.

Denote the set N and define it as:
N := 0, 1, . . . , 9

If unsigned cases are omitted the regular expression looks like this:

(+|−)N+,

where () are tools of grouping, namely from the symbols, separated with
the symbol | in brackets, any can appear in the specific place but only one
at a time.

N is the set mentioned earlier containing symbols defining numerals and
the meaning of + is the positive closure of the set, namely every possibility
that can be derived from the symbols. This is the positive closure of set N
or the union of all the possible power sets of the set (see in section: ??.)

The regular expressions above can be also given in a way different from
mathematical formulas, as we can see it in command lines of operating sys-
tems, or in high level programming languages.

[+,−](0− 9)+

This definition is close to the mathematical formula but the notation and
the way of implementation are different.

To implement a regular expression, first let us model its functioning.
Modeling is an important part of implementation. The mathematical model
helps us in planning, understanding and is essential in verification (verifica-
tion: checking the transformation steps between the plan and the model).

The abstract model is essential in understanding the mathematical model
and in implementation.

The model of the expression above is:
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The directional graph in ??. is equivalent to the regular expression, but
it contains the states of the automaton implementing the expression and the
state transitions that are necessary for transiting states.

Examine the model and define the automaton which can be implemented
in a high level programming language of our choice.

Based on all this the automaton can be defined as:

A(V,A,A0, Av, δ),

where

• V is a set containing the elements of the input alphabet which are the
following symbols: {+,−, 0, . . . , 9}.

• A is the set of states.

• A0 ∈ A is the initial state,

• Av is the set of terminal or accepting states.

• δ is the two variable function, whose first parameter is the actual state
of the automaton and the second is the actually checked symbol.

(Automata will be discussed further in the section on them.)
Now, let us specify the elements in the enumeration to the regular ex-

pression.

V = {+,−, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

A = {q0, q1, q2}

A0 = {q0}
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Av = {q2}
δ = {(q0,+, q1), (q0,−, q1), (q1, N, q2), (q2, N, q2)}

In the definition of the δ function we must pay attention to two things.
The first is that the first two elements of sorted triplets in the definition
of the state transition function are two parameters of the function and the
third is the result, so for example if we consider triplet (q0,+, q1), the delta
function looks as:

δ(q0,+)→ q1

Also in the definition of δ in case of the last two state transitions, instead
of numerals we wrote the set, containing them, instead of the second element.
This will help us in the implementation to reduce the possible number of state
transitions (this results that the program written in a high level language will
be shorter).

From here on the implementation of the automaton is not complicate,
since we only have to create function δ and an iteration with which we can
implement it on every element of the symbol sequence.

To be able to create the implementation, first, define the variables of the
future program, namely the attributes that contain the values of particular
states.

We will need a variable which contains the states of the automaton. The
string type can be used for this purpose not abandoning the notation used
in the model q0, q1, q2.

For the sake of effectiveness, we can introduce a new state. The au-
tomaton will transit to it if it turns out, during analyzing, that the symbol
sequence being checked is incorrect.

If the automaton transits to this state, it must not be changed because
this surely means an error and we can halt the run of the analyzer automaton.

Besides that, we will need another string type variable to store the symbol
sequence to be checked and an number type one to index symbols of the text.

However, before creating the specific version in a programming language,
let us give the description language version.

STRING State = "q0"
STRING InputTape

INTEGER CV = 0

FUNCTION delta(STRING State0, STRING InputTapeItem)
STRING InnerState
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SWITCH CONCATENATE(State, replace(InputTapeItem))
"q0+" CASE InnerState = "q1"
"q0-" CASE InnerState = "q1"
"q0N" CASE InnerState = "q1"

ELSE
InnerState = Error

END SWITCH

delta = InnerState
END FUNCTION

IN : InputTape
INTEGER Length = Length(InputTape)

WHILE State != Error AND CV < Length ITERATE
State = delta(State, InputTape[CV])

END ITERATE

IF State != Error THEN
OUT : "Yes"

ELSE
OUT : "InputTape[CV] is not correct"

END IF

Notice that in the description language version, we have slightly modified
the automaton compared to the model.

The first change is that branches of the delta function do not take every
element of set N into consideration, only the name of the set. This will not
be a problem in the implementation. Instead of its elements we will only
use the name of set N there too, in a way that when an element of N is
received from the input tape as the second actual parameter, the function
modifies it so that a returns the N character . We suppose that functions
CONCATENATE, LENGTH and type SET are contained by the high level
programming language (used for implementation) .

FUNCTION replace(STRING state0, STRING InputTapeItem0)
SET H = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
IF ELEMENTOF(InputTapeItem0, H) THEN

replace = "N"
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END IF
replace = InputTapeItem0

END FUNCTION

If we also have this function at our disposal, then we can create the
imperative, functional or object oriented version of the full program.

For the sake of completeness we give all three solutions in this section.
Let the first solution be object oriented, written in C#. The analyzer

automaton is a class where the traversing of the input tape is carried out
with a while loop and elements of set N are stored in type string and instead
of function ELEMENTOF we use the IndexOf method of the string type.

class analyzer
{

public string state = "q0";
private string input = "";

public string Automata(string input)
{

this.input = input;
int index = Analyzing();
if (index != -1)

return String.Format("Wrong character
(\"{0}\") at the {1}. index",

input[index], index);
return "";

}

private int Analyzing()
{

int i = 0;
while (i < input.Length && state != "error")
{

state = Delta(state, input[i]);
i++;

}
if (state == "error")

return i - 1;
return -1;

}
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private string Delta(string state0, char c)
{

string instate = "error";
switch (state0 + Replace(c))
{

case "q0+":
case "q0-":

instate = "q1";
break;

case "q1N":
case "q2N":

instate = "q2";
break;

default:
instate = "error";
break;

}
return instate;

}

private string Replace(char symbol)
{

string symbolAsString = symbol.ToString();
int number;
if (Int32.TryParse(symbolAsString, out number)

&& number >= 0 && number <= 9)
return "N";

return symbolAsString;
}

}

class Program
{

static void Main(string[] args)
{

Parser parser = new Parser();
string input = "+123F";
string message = parser.Automata(input);
Console.WriteLine("The input to be analyzed:

{0}", input);
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Console.WriteLine("The result of analyzys: {0}.",
message.Length > 0 ? message : "correct");

}

The imperative version is not much different from the object oriented one.
The difference is the lack of class definition and that the types used are not
class based.

string State = "q0";
string InputTape;
int CV = 0;

string replace(string state0, string InputTapeItem0)
{

string H = "0,1,2,3,4,5,6,7,8,9";
if (pos(InputTapeItem0, H) > -1)
{

return "N";
}
return InputTapeItem0;

}

string delta(string State0, string InputTapeItem)
{

string InnerState;

switch (State + replace(InputTapeItem))
{

case "q0+": InnerState = "q1"; break;
case "q0-": InnerState = "q1"; break;
case "q0N": InnerState = "q1"; break;
default: InnerState = "Error"; break;

}
return InnerState;

}

InputTape = "+123";
int Length = length(InputTape);
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while (State != "Error" && CV < Length)
{

State = delta(State, InputTape[CV]);
}

if (State != "Error")
{

print("correct");
}
else
{

print("The \s symbol is incorrect", InputTape[CV]);
}

After seeing the imperative version, we can create the functional language
one. This version will be shorter due to the relatively great expressiveness of
functional languages but we trust the reader to implement it.

All three programs work in a way that they take the elements of the
input text one by one and call delta function with this data and with the
variable containing the value of the actual state, then put its return value in
the variable containing the state (also received as a parameter).

This sequence of steps is iterated until it reaches the end of the text or it
turns out that the input text does not match the rules. Then, in both cases,
the only task is to examine the actual state of the program, namely the value
stored in State.

