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1 Introduction and some notations
The present thesis aims to conduct some studies of the maximum (supremum) operator
on:

i.) σ-algebras, i.e. to define on σ-algebras functions, called optimal measures, which
map finite union into the maximum under certain restrictions,

ii.) the set of measurable functions with various characterizations.
The material is presented essentially in seven chapters almost all of which begin with

an introductory part. In the first some historical backgrounds are presented. Chapters
II–V deal essentially with results in connection with optimal measure which is a function,
continuous from above and suitably normalized, mapping any given σ-algebra into the unit
interval [0, 1] such that every finite union is mapped into the maximum of the maps of the
respective terms. We point out that the choice of the term optimal measure is deliberate,
since taking the maximum also encounters the meaning given in the Oxford Dictionary
to the world “optimal”. Chapter V I treats some maximal inequalities regarding random
variables. In the last chapter we present some informatics simulations.

1.)
∨

and ∨ (respectively,
∧

and ∧) stand for the maximum or supremum (respectively
the minimum or infimum) operators.

2.) (Ω, F) will denote an arbitrary measurable space, to be specified in especial cases.

2 Optimal measure and the structure theorem
Thesis 1.

In the image of the σ-additive measure (or probability measure) we propose
a set function, called optimal measure, which maps σ-algebras into the unit
interval [0, 1]. We showed that every optimal measure is entirely generated by
a countable set of the so-called indecomposable atoms.

2.1 Definition, some properties and examples

Definition 2.1 (Agbeko, [5]) A set function p : F → [0, 1] will be called optimal mea-
sure if it satisfies the following three axioms:

Axiom 1. The identities p (Ω) = 1 and p (∅) = 0 hold.

Axiom 2. For all measurable sets B and E, we have p (B ∪ E) = p (B) ∨ p (E).

Axiom 3. Function p is continuous from above, i.e. whenever (En) ⊂ F is a decreasing

sequence, then p

(
∞⋂

n=1

En

)
= limn→∞ p (En) =

∞∧
n=1

p (En),
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The triple (Ω, F , p) is referred to as an optimal measure space.
An important property can be stated as follows:

Lemma 2.1 (Agbeko, [5]) Every optimal measure is continuous from below, i.e. when-
ever (Bn) ⊂ F is an arbitrary sequence tending increasingly to a measurable set B, and
p an optimal measure, then limn→∞ p (Bn) = p (B).

I would like to note that the following example was proposed by Prof. M. Laczkovich,
to replace the imperfect one I gave in an earlier version.

Example 2.1 (Agbeko, [5]) Let (Ω, F) be a measurable space, (ωn) ⊂ Ω be a fixed
sequence, and (αn) ⊂ [0, 1] a given sequence tending decreasingly to zero. The function
p : F → [0, 1], defined by

p (B) = max {αn : ωn ∈ B} (1)

is an optimal measure.
Moreover, if Ω = [0, 1] and F is a σ-algebra of [0, 1] containing the Borel sets, then every
optimal measure defined on F can be obtained as in (1).

2.2 The structure theorem

Definition 2.2 (Agbeko, [6]) By a p-atom we mean a measurable set H, p (H) > 0
such that whenever B ∈ F and B ⊂ H, then p (B) = p (H) or p (B) = 0.

Definition 2.3 (Agbeko, [6]) A p-atom H is decomposable if there exists a subatom
B ⊂ H such that p (B) = p (H) = p (H\B). If no such subatom exists, we shall say that
H is indecomposable.

The Structure Theorem (Agbeko, [6]) Let (Ω, F , p) be an optimal measure space.
Then there exists a collection H (p) = {Hn : n ∈ J} of disjoint indecomposable p-atoms,
where J is some countable (i.e. finite or countably infinite) index set, such that for every
measurable set B ∈ F with p (B) > 0 we have

p (B) = max {p (B ∩Hn) : n ∈ J} . (2)

Moreover, if J is countably infinite, then the only limit point of the set {p (Hn) : n ∈ J}
is 0.
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3 Optimal average
Thesis 2.