If it is not state "q2" or it contains string "Error", the analyzed text is
incorrect, otherwise in case of "q2" the text is correct (it matches the rules
of the expression).

All these solutions are implemented versions of the regular expression
defined earlier and unfortunately, this fact causes their flaws.

When we mention flaws, we mean that all three programs implement only
one regular expression.

We would get a much better solution if we wrote the program so that the
steps implementing the state transitions defined in the regular expression or
grammar, would be passed as parameters.

More precisely, this means that possible parameters of the delta function
(state, and the actual element of the input text), and the return values that
belong to them (states) are passed to the program, besides the text, to be
analyzed as parameters.
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5.4 Exercises
1. Give a regular expression that recognizes simple identifier symbols used

in programming languages. Identifiers can only begin with capital let-
ters of the English alphabet but from the second character on they can
contain both characters and numbers or the underline symbol.

2. Implement the regular expression, that is in exercise one and recognizes
simple identifiers.

3. Give a regular expression that defines the general form of strings in
parentheses (string literals). Such string can only contain parentheses
in couples but any other character can occur in it.

4. Create the graph representation of the regular expression of the previ-
ous exercise, define the states and state transitions of the automaton
that recognizes the expression.

5. Give the regular expression which defines all the signed and unsigned
real numbers. Consider that such an expression also defines the normal
form of numbers.

6. Write a program that analyzes the text on its input and recognizes
signed and unsigned integer numbers. This program is very similar to
the one in this section, the only difference being that this version also
recognizes unsigned numbers.

7. Write the description language version of the previous program.
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Chapter 6

Context Free Languages and the
Syntax Tree

6.1 Implementing Context Free Languages

Type-2 Chomsky, context free grammars, are tools of syntactic analysis, as
we could see at the classification of languages. Thus they are used for the
grammatical description of programming and other languages in practice
and in the analytical component of grammatical analyzers of interpreters of
programming languages.

Let us expand our knowledge on context free grammars with introducing
some new rules.

• An α ∈ V ∗ word can be derived from S initial symbol if it is possible
to construct a syntax tree to it.

• A type-2 generative grammar is not univocal if there is an α word,
generated by the grammar L(G), to which two different syntax trees
(not isomorph) can be constructed.

• A type-2 language is only univocal if it can be generated with a univocal
generative grammar.

The point of the statements above is that with their help we can decide
if a word can be generated with the particular grammar. To be able to
answer this question a syntax tree must be constructed to the word. After
constructing the syntax tree we read it from left to right, from top to bottom
and if the word appears in the leaf elements (word ε is not significant in leaf
elements) then the word is in the language generated by the grammar.
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Several new nonterminal symbols appear in the syntax tree with one
replacement. In order to proceed further, you must decide which of them
to replace. This requires a decision to be made and in many cases multiple
syntax trees can be constructed to one word.

This step is interesting regarding the second and third statement which
say that a grammar is only univocal if we can not find more syntax trees to
one word.

• If during the construction of the syntax tree, we always replace the
leftist nonterminal symbol, the derivation is called canonical or left
most.

• A generative grammar is not univocal if there is an α ∈ L(G) word
that has at least two canonical derivations.

• If the syntax tree is constructed from top to bottom starting from the
start symbol, then the process is called top-down strategy or syntax
tree construction.

• If the syntax tree is built from bottom up, with the replacement of
rules, the process is called bottom-up strategy or reduction.

Constructing a syntax tree is a strategy that does not decrease length,
since the phrase-structure is expanded continuously. If we construct a syntax
tree of a certain word and the number of terminal symbols in the leaf elements
is more than the length of the word then we can stop constructing since it
will never be successfully finished.

We can also do this by not discarding the syntax tree entirely but stepping
back and trying a new replacement. This method is called backtrack analysis
however, it is not too effective in practice since due to backtracks its analytical
algorithm is slow.
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If you do not implement backtracks, but canonic derivation, the beginning
(leftist part) of the word is constantly modified. If the beginning of the word
in a phrase-structure in the terminal symbols is different from the word to
be generated then the derivation is surely wrong and we should choose a
different path.

Let us also examine some statements to see if the languages considered
context free by us are really context free and also how to decide it.

• If L1, L2 is a context free language then⇒ L1 ∩L2 is not certain to be
context free as the intersection of the two sets can be finite and based
on one previous statement every finite language is regular.

• If L1, L2 are context free languages then L1 ∪ L2 is also context free.

• If L is a context free language then ⇒ L∗ is also context free.

Unfortunately, it is impossible to decide algorithmically if a type-2 lan-
guage or a grammar generating a type-2 language is univocal or not since
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there is no general algorithm for the problem, but we know that every regular
language and grammar is univocal.

To decide whether a grammar is type-2 or type-3 can be concluded based
on rules but we must consider that the languages are subsets of each other
so starting from type-0 languages by the restriction of rules we get to regular
languages.

Thus if we find a regular language it can also match rules of other gram-
mars since they are much more lenient. For this reason we often say that
a language is at least type-i and we do not claim it to be exactly type-i
(i ∈ {0, 1, 2, 3}).

6.2 Syntactic Analyzers
Syntactic analyzers are parts of interpreters which decide if a program written
in that language is grammatically correct or not, namely if it matches the
rules of the language. More precisely, the task of the syntactic analyzer is to
construct the syntax tree of a symbol sequence.

6.3 Method a Recursive Descent
There are multiple methods for that. One such algorithm is the method of
recursive descent that uses the function calling a mechanism of high level
programming languages . Its essence is to assign a method to every rule of
type-2 grammars.

For example to rule E → Ea it assigns the method

method M()
begin

M()
move(a)

end

which contains the method for traversing the text and the method for
receiving the terminal symbol to be analyzed:

method move(symbol)
begin

if symbol == inputtape[i] then
i = i + 1

else
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error
end if

end

If i is a global variable in the program and the text to be analyzed is
written on the tape from left to right and we have the description of the
rules then our only task to do is to call the method that belongs to the
start symbol of the grammar which recursively or simply calls all the other
methods which belong to the other rules.

If we return to the start symbol in the call chain after executing all the
methods, then the analyzed word is correct , otherwise the place of error
is can be found in every method based on the i index (it is exactly the ith
element of the input tape that contains the incorrect symbol).

Obviously, this and every other method can only be implemented if the
grammar is univocal and we find a rule, precisely one, to the replacement of
every symbol.

6.4 Early-algorithm

This algorithm is essentially the same as the simple backtrack analyzer al-
gorithm. Starting from the start symbol, it examines every possible replace-
ment. If in any of the replacements, a terminal symbol gets to the beginning
of the derived sentence form, then it checks if it is correct or not. If it is not
correct, the particular phrase-structure can be discarded. In every kept first
step the further replacement is checked one by one and starting with these
we try every possible replacement. Incorrect paths are checked in a similar
way. If we reach the end, the word can be generated and the sequence of
replacement is known.

6.5 Coke-Younger-Kasami (CYK) algorithm

This algorithm can only be used if the grammar is in Chomsky-normal form.
Since every context free language can be given in normal form, this algorithm
can be used with language classes. To tell the truth the algorithm tells with
which sequence of rules of the grammar in normal form can we derive the
sentence and not the rules of the original language, but from this we can
conclude the solution.

The analysis is bottom-up and creates a lower triangular matrix whose
cells contain the nonterminal symbols of the normal form.
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Let us look at the analyzer in practice. Let us have a G(V,W, S, P )
generative grammar, where the nonterminal symbols are the following: W =
{S,A,M,K, P,R,X,Z}. The set of terminal symbols is V = {a, (,+, )}, and
the rules of replacement are:

{(S → SA), (S → SM), (S → KP )(A→ RS), (M → XS),

(P → SZ), (R→ +), (X → ∗), (K → (Z)), (S → a)}

The grammar above generates numerical expressions like a+ a ∗ (a+ a).
Consider word a+a∗a+a as an example. We begin the triangular matrix at
its lowest row. In cell kth we write the nonterminal symbols from which we
can generate the kth terminal symbol of the word to be generated. (subwords
with a length of 1 ).

In the next phase we fill in the 6th row of the matrix: in the cells we
write the nonterminal symbols from which the 2 length subword of the word
can be generated. Symbol A is written in cell [6,2] of the matrix because
it is possible to generate the 2 length subword (+a) starting with the 2nd
character of the word based on rules A→ RS, R→ +, and S → a.
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In the next phase we write such nonterminal symbols in row 5 from which
we can generate 3 length subwords:

Continuing the process we get the matrix below:
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Symbol S in cell [1,1] shows that starting from it we can generate the
subword of the word which starts from the 1st character and whose length
is 7-1+1. This is basically the same as the full subword so the word can be
generated starting out from symbol S.

6.6 Syntax Diagram

After the explanation of analytical algorithms let us have a look at some
syntax definition tools which can help us design and define languages that
can be analyzed with the above algorithms.

Syntax diagram is not a precise mathematical tool but it is expressive
and helps the quick understanding of the syntax tree. One of its typical uses
is the description of the syntax trees of programming languages.

We write terminal symbols in the rounded edge rectangles and nontermi-
nal symbols come to the normal rectangles.

Naturally, in a complete syntax description we must also give the struc-
ture of the nonterminal elements in a rule later, continuing their division up
to a point where we get to simple elements which can be portrayed using
terminal elements only.

This works exactly the same way as the syntax definition of languages in
BNF or in EBNF form, but here syntax is given graphically.
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6.7 EBNF - Extended Bachus-Noir Form
The EBNF form is a syntax definition tool which is unlike the syntax diagram,
shown previously, is not graphical but uses a character notation system. It
is often used for the description of syntax of programming languages but it
is also good for command line operating system commands

The following list contains the description of components with which we
can write an EBNF (it is one possible EBNF implementation but there are
other variations as well).

• ::== define rule, e.g.: program ::= beginningmiddleend,

• . (dott) end of a rule,

• ... description of an iteration

• [...] description of optional elements,

• (...) encapsulation, or grouping

• | alternative selection symbol (or)

• ... terminal symbol sequence
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Based on the notation system above the following syntax definition can
be constructed:

AdditiveOperationSymbol ::== "+" | "-" | "or".
SimpleExpression ::== [ Prefix ] Term { AdditiveOperationSymbol Term }.
Expression ::== SimpleExpression

[ RelationSymbol SimpleExpression ]
AssignmentInstruction ::== ( Variable | Functionidentifier)

":=" Expression.
CaseInstruction ::== "Selection" CaseIndex Case { ";" Case }

[ ; ] "Endofselection".
IfInstruction ::== "If" LogicalExpression "Then" Instruction

[ "Else" Instruction ].
ForInstruction ::== "Loop" Loopvariable ":="

Initialvalue "Iterate" Endvalue
"Iterate" Instruction.

ConditionalInstruction ::== IfInstruction | CaseInstruction.



Chapter 7

Automatons

7.1 Automata

As you could see in the previous sections, generative grammar or productive
grammar can be used to generate a particular word or phrase or to identify
them as words or phrases of a particular language.

However, this process is very slow and it is easy to make errors, especially
if you do it manually. Finding the rules and their implementation and the ex-
ecution of replacements is rather involved even in case of a short grammatical
system.

Due to all this, we need to create programs or at least algorithms to
execute grammatical analysis.

These algorithms can be seen as automata or state transition machines.
To every single grammar types, which are part of Chomsky classes, we can
find a automaton class which recognizes the particular language family.

Obviously, the automaton class and the definition of recognition are given.
To sum up, so far we have dealt with the generation of correct words or

sentences, and how to decide whether they are items of a particular language.
In this section we observe how the analytical operation can be automated

and what kind of automaton to create to the certain grammatical types.
Therefore, constructions (automata) below can be seen as syntactical an-

alyzers of programming languages. Altogether we will examine 4 types of
automata according to the 4 Chomsky classes.

The more complex (permissive) the particular Chomsky class is the more
complex automaton belongs to it. In case our grammar defines a program-
ming language, then the automaton (syntactic analyzer algorithm) of the
Chomsky class which belongs to it, based on the generative rules of the pro-
gramming language, should be used as its compiler.
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It is logical that if the grammar of our language is simpler (which is
obviously good for the programmer), then our compiler will be simpler, too.

The following part is about problem solving algorithms, the required types
and variables.

In some languages recognition is a simple sequence of steps, which se-
quence definitely ends after a certain number of steps and definitely answers
the question whether a sequence of symbols is item of the the particular
language or not.

In more complex languages the solution is not guaranteed. In type-0
languages there is no general algorithm only a method (which will not surely
answer the question in a finite number of steps). That is why you should try
to find the possibly simplest grammars.

7.2 General Definition of an Automaton
An automaton is a state transition machine which decides if an input word
matches the rules of the grammatical rules implemented in the automaton

A general automaton consists of the following components:

1. It has an input tape, divided into cells, each cell containing a symbol.
The input tape is usually finite and it is as long as the input word we
want to check.

2. There is a so called read head that always stands above the actual
cell and which is capable of reading the actual symbol from that cell.
The read head can move to the left or to the right, one cell at a time.

3. It can have an output tape, which is divided into cells and each
cell can contain a symbol. The output tape can be finite or infinite.
There is a special symbol in the cells, which have not been filled by the
automaton, called BLANK.

4. The output tape can have a read-write head. With this head the au-
tomaton can write or read a symbol into or from the actual cell. The
read-write head can also step left or right above the tape.

5. The automaton has a stateset, which states the automaton can change
based on a defined scheme. The automaton can only be precisely in
one state at a time(actual state).

Besides being state transition machines, automata can be seen as pro-
grams or functions. The input tape of the automaton is an array containing
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characters (string), which is as long as many characters we place on it. The
read-write head is in fact the selector function of type string, and an index
based on which the item (symbol or character) that belongs to the index can
be read.

The right and left movement of the read head over the input tape is
carried out with changing the values assigned to the index type.

States are similar to the concepts of data type and state invariant ex-
plained in the section on types. In the practical implementation of the states
of the automaton we assign values from a set of values to a variable like
{q0, 01, . . . , qn}, and in each step we assign a value from the set to a string
type variable e.g.: State = q0.

The output tape is not required in case of simpler automata, however
their implementation can also be carried out with reading and writing string
type variables.

The reading of the whole input tape can be implemented by simple iter-
ation, that goes from index 0 to the length of the input tape and reads one
item from the input tape in each step.

integer I = 0
loop while I < LENGTH(inputtape) iterate

I = I + 1
// state transitions
State = delta(State, inputtape[I])

end of loop

This program practically implements the operations of a simpler finite
automaton. The loop traverses the input tape and in each step it assigns a
new state to the actual state by executing the state transition function of
the automaton (this will be explained later on).

After running the loop, your only task is to examine the actual state of
the automaton when it halts and to decide, based on its content, whether
the word being checked is correct or not...
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7.3 Finite Automata
Finite automata comprise the simplest automaton class. They do not have
an output tape or a read-write head. The length of the input tape is finite,
and it is as long as the input word (the number of its cells equals the length
of the word).