In the image of the Lebesgue integral (or mathematical expectation), we de-
fined a non-linear functional (called optimal average) for non-negative measur-
able simple functions and then extend it to arbitrary non-negative measurable
functions. Optimal average provides us with many similar well-known results
in measure theory, the Fubini and Radon-Nikodym theorems, say.

Let s =
n∑

i=1

biχ (Bi) be an arbitrary non-negative measurable simple function, where

{Bi : i = 1, . . . , n} ⊂ F is a partition of Ω.

Lebesgue integral of s : Optimal average of s : (Agbeko, [5])∫
Ω

sdµ :=
∑n

k=1 bkµ (Bk)
\

Ω
sdp :=

n∨
i=1

bip (Bi) ,

It is well-known that in general a measurable simple function can have many decom-
positions. The question thus arises whether or not the optimal average depends on the
decomposition of the simple function. The following result gives a satisfactory answer to
this question.

Theorem 3.1 (Agbeko, [5]) Let
n∑

i=1

biχ (Bi) and
m∑

k=1

ckχ (Ck) be two decompositions of

a measurable simple function s ≥ 0, where {Bi : i = 1, . . . , n} and {Ck : k = 1, . . . , m} ⊂
F are partitions of Ω. Then

n∨
i=1

bip (Bi) =
m∨

k=1

ckp (Ck) .

Proposition 3.1 Let f ≥ 0 be any bounded measurable function. Then

sup
s≤f

\

Ω

sdp = inf
s≥f

\

Ω

sdp,

where s and s denote non-negative measurable simple functions.

Definition 3.1 The optimal average of a measurable function f is defined by
\

Ω
|f | dp =

sup
\

Ω
sdp, where the supremum is taken over all measurable simple functions s ≥ 0 for

which s ≤ |f |.

Remark 3.1 (Agbeko, [6]) If a function f : Ω → R is measurable, then it is constant
almost everywhere on every indecomposable atom.
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Proposition 3.2 (Agbeko, [6]) Let p ∈ P and f be any measurable function. Then

\

Ω

|f | dp = sup


\

Hn

|f | dp : n ∈ J

 ,

where H (p) = {Hn : n ∈ J} is a p-generating countable system.
Moreover if

\
Ω
|f | dp < ∞, then

\
Ω
|f | dp = sup {cn · p (Hn) : n ∈ J}, where cn = f (ω)

for almost all ω ∈ Hn, n ∈ J .

4 Some convergence theorems related to measurable
functions

Thesis 3.

By means of optimal measures and averages we were able to characterize vari-
ous notions of well-known convergence such as the notions of discrete, equally,
uniform and pointwise convergence of sequences of measurable functions. The
boundedness of sequences of measurable functions were also characterized us-
ing the same tools.

Definition 4.1 (Á. Császár and M. Laczkovich, [16, 16, 18]) LegyenLet X be an
arbitrary nonempty set. We say that a sequence of real-valued functions (hn) converges to
a real-valued function h:
(i) discretely if for every x ∈ X there exists a positive integer n0 (x) such that hn (x) =
h (x), whenever n > n0 (x);
(ii) equally if there is a sequence (bn) of positive numbers tending to 0 and for every x ∈ X
there can be found an index n0 (x) such that |hn (x)− h (x)| < bn whenever n > n0 (x).

Theorem 4.1 (Agbeko, [7]) Let (fn) be any sequence of measurable functions. Then
(fn) tends to a measurable function f pointwise if and only if (zn) tends to 0 pointwise
on P<∞, where for every n ∈ N, zn is defined on P<∞ by zn (p) =

\
Ω
|fn − f | dp.

Theorem 4.2 (Agbeko, [7]) A sequence of measurable functions (fn) converges to some
measurable function f equally (resp. discretely) if and only if sequence (zn) converges to
0 equally (resp. discretely) on P<∞, where for every n ∈ N, zn is defined on P<∞ by
zn (p) =

\
Ω
|fn − f | dp.
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5 Maximal inequalities related with probability theory
Thesis 4.