Definition 36 (Finite Automaton) A G(K, V, δ, q0, F) formal quintuple
is called a finite automaton where:

• K: is the finite set of states,

• V: is the input alphabet, namely the symbols that can be written on the
input tape, which are the terminal symbols of the grammar implemented
in the automaton

• δ : is the state transition function,δ ⊆ KxV → K

• q0 ∈ K: is a special state, the initial state

• F ⊆ K: is the set of terminal, (accepting) states

The first attribute of the automaton, namely K contains the states in
which the automaton can be. The delta function implements state transition.
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The sentences to be checked contain terminal symbols and these appear
on the input tape. This automaton class moves from left to right traversing
the input tape and it calls the delta function in each step parameterized with
the following symbol and the actual state.

This sequence is iterated until all symbols of the input tape are passed to
the delta function, namely until the whole sequence of input symbols is read.

Based on the definition and the explanation, the functioning of the au-
tomaton can be divided into the following steps:

1. the automaton is in the initial state q0 ,

2. the input tape contains the symbols of the input word from left to right
continually.

3. the read head is over the leftest cell of the input tape,

4. the read head reads the actual symbol from the input tape

5. based on this symbol and on the actual state the automaton changes
into a new state according to the content of the δ function

6. the read head moves one step right

7. the first 4 steps are iterated until the end of the input tape is reached

8. the automaton halts and the read head leaves the input tape (on the
right)

If the automaton halts, the actual state must be checked.
If it is a state in F (accepting), then the automaton accepts the word.

Halting and accepting will be specified later.
As the automaton reads one symbol from the input tape in every single

step and always moves right, the automaton certainly halts after n steps (n
is the length of the tape).

The δ function, based on an actual state (k ∈ K) and on an input symbol
(v ∈ V ) defines in which new state (k′ ∈ K) the automaton should be,
namely δ ⊆ KxV → K.

Function δ can be represented with a table or with a state diagram graph.
The state diagram graph is more expressive, however the chart form is better
for carrying out the steps of implementation .
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After these definitions, let us have a look at a complete deterministic
example after which we can define completeness and finiteness. Let P :=
S→ 1A, → 1A, → 1A be a grammatical system which generates words from
odd number of 1. The task is to construct an automaton that accepts words
that match the above mentioned grammatical rules and refuses all the rest.

The set of states: K := {q0, q1}, the input alphabet has one item: V := 1,
and the set of terminal states also contains only one state: F := {q1}. The
delta table of the automaton is the following:
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Let us analyze this automaton when functioning. Let the input word be
111. The automaton starts in initial state q0. it reads the first 1, and the
automaton transits into state q1 and the head shifts one step right.

The second 1 is read. The automaton transits into state q0 and the head
shifts right.

We read the third 1. The automaton transits into state q1 and the head
shifts one right. Since the head leaves the tape, the automaton halts. Cur-
rently the automaton is in state q1 and q1 ∈ F , so it accepts the word.

Deriving the same on input word 1111 the automaton would halt at state
q0 which is not an accepting state. In this case the automaton refuses the
word.

7.4 Partial Delta Derivation

Let P := {S → 1A,A→ 1B,A→ 1, B → 1B,B → 0B,B → 0, B → 1} be a
grammatical rule system with which we can generate words that begin with
two 1. The task is to construct an automaton which accepts the sequence of
symbols that match the rule system and refuses the rest.

The states of the automaton are the following: K := {q0, q1, q2}, The
terminal symbols on the tape are: V := {0, 1}, and the single element set
of terminal states is: F := {q2}. The delta function of the automaton in a
table is the following:

If we examine the automaton when functioning, we can see that after
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reading the first two 1 it transits from state q0 to q1, then from q1 to q2.
After that, no matter if it reads 1 or 0 from the tape it remains in state q2,
which is also an accepting state.

Let us have a look at what happens when the input word begins with a
0. In this case the automaton reads 0 in state q0 and cannot do anything
because the δ function is not prepared for this option. The automaton halts
immediately.

If it halts at the middle of a a word due to the reason mentioned above,
then the automaton has rejected the word. In such cases when the δ does not
contain a univocal move for every possibility, we call the δ mapping partial.
Else we call it δ function complete.

7.5 Deterministic and Nondeterministic Func-
tioning

Let us have a P := {S → 0S, S → 1S, S → 1A,A → 1} rule system
which is capable of generating words that end with at least two 1. The task
is to construct an automaton which accepts words that match the rules of
generation and rejects the rest.

The states of the automaton are the following: K := {q0, q1, q2}, the input
alphabet has two elements and the set of accepting states is V := {0, 1}, F :=
{q2}. Based on the rule system the delta table of the automaton is:

If we examine the automaton while functioning, we can see that if it reads
a 1 in state q0, then the next move is not obvious.

Based on the δ mapping it could be q0, or q1. In the course of consecu-
tive steps it is possible that a 1 appears in the input word. This does not
necessarily mean the end of the word. If it does, then the automaton has to
remain in state q0. Upon reading the last but one 1, it must transit to q1,
then reading an other 1, to q2. Since the word is over at this phase, q2 is an
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accepting state and the automaton accepts the word.
If δ is not unambiguous and we can assign two (or more) states to an

actual state and an input symbol then we call the δ mapping nondeterministic
Otherwise δ is deterministic.

In a nondeterministic automaton the automaton (randomly) chooses the
next state to move on. This implies that receiving the same input word twice
the automaton does not choose the same sequence of steps and first accepts
then it rejects the same word. For example receiving input word 110011 the
automaton can choose sequence q0, q0, q0, q0, q1, q2 and accept the word or it
can remain in state q0 and reject the word, or it can also end up in sequence
q0, q1, q2 and halt due to partial reasons and reject the word.

However, if the word is correct and matches the rules of grammar, the
automaton should accept it. In order to avoid changing functioning and
make accepting possible, in case of a nondeterministic δ function we say the
automaton accepts the word if there is a possible sequence in which it accepts
the word.

7.6 Equivalence of Automata

Definition 37 (Accepting) A finite A(K,V, δ, q0, F ) automaton accepts an
L language if it halts in case of any α ∈ L word accepting it but refuses any
β ∈ L word.

Definition 38 (The Accepted Word) Consider language L, recognized by
the automaton, if it consists of words that are accepted by a A(K,V, δ, q0, F )
finite automaton.

Definition 39 (Equivalence of Automata) A(K,V, δ, q0, F ) finite automa-
ton is equivalent to A′(K ′, V, δ′, q′0, F ′) if the two automata recognize the same
language.

Definition 40 (Equivalence of Automata) It is always possible to con-
struct a A′(K ′, V, δ′, q′0, F ′) complete finite automaton to a A(K,V, δ, q0, F )
partial finite automaton so that they are equivalent.

The main point of the construction is to expand the automaton with a
new state and to handle every partial case so that the automaton transits
to this new state. The automaton should remain in this state when reading
any symbol and this state should not be an accepting state.
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Definition 41 It is always possible to construct a A′(K ′, V, δ′, q′0, F ′) deter-
ministic finite automaton to a A(K,V, δ, q0, F ) nondeterministic finite au-
tomaton so that the two are equivalent.

According to the two thesis above any automaton can be reduced to a
complete and deterministic functioning, which is a good attribute, since in
case of most automaton, just like in programs and functions, partial and
nondeterministic functioning is not desirable.

Among the automata classes in this book, the Turing machine is the only
one whose delta function must be partial in all other automata this should
be avoided and based on the definition above it is possible to do.

7.7 Configuration of Automata

Definition 42 (Configuration of Automata) The configuration of a A(K,V, α, q0, F )
finite automaton is a (α, q) formal couplet where α is the unread part of the
word on the input tape and q is the actual state.

We can see the configuration of the automaton as if when we turn off the
automaton during functioning and then turn it back on and we want to get
back the state before turn off, then we should rewrite the unread part of the
input word on the tape and set the automaton into the state before turn off.

It is easy to understand that the read part of the input word is unimpor-
tant because the read head can only move right so the automaton will never
again read the part that it had already read.

The start configuration is (ω, q0), where ω is the complete input word.
The transitory configuration of the automaton is the (α, qi) state sequence.
The terminal configuration is (ε, q′). A terminal configuration is an accepting
one if q′ ∈ F , namely the terminal configuration is element of the set of
accepting states.

Practically the functioning of the automaton is basically the sequence
of configurations. Using the δ function on the initial configuration we get
the next configuration and by iterating this step we get the sequence of
configurations.

Let us have a look at an example to this: Let K := {q0, q1, q2} be the
set of states of our finite automaton, V := {0, 1} the set of input symbols
and F := {q2} the set of accepting states. Then the delta function of the
automaton in a table is the following:
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Let the input word be 1011. One possible sequence of configurations is:
(1011, q0) → (011, q0 → (11, q0) → (1, q1) → (ε, q0). Since, in the terminal
configuration the remaining input word is ε és q2 ∈ F , the automaton has
accepted the input word.

Based on the above mentioned a sequence of configurations is possible
where the delta function is not interpreted on the (0, q0) couplet. In this case
the automaton halts processing. As not only ε remains from the input word,
it does not matter whether the state is element of set F! The automaton
rejects the input word. However, as the automaton is nondeterministic, we
should not make any conclusions yet!

Let K := {q0, q1, q2} be the set of states of our finite automaton, V :=
{0, 1} the input alphabet, and F := {q2} the set of accepting states. The
delta table of the automaton is the following:

Let 10110 be our word to analyze. One possible sequence of configurations
is (10110, q0), )→ (0110, q0)→ (110, q0)→ (10, q1)→ (0, q2)→ (ε, q0).

Notice that through processing the automaton gets into state q2 which is
an accepting state! However, this does not mean that the automaton should
halt!

The automaton only halts if δ is unable to continue processing (if it runs
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out of input symbols, or if there is no proper step for the input symbol and
state couplet).

Then, the automaton rejects the input word because, though the pro-
cessing could go along the input tape, but it did not halt in an accepting
state!

This sequence of configuration has exactly n elements if the automaton
successfully reads the n length input word. At this point the sequence surely
ends (the automaton halts), since it is impossible to find a new element.

The sequence has less than n elements if it is impossible to apply the δ
function on the last configuration. In this case the δ function is partial. A
complete function could always be implemented until there are symbols on
the tape.

The sequence can contain different elements with the same word if the δ
function is nondeterministic. In this case there is a step where the δ function
can give multiple configurations, so iterating the δ function at least at this
point (and from this point on) we get various steps.

During generation there might be several points like that, so it can be
difficult to map every single possible sequence of configurations which are
possible with the same word.

The nondeterministic automaton accepts the input word if there is one
possible sequence in which the last element is an accepting configuration.

Definition 43 (Definition of Accepting in Finite Automata) A A(K,V, δ, q0, F )
finite automaton accepts a ω input word if there is a sequence of configura-
tions in which with finite iteration of δ mapping the initial configuration of the
automaton (δ, q0) transits into the terminal configuration (ε, q′) and q′ ∈ F .
Otherwise the automaton rejects the input word.

The definition above is equally true to deterministic, nondeterministic, to
complete and to partial cases.

In partial cases there is no sequence that could reduce the input word to ε,
because the automaton halts during processing and there must be remaining
symbols on the tape.

In case of nondeterministic functioning the word is correct if there is a
sequence of configurations where the automaton traverses the word and halts
in an accepting state.
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7.8 Analyzing the Functioning of a Finite Au-
tomaton

The functioning of the automaton can be better understood by analyzing the
items enumerated in the following list:

• In case of an n length input word a finite automaton surely halts after
maximum n steps (it can halt earlier if it is partial).

• The automaton always halts no matter what. It happens because it
reads a new symbol from the tape in every step and always moves the
head right. Due to that the the head inevitably leaves the tape after n
steps.

• If you find a correct word in the automaton, it halts precisely after n
steps and transits into accepting state (if the automaton chooses the
right sequence).

• The automaton halts precisely after n steps but it is not in accepting
state if it is nondeterministic and chose the wrong sequence.

• Or the automaton halts within less than n steps (if it is nondeterministic
and it is partial and chose the wrong sequence).

• If we analyze a wrong word with the automaton then it halts precisely
after n steps but it is not in accepting state (no matter whether it is
deterministic or nondeterministic).

• Or the automaton halts in less than n steps (partial functioning).

• The automaton stops because it could not continue processing after the
end of the tape as the delta function requires the reading of one symbol
in each step from the input tape and it cannot be done after stepping
off the tape.

7.9 Minimal Automaton
Since multiple automata can belong to the same language, we should try to
find the best one. This particular automaton is the best because it has the
smallest number of states of all. This automaton is called minimal.

In order to construct the minimal automaton, first we need a deterministic
and complete automaton. If it is ready, theres is a method for constructing
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the minimal automaton (minimizing the number of states of the existing
automaton).

It can be proved that (we do not give the proof here) in case of every
deterministic finite automaton carrying out the steps of this method will
work and disregarding the notation system of the minimal automaton the
method definitely exists.

7.10 Defining and Processing Algorithm of Fi-
nite Automata

The program of the finite automaton is basically an algorithm constructed
based on the definitions above.

ActState := q0
HeadIndex := 0
NonDetFunctioningHappened := FALSE
LOOP WHILE HeadIndex<TapeLength

Symbol := Tape[ HeadIndex ]
FvOutput := DeltaTable( Symbol, ActState )
N := Count(FvOutput )
IF N=0 THEN

IF NonDetFunctioningHappened THEN
Write:"Not accepted (nondet.)!"
Write:"Mulitple results possible!"

ELSE
Write: "wrong input word (part. functioning)!"

IEND
IEND
Choice := 0
IF N>1 THEN

Choice := randomnumber( 0 .. N-1 )
NonDetFunctioningHappened := TRUE

IEND
ActState := New States[ Choice ].NewInnerState
HeadIndex++

LEND
IF ActState is elementof AcceptingStates THEN

Write: "The automaton has accpeted the input word"
ELSE

IF NonDetFunctioningHappened THEN
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Write:"Not accpeted (nondet. funct.)"
Write:"Multiple results possible"

ELSE
Write: "The input word is certainly wrong!"

IEND
IEND

It is apparent from the above that variable ActState should be declared
in a way so that it could contain the actual states. It is possible by indexing
the states and thus the variable can be an integer.

What kind of integer to choose can be decided based on the cardinality of
set K, since it defines what number to expect while running the algorithm.

Function Deltatable() has two parameters, where the type of the first
parameter is defined by the type of symbols (V) on the tape. If it can be given
using ASCII characters then the type is char. However, if the cardinality of
set V is greater than that then it can be a solution to index the elements of
set V and to use an integer type.

Logical variable NonDetFunctioningHappened is necessary because if the
automaton has to choose at least once during the processing of the word then
according to its attributes the choice is only interpreted once.

In fact, to construct the final output, we should use backtrack and after
processing return to every choice and try out alternative paths. This modified
version of the algorithm would be much more complicated but the output
of the automaton would be final, either ACCEPTED or NOT_ACCEPTED
type.

7.11 Baar-Hiller lemma
Definition 44 Let L be a language and A(K,V, δ, q0, F ) a finite automaton
that recognizes L. Then, if there is an n positive integer number and a α ∈ L
word so that L(α) ≥ n, the following are true:

• the α word has a α = βωγ decomposition so that in case of L(βωγ) ≤ n,
and L(ω) ≥ 1),

• ∀i ≥ 0 the βωiγ ∈ L.

Let n be the number of states of a finite automaton. If we write the α
word (which is a word of the language and the automaton accepts it), then
the automaton must transit to one of the states at least twice.
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Consider q′ to be the state the automaton transits twice. The automaton
reads at least one symbol between the two same states.