Maximal inequalities in connection with concave (convex) Young functions are
discussed. Further we isolated a subset A of the set Yconc of concave Young
functions and showed that it is closed under the composition operation. We
also demonstrated that subset A is a dense set in Yconc with respect to a specific
metric and characterized the set of those concave Young functions possessing
a positive fixed point.

Definition 5.1 A function Φ : R+ → R+ is called a concave Young function if for all
x ≥ 0 it is defined by

Φ (x) =

∫ x

0

ϕ (t) dt,

where Φ (0) = 0 and ϕ : (0, ∞) → (0, ∞) is a decreasing right-continuous such that ϕ is
integrable on every finite interval (0, x). All along we assume that Φ (∞) = ∞.

The set of all concave Young functions will be denoted by Yconc.

5.1 Maximal inequalities for non-negative submartingales related
with concave Young-functions

Definition 5.2 We say that for the concave Young function Φ the maximal inequality
is valid with some positive constant KΦ (depending only on Φ) if for an arbitrary non-
negative submartingale (Xn, Fn), n ∈ N, the inequality

EΦ (X∗
n) ≤ KΦ (1 + EXn) (3)

holds for all n ∈ N, with X∗
n =

n∨
k=1

Xk.

Theorem 5.1 (Agbeko, [3]) Let Φ be any concave Young function. In order that Φ
satisfy the above maximal inequality, it is necessary and sufficient that

AΦ :=

∫ ∞

1

ϕ (t)

t
dt < ∞. (4)

Moreover, if AΦ < ∞, then KΦ = max (Φ (1) , AΦ).
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5.2 The fixed points of a class of concave Young-functions

In dynamic models, stationary equilibrium is typically described as a solution of the
equation x = f (x), where f is a mapping which determines the current state as a function
of the previous state, or as a function of the expected future state. In many cases x is
a finite dimensional vector, and in general positive solutions (i.e. fixed points of f) are
rather sought for.

I should mention that there are different types of Fixed Point theorems. Perhaps the
most widely investigated is the one in connection with contractive mappings. Here I would
like to mention the name of my colleague J. Mészáros who connected various definitions
of contractive mappings (cf. [27]). We also note that concave Young functions can meet
the contractive property.

Theorem 5.2 (Agbeko, [11]) Let Φ ∈ Yconc be arbitrary. In order that there be a
constant s > 0 for which ϕ (s) < 1, it is necessary and sufficient that Φ admit a positive
fixed point, i.e. Φ (x) = x for some number x > 0.

Proposition 5.1 (Agbeko, [11]) Let Φ ∈ Yconc be arbitrary. If x0 ∈ (0, ∞) is such
that Φ (x0) = x0, then ϕ (x0) < 1.

Definition 5.3 (Agbeko, [11]) A number s > 0 is called the degree of contraction of a
function Φ ∈ Yconc if ϕ (s) = 1.

We note in this case that ϕ (s + δ) < 1 for any positive number δ, which makes Φ a
contraction for some suitable δ.

The degree of contraction can provide a starting point for any iteration for finding
the positive fixed points of concave Young-functions. In this viewpoint the degree of
contraction can be useful, as a matter of fact.

6 Applications: Algorithmic determination of optimal
measures from data

6.1 The determination of optimal measure from data

6.1.1 Some preliminary

In fuzzy sets theory the crux was how to determine the values of the fuzzy measure in a
given real problem. To achieve that goal the Sugeno integral was used alongside with the
so-called genetic algorithm to solve it (see [40]), say. The Sugeno integral with respect
to a given fuzzy measure µ is regarded as a multi-input single-output system. The input
is the integrand, i.e. the vector (f (ω1) , . . . , f (ωn)), while the output is the value of its
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Sugeno integral E := (S)
∫

fdµ = sup {α ∧ µ (Fα) : α ∈ [0, 1]}, where f is a measurable

function defined on a finite measurable space (Ω, F) and Fα := {ω ∈ Ω : f (ω) ≥ α}. By
repeatedly observing the system (f (ω1) , . . . , f (ωn)) results the following

f1 (ω1) f1 (ω2) . . . f1 (ωn) E1

f2 (ω1) f2 (ω2) . . . f2 (ωn) E2
...