Mark the part of word α, which the automaton reads until getting into
state q′ with β , and mark the phase in which it gets from q′ to q′ again with
ω and mark the rest with γ.

If the word is in a form of βωωδ, the automaton transits into state q′
after reading part β.

Continuing the reading, after the first ω part it transits into q′ state again
and after the second ω part it would get into q′ again.

From this q′ state the automaton can only transit into accepting state,
after reading the remaining γ part, since we know that in case of βωγ it
would have got into it as well.

You can see that the middle ω part can be concatenated arbitrary times
and the automaton will transit into q′ state (by the end of each ω parts) just
as many times.

The number of ω parts does not have any influence on the acceptance of
the word. Thus words with the form βγ, βωγ, βωωγ, βωωωγ, ... are also
words of the language L.

So if you have an L language and it is known that the finite automaton,
that recognizes it, has for example 4 states and you find a word that is longer
than 4 and is a word of the language, then you can find an infinite number
of such words and the language is infinite too.

If you have an L language and it is known the the finite automaton that
recognizes it has for example 6 states, then the language is not empty if there
is a shorter word than 6 which the language accepts.

If there was a longer word than 6 symbols, then there would also be a
shorter one (βγ).

According to all these, we can declare that an algorithm, which can decide
if there is a word that an automaton recognizes, can be constructed. The
point of the method used in this algorithm is to test all possible combinations
of words shorter than n.

If you find such word, the language is not empty. If there is no word that
is shorter than n recognized by the automaton, then it will not recognize any
word!

When testing, obviously, you must keep in mind that in case of a nonde-
terministic automaton, one failure does not mean that a following test will
not be successful.
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7.12 Computational Capacity
Definition 45 (Computational Capacity) A set of automata of the same
type is called abstract machine class and its computational capacity is the set
of formal languages which are recognized by an automaton of the machine
class.

The computational capacity of the finite deterministic and finite nonde-
terministic automata classes are the same.

This might be surprising, since nondeterministic functioning is the ex-
pansion of the deterministic one and seemingly, deterministic automata have
more possibilities. Based on this we could conclude that their computational
capacity is greater.

However, their computational capacity is the same because to every non-
deterministic finite automaton a deterministic equivalent can be constructed.

The computational capacity of the finite automata class equals the com-
putational capacity of the class of regular languages.

To prove this, let us have a look at the following example. Let us have a
finite automaton capable of recognizing a language.

Let us see the q0 initial state of the delta function and change it to the S
symbol (non-terminal symbol).

Change q1, q2, . . . , qn to S1, S2, . . . , Sn non-terminal symbols. Thus you
will exactly have as many non-terminal symbols as the number of the states
of the automaton.

If one of the rows of the table of the delta function is in the (qn, a)→ qm
format, assign rule Sn → aSm to it, so that you can get rules like the rules
of right-regular grammars.

It can be proved (not now) that words generated by applying the above
mentioned rules are recognized by the automaton, while other words are not..

Definition 46 (Computational Capacity of Finite Automata) To ev-
ery regular language it is possible to construct a finite automaton that recog-
nizes the language and a language recognized by a finite automaton is neces-
sarily regular.

7.13 Stack Automata
Stack automata differ in a lot of attributes from finite automata. The most
apparent difference is that stack automata have a special component called
the stack. The write-read head of the stack can not move freely, it must
write into the leftmost (topmost) cell and after that it moves right (down).
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when reading it can only read the rightmost cell, but before that it moves
left, which symbolizes moving up in case of a stack.

This is due to the peculiarities of stack handling. Due to the operations
of LIFO data structure you can only write or read the top of the stack.

Definition 47 (Stack Automaton) A G(K,V,W, δ, q0, z0, F ) formal sep-
tuple is called stack automaton, where:

• K: is the finite set of the states of the automaton,

• V: is the input alphabet with the symbols that can be written on the
input tape,

• W: is the set of symbols that can be written or read to and from the
stack, which contains the terminal and nonterminal symbols of the
grammatical rules implemented in the automaton,

• δ: is the state transition function, δ ⊆ Kx(V ∪ {ε})xW → KxW∗,

• q0 ∈ K: is a special state, the initial state,

• z0 ∈ W : is a special symbol, the "stack empty" symbol,

• F ⊆ K: is the set of terminal states.

Stack automata are important parts of interpreters. One version of the
stack automaton is the algorithm of recognizing the empty stack, which is
well known in syntactic analyzing and the interpreters of most programming
languages work based on this principle.

The operation of the automaton consists of the following steps. Initially
the automaton is in qo initial state and the stack only contains one symbol
z0.

The symbols of the input word are written on the input tape, from left
to right consecutively and the read head is over the leftmost cell of the tape.

When functioning, the read head reads from the input tape and also reads
the top symbol from the stack.

In case of LR parsers these two symbols are used to index the rules in
the parsing table so that the symbol from the stack is the row index and
the symbol from the tape is the column index. The cell defined by the two
indexes contains the rule to be implemented.

(How to create the table and how the automaton implements the rules in
the cells will not be published here.)

Generally the automaton, based on the read symbols and the actual state
transits states according to the δ function then writes a word (a sequence of
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symbols)into the stack and moves the read head right, but it does not have
to do so in every case.

The automaton halts if the read head leaves the tape to the right. Then,
the actual state must be checked. If it is a state in F (accepting), the au-
tomaton has recognized the word. The concept of halting and accepting will
be specified later.

Since the automaton does not read a symbol in every iteration from the
input tape , the head does not necessarily have to move and the automaton
will not necessarily halt after n steps.

In stack automata the delta function has three variables. Its parameters
are an actual state (ki ∈ K), an input symbol (vi ∈ V ) or in case of not
reading a ε, and a symbol from the stack (wi ∈ W ).

Based on its parameters the function tells what new state the automaton
should transit into and what to write into the stack. (W∗).

The delta function of the stack automaton can be partial or complete,
deterministic or nondeterministic. Handling of possibilities is basically the
same as in finite automata.

Definition 48 (Definition of Recognition) A G(K,V,W, δ, q0, z0, F ) stack
automaton recognizes an L language if the automaton halts with every α ∈ L
words recognizing it and rejects every β /∈ L words.

Just like in case of finite automata we call an L language, that consists
of words recognized by the stack automaton, a language recognized by the
automaton.

Also, two stack automata are equivalent if they recognize the same lan-
guage.

It is always possible to construct a G′(K ′, V,W ′, δ′, q′0, z
′
0, F

′) complete
finite automaton to a G(K,V,W, δ, q0, z0, F ) partial stack automaton so that
the two are equivalent.

However, it is not as simple with the nondeterministic one. Unfortunately,
there is no general algorithm which constructs the deterministic equivalent
of a nondeterministic stack automaton.

The following delta function is the nondeterministic delta function of a
stack automaton. In state q0 when the top symbol in the stack is z0 and
there is a 1 on the tape the automaton has a choice:

1. it either does not read anything from the tape (it reads ε),

2. or it reads the 1,
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since there is an output for both cases.

From this example you can see that in stack automata in a nondetermin-
istic case we must pay attention to the possibility of reading ε.

7.14 Configuration of a Stack Automaton

Definition 49 (Configuration of a Stack Automaton) The configuration
of a G(K,V,W, δ, q0, z0, F ) stack automaton is a (α, q, β) formal triplet where
α is the word remaining on the input tape, q is the actual state and β is the
word in the stack.

The initial configuration of the automaton is (ω, q0, z0), where ω is the
complete input word. The transitory configuration of the automaton is some
(α, q, β). The terminal configuration of a normal functioning is (ε, q′, β′).