...
...

...
fk (ω1) fk (ω2) . . . fk (ωn) Ek

and we look for an approximate fuzzy measure µ with Ei = (S)
∫

fidµ, (i = 1, . . . , k),

such that the expression

e :=

√
1

k

∑k

i=1

(
Ei − (S)

∫
fidµ

)2

is minimized. For more about the genetic algorithm see [25], for example.

6.1.2 Problems

Problem 1 Let (Ω, F) be the measurable space with Ω = {1, . . . , n} and F = 2Ω. Write
B1 := {1} , . . . , Bn := {n} and let f be a random variable assuming the theoretical values
in [0, ∞). Observe k times this measurable function with results f1, . . . , fk, i.e.

f1 (1) f1 (2) . . . f1 (n) Q1

f2 (1) f2 (2) . . . f2 (n) Q2
...

...
...

...
fk (1) fk (2) . . . fk (n) Qk

where Qi =
1

n

n∑
j=1

fij with fij := fi (j), j = 1, . . . , n, and i = 1, . . . , k. The question

is to know which one of these sample averages can "best" approximate the theoretical
mathematical expectation.

To solve Problem 1 we propose to look for an approximation of the theoretical optimal
measure p for which

\
Ω
fidp ≈ Qi, (i = 1, . . . , k), such that the expression

err :=

√∑k

i=1
εi

2 =

√√√√√∑k

i=1

Qi −
\

Ω

fidp

2
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is minimized. Write p∗∗ for the optimal measure p for which the least square is minimal.

Now, it is not difficult to see that
∨k

i=1

∣∣∣∣Qi −
\

Ω
fidp∗∗

∣∣∣∣ < err. Let i0 be the index where

the maximum is attained, i.e.∣∣∣∣∣∣Qi0 −
\

Ω

fi0dp∗∗

∣∣∣∣∣∣ =
∨k

i=1

∣∣∣∣∣∣Qi −
\

Ω

fidp∗∗

∣∣∣∣∣∣ .

Then we can conclude that with respect to the optimal measure p∗∗ the i0th sample
provides us with the best possible sample average.

As we know statistical spaces are not restricted in general to the real line nor to the
real vector spaces. For this reason we shall formulate the following problem. We shall
then indicate how to use the solution of first problem to solve the second one.

Problem 2 Let (X, S) be measurable space with S being an arbitrary σ-algebra. Fix a
partion D1, . . . , Dn of X and consider a random variable h : X → [0, ∞), assuming
theoretical values. Observe k times this measurable function with results

D1 D2 . . . Dn

h11 h12 . . . h1n Q1

h21 h22 . . . h2n Q2
...

...
...

...
hk1 hk2 . . . hkn Qk

where hij is the observed value of h in the ith experiment on event Dj, i = 1, . . . , k;

j = 1, . . . , n, and Qi =
1

n

n∑
j=1

hij, i = 1, . . . , k. The question is to know which one of

these sample averages can "best" approximate the theoretical mathematical expectation of
h.

To solve Problem 2, first write S0 := σ (D1, . . . , Dn). We note that S0 is a finite
σ-algebra and the random variable h is also S0-measurable. Clearly, S0 and 2Ω are equinu-
merous, where Ω = {1, . . . , n}. Then Problem 2 can be reduced to Problem 1 if we define
fij := hij, i = 1, . . . , k; j = 1, . . . , n.
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6.2 Algorithm to solve the first problem

Step 0

Input: n positive integer
Ω = {1, . . . , n}
k × n matrix F = [f(i, j)]n, k

i, j=1

n-dimensional vector Q
error bound ε
Bj = {j}, j = 1...n
X = the power set of Ω whose elements should be indexed kk = 1 . . . 2n

Step 1.