Definition 50 (Definition of Acceptance in a Stack Automaton) A fi-
nite automaton accepts a ω input word if there is a sequence of steps through
which by the finite iteration of δ mapping the initial configuration of the
automaton (ω, q0, z0) can transit into (ε, q′, β′) terminal configuration and
q′ ∈ F . Otherwise the automaton rejects the input word.

The definition above applies to any functioning of δ.
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7.15 Analyzing Delta Mapping

1. Explanation: The automaton does not read from the input tape, and
before and after reading it transits into state q0 and reads z0 from the
stack. This can be iterated infinitely by the automaton (infinite loop).

2. The automaton pops a symbol from the stack (z), and pushes back
three (zxy). After this the actual size of the stack is increased by 2.

3. The automaton pops one symbol from the stack (z), but does not pushes
anything (ε). After this the stack size is decreased by 1.

4. The automaton pops one symbol from the stack (z), and pushes one
back (z). After this the stack size does not change.

7.16 Functioning of a Stack Automaton
A stack automaton does not always halt. It could happen that it does not
read from the input tape for infinite steps and it only carries out stack oper-
ations (pops and pushes). Let us have a look at a few cases:

• Here, only the stack changes and the state. The stack automaton ends
up in an infinite loop like that if it transits into the same state twice
and the topmost symbol in the stack is the same.

• If we write a correct word on the input tape the automaton halts in
a maximum of n steps and transits into an accepting state (when it
chooses a proper sequence of steps).

• It is also possible that it halts after n steps but it is not in an accepting
state (then it is nondeterministic and chose a wrong path).
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• Finally, the automaton halts due to partial reasons (even after less than
n steps, or even after more than n steps) and due to a wrong path.

• The automaton does not halt (it is nondeterministic and enters an
infinite loop).

If we input a wrong word:

• The automaton halts after maximum n steps but it is not in accepting
state (both in deterministic and nondeterministic cases),

• The automaton halts in maximum n steps due to partial reasons (both
in deterministic and nondeterministic cases),

• The automaton does not halt (it still can be deterministic).

7.17 Computational Capacity of Stack Automata
There are stack automata which lacks set F. This automaton ends up in an
empty stack when it recognizes a word. (namely the topmost stack symbol
will be z0). These automata are called pushdown automata.

It is possible to construct a G(K,V,W, δ, q0, z0, F ) stack automaton to ev-
ery G(K,V,W, δ, q0, z0) pushdown automaton so that the two are equivalent.
This is true vica versa.

We must change the traditional stack automaton to empty the stack be-
fore halting with a special step sequence in the delta function through which
if it reads ε from the input tape it always writes back a ε.

If you wanted to construct a pushdown automaton, then you can only
return an acceptance if the automaton is in accepting state and the stack is
empty namely its only symbol left is z0.

Definition 51 (Computational Capacity of a Stack Automaton) The
computational capacity of the stack automata class is the same as that of the
class of context-free languages.

Definition 52 (Computational Capacity of Pushdown Automata) The
computational capacity of the pushdown automata class is the same as that
of the stack automata class.

Based on all these, a stack automaton, which recognizes the particular
language, can be constructed to every type-2 grammars and also a language
recognized by stack automata is at least type-2.
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Stack automata are compatible with finite automata from above, since if
a stack automaton always pops and pushes z0 and reads from the tape in
each step then we get back a finite automaton.

On the other hand, if a stack automaton recognizes a language, then it is
at least type-2 but it can be type-3 as well.

7.18 Example Stack Automaton

The grammar implemented in the automaton of the example algorithm is
the following: P = {S → 1S1, S → 0S0, S → ε}, the accepting state of the
automaton is B and it is a pushdown automaton.

Based on the introduction the processing algorithm is the following:

ActState := q0
Push( Z0 )
HeadIndex := 0
NonDetFunctioning Happened := False
Infinite Loop

Top of Stack := Pop()
Symbol1 := ""
Symbol2 := Tape[ HeadIndex ]
FunOutput1 :=
DeltaTable( Symbol1,Top of Stack, ActState )
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FunOutput 2 :=
DeltaTable( Symbol1,Top of Stack, ActState )
N1 := Numberofitems( FunOutput 1 )
N2 := Numberofitems( FunOutput 2 )
SELECTION

IF N1=0 AND N2=0 THEN
End_Loop
IEND
IF N1>0 AND N2>0 THEN
NonDetFunctioning Happened := TRUE
Choice := Random Number( 0..1 )
IF Choice=0 THEN

SYMBOL := SYMBOL1
FunOutput := FunOutput 1

ELSE
Symbol := Symbol2
FunOutput := FunOutput 2

IEND
IEND
IF N1=0 AND N2>0 THEN

SYMBOL := Symbol2
FunOutput := FunOutput 2

IEND
IF N1>0 AND N2=0 THEN

SYMBOL := Symbol1
FunOutput := FunOutput 1

IEND
EEND
N := Numberofitems( FunOutput )
Choice := 0
IF N>1 THEN

Choice := randomnumber( 0 .. N-1 )
NonDetFunctioning Happened := TRUE

IEND
PushWordtoStack(FunOutput[ Choice ].StackWord )
ActState := FunOutput[ Choice ].NewState
IF SYMBOL > "" THEN

HeadIndex++
IEND

LEND
IF HeadIndex == WordLength THEN
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IF ActState is element of TerminalStates THEN
Print: "The automaton has accepted the input word"

ELSE
IF NonDetFunctioning Happened THEN

Print:"Rejected,
but it was nondeterministic functioning!"
Print:"A new execution may give a different result!"

ELSE
Print: "The input word is surely wrong!"

IEND
IEND

ELSE
IF NonDetFunctioning Happened THEN

Print:"Rejected, but it was nondeterministic functioning !"
Print:"A new execution may give a different result!"

ELSE
Print: "The input word is surely wrong (partial halt)!"

IEND
IEND

Explanation of the algorithm: You have to try if there are outputs in the
delta function dealing with the case when you do not read a symbol from the
input tape , and you must also try if there is an output in the delta function
for reading the next symbol.

If both are true, as you have these instructions in delta, then it is nonde-
terministic. The loop halts if there is no delta output in the actual situation.
It can occur if the word is over or it can happen during processing. In this
latter case you must reject the word.

If the word is over, you have to check if the automaton is in terminal
state or not.

The chosen output contains the sequence of symbols to be pushed into
the stack and the newly chosen state too. The head should only move if we
have read from the tape.

The Pop() function returns the top symbol from the stack. In case the
stack is empty, it must return the empty stack symbol z0.
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Chapter 8

Turing automatons

8.1 Turing Machines

Turing machines are automata without a separate output tape. They can
not only read the input tape but also write on it.

Furthermore the input tape is infinite at both ends and initially the input
word is written on the tape from left to right consecutively and the rest of
the cells contain a special symbol, the BLANK symbol.

A Turing machine does not always halt. Due to its infinite tape the
Turing machine never steps off it. The Turing machine can only halt due to
partiality, so its delta function is always partial.

In this case the partiality of the delta function is not a mistake or a
problem to be solved but a good property.

Definition 53 (Turing Machine) A A(K,V,W, δ, q0, B, F ) formal septu-
ple is called a Turing automaton where

• K: is the finite set of states,

• V: is the input alphabet, namely the alphabet of the language to be
recognized,

• W: is the output alphabet, namely the alphabet of symbols that can be
written on the tape, where V ⊆ W ,

• δ : is the state transition function, δ ⊆ KxW → KxWx{←,→},

• q0: is the initial state of the automaton, q0 ∈ K,

• B: is the blank symbol, B ∈ W ,

93
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• F: is the finite set of accepting states F ⊆ K.

The functioning of the automaton can be divided up to the following
steps. Initially the automaton is in initial state q0 and the input tape contains
symbols of an input word from left to right consecutively and the write-read
head is over the leftmost cell of the tape.

When functioning the read head reads a symbol from the input tape, then
considering the symbol and the actual state it transits state according to the
delta function. Then it writes a symbol back on the tape and moves the head
left or right.

The automaton halts if the δ function is not interpreted with the actual
input symbol and state.

Although the Turing machine reads a symbol from the input tape in each
step, it can not step off it , since it is infinite in both directions. Thus the
automaton does not surely halt after n steps.

Configuration of Turing Machines, Computational Process, Recog-
nition

Definition 54 (Configuration of Turing Machines) The configuration of
a G(K,V,W, δ, q0, B, F ) Turing machine is a formal (α, q, β) triplet where α
is the word left from the write-read head on the input tape , q is the actual
state and β is the word under and right from the write-read head.

The head is over the first character of word β. Words α, β do not contain
the blank symbol, so before α and after β the tape only contains BLANK
symbols.

Based on the configuration of the automaton we can know every impor-
tant information regarding the state of the automaton and based on that,
after reloading the configuration the automaton can continue the process.

The initial configuration of a Turing machine is the (ε, q0, ω) triplet and
ω is the input word. The configuration when functioning is some (α′, q′, β′)
triplet. The terminal configuration is some (α, q, β) triplet.

The delta function is interpreted on a (q, a) couplet (q ∈ K, a ∈ W ). It
consists of δ(q, a) = (q′, a′,←) form lines, where it assigns a new state (q′)
to the (q, a) couplet and writes a symbol on the tape (a′), and defines if the
head should move left or right.

Definition 55 (Computational Process of Turing Machines) A (α, q, β)
configuration of a Turing machine is a halting configuration if the δ function
is not interpreted on the (q, a) couplet.
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A sequence of configurations, whose first element is the initial configura-
tion and every other element is the result of the previous one so that the δ
function is implemented on it, is called computational process.

Definition 56 (Accepting State) A computational process is a complete
computational process if the last configuration of the sequence is a halting
configuration, and the Turing machine recognizes (accepts) a ω ∈ V ∗ word,
and if the initial (ε, q0, ω) configuration can be transited into one (α, q, β)
halting configuration through a complete computational process, and (q ∈ F ).

Anyway, the definition above can be well implemented with both de-
terministic and nondeterministic cases. There is no point in differentiating
partial and non-partial cases because a Turing machine can not be complete.

Analyzing the Functioning of a Turing Machine

A Turing machine does not always stop. It can run into an infinite loop
moving alternately between two cells of the input tape. Moreover, it can
move right (or left) infinitely after reading a symbol.

If the delta function is not partial, the Turing machine will never halt.
The word written on the infinite tape by the Turing machine is not nec-

essarily consecutive. There can be BLANK cells in between the written word
or word parts.

Let us examine some possible situations when the automaton is function-
ing and we give it a correct input word.

• , it halts after some (even less than n) steps and it is in an accepting
state.

• The automaton halts after some steps but not in an accepting state (it
is nondeterministic and chose a wrong path).

• The automaton does not halt (it is nondeterministic with a wrong
path).

Let us also consider some cases when the input word is wrong.

• The automaton halts after some steps but not in an accepting state
(both in nondeterministic and deterministic cases).

• The automaton does not halt.



96 CHAPTER 8. TURING AUTOMATONS

Now, let us analyze a concrete example which reveals how a word is
analyzed by a Turing machine that is constructed from the following ele-
ments: The input alphabet of the automaton V := {0, 1}, the set of states
K := {a, b, c, d, e}, and the set of symbols that can be written on the tape
W := {0, 1, B}, and the set of accepting states that contains one element
{a}.

The delta function of the automaton in a table format is the following:

The delta function does not execute the recognition of words but reflects
them in the middle. (the input word is 01011.)

An other definition of the automaton above can be seen in the following
image:

Definition 57 (Recursively Enumerable Languages) A language is re-
cursively enumerable if there is a Turing machine that recognizes it and a
language is recursive if there is a Turing machine that recognizes it.
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The automaton halts even with words that are not in the language.

The class of phrase like languages is the same as the class of recursively
enumerable languages so Turing machines are recognizing automata of type-
0 languages. According to this a Turing machine can be constructed to
every type-0 language and vica versa. The recognizing automata of type-1
languages are special Turing machines.

8.2 Variants of the Turing Machine

Turing machines with a tape that is only infinite in one direction. It can step
off the tape at the other end.

It can be proved that these automata are equivalent to machines whose
tape is infinite in both directions.

This can be done by assigning the cells of the tape infinite in one direction
to the cells of the Turing machine with a tape infinite in both direction in a
way that the right side cells are assigned to the even cells and the left side
cells are assigned to the odd ones.

After this we can change the delta function of the Turing machine with
the infinite tape at both ends that we change the way it chooses the proper
cell. Thus the two automata will have the same recognition capability and
they will be equivalent.

An other variant is Turing machines with multiple tapes. This type has
more tapes, possibly infinite in both directions. The input data of the delta
function does not come from one tape but from all of them and all of them
must be written in each step, and the write-read heads of every tape should
be moved to any direction. This automaton can also be equivalent to the
Turing machine with infinite tape.
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Analyzing the Description of a Turing Machine

ActState := q0
HeadIndex := 0
NonDetFunctioningHappened := FALSE
INFINITE LOOP

Symbol := Tape[ HeadIndex ]
FvOutput := DeltaTable( Symbol, ActState )
N := Numberofelements( FunOutput )

SELECTION
IF N=0 THEN

End_Loop
IEND
IF N=1 THEN

Choice := 0
IEND
IF N>1 THEN

NonDetFunctioningHappened := TRUE
Choice := RandomNumber( 0..N-1 )

IEND
SEND

Tape[ HeadIndex ] := FunOutput[ Choice ].OutputSymbol
ActState := FunOutput[ Choice ].NewState
IF FunOutput[ Choice ].HeadDirection == RIGHT THEN
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HeadIndex++
ELSE

HeadIndex--
IEND

LEND

IF ActState iselementof AcceptingStates THEN
Print: "The automaton has accepted the input word"

ELSE
IF NonDetFunctioningHappened THEN

Print:"Rejected (nondet.)
Print:"Multiple possible results"

ELSE
Print: "The input word is wrong!"

IEND
IEND

The Turing machine can possibly end up in an infinite loop. This is very
hard to recognize, however, there are some ways. It is generally impossible
to tell that a Turing machine will never recognize a word.

8.3 Linearly Bounded Turing Machines

An attribute of linearly bounded Turing machines is that their tape is not
infinite but limited in both directions.

The length of the input tape depends on the length of the input word
and there are Turing machines which when functioning work with a tape
precisely the same length as the length of the input word.

Every such Turing machine can be rated into an automata class which is
specified by the number with which the length of the tape should be multi-
plied but every machine that belongs to such class is equivalent to the class
of automata working with a tape length multiplied with one.

Since a Turing machine with a finite tape can halt if it steps off the tape,
the definition of halting and acceptance is different from the ones of Turing
machines with infinite tape.

To accept this, we only need to expand the input word with a → symbol
from the left and with a← symbol from the right . One denotes the left end
of the word and the other denotes the right end. The automaton steps off
the tape if it reaches one of these symbols.
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Definition 58 (A Recognized Language) Languages recognized by lin-
early bounded Turing machines are context sensitive and vica versa.

According to our knowledge of Turing machines, or generally of automata,
so far it is easy to comprehend that Turing machines can be viewed as math-
ematical models of computers.

The input output tape is the memory of the computer and if you get to
know the theory of the functioning of the automaton, you will realize some
Neumann principles as well , like the principle of stored program.

In order to fully understand the functioning of this automata class, you
must create one of the processing algorithms explained in the section and
implement it in a programming language, preferably in a high level one, of
your choice.
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