Generate a decreasing sequence α(j) ∈ (0, 1], with α(1) = 1.

Step 2.

Permute σ ({1, ..., n}) = {n1, ..., nn}
Put p (Bj) = α(nj), for j = 1, ..., n
Compute the optimal average: A(i) = max{f(i, j) ∗ p (Bj) : j = 1...n}

Compute the corresponding error: err =

√(∑n
j=1 (Q(i)− A(i))

)2

iter = 1
Step 3.

If err < ε or iter > n! do
Find the index i0: |Q(i0)− A(i0)| = max{|Q(i)− A(i)| : i = 1...k}
Determine p (B) = max {α(nj) : j ∈ B}, for each B ∈ X
Else GOTO Step 2

Step 4.

The outputs
1.) Best sample: f (i0, 1) , . . . , f (i0, n)
2.) The approximated optimal measure:

2Ω p (B)
{} 0
B1 p (B1)
...

...
Bi p (Bi)
...

...
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6.3 An algorithm to find the degree of contraction and the fixed
point

Step 1. Input Φ (x) , cc > 0.

Step 2. Compute the derivative ϕ (x) of Φ (x)

Step 3. Starting from cc find an approximation root for
equation ϕ (x)− 1 = 0 and put the result into c.

Step 4. If c = 0 then STOP.
else do

Step 5. Starting from c apply the FixedPoint algorithm, i.e.
x0 := c; xk+1 := Φ (xk) ; k = k + 1.
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Summary

In the image of the probability measure we proposed a set function, called
optimal measure, which we showed to have a structural property. Next, we
defined the so-called optimal average for non-negative measurable simple func-
tions and then extend this definition to arbitrary measurable functions. Op-
timal average provides us with many similar well-known results in measure
theory such as the Fubini and Radon-Nikodym theorems, say. We character-
ized various notions of well-known convergence such as the notions of discrete,
equally, uniform and pointwise convergence of sequences of measurable func-
tions. Maximal inequalities in connection with concave (convex) Young func-
tions are discussed are studied with probabilistic tools. Further we isolated
a subset A of the set Yconc of concave Young functions and showed that it is
closed under the composition operation. We also demonstrated that subset
A is a dense set in Yconc with respect to a specific metric. Finally we charac-
terized the set of those concave Young functions possessing a positive fixed
point.

Összefoglaló

Bevezettük az optimális mértéket és beláttuk, hogy minden optimális mérték
strukturális tulajdonságú. Definiáltuk az optimális átlagot nem-negatív mérhető
lépcsős függvények esetén. Először beláttuk, hogy ez az átlag nem függ
a lépcsős függvény felbontásától. Kiterjesztettük az optimális átlagot tet-
szőleges nem-negatív mérhető függvényekre és így megkaptuk a Fubini, illetve
Radon-Nikodym tételek a mértékelméletbeli megfelelőjét. Jellemeztünk szá-
mos jól ismert konvergencia fogalmakat a mérhető függvénysorozatok esetén:
a stabilizálódó, egy sorozat szerint pontonkénti, egyenletes, valamint a pon-
tonkénti konvergencia fogalmakat. Kitértünk a mérhető függvénysorozatok
különféle korlátosságának jellemzésére is az optimális átlag alkalmazásával.
Áttekintjük a konkáv (konvex) Young függvényekkel kapcsolatos maximális
egyenlőtlensége-ket valószínűségszámítási eszközökkel. Elkülönítettük az Yconc

konkáv Young függvények halmazának egy A részhalmazát, mely a kompozí-
cióra zárt. Megadtunk az Yconc halmazon egy olyan metrikát, mely szerint az A

részhalmaz sűrű az Yconc halmazban. Megadtuk a pozitív fixponttal rendelkező
összes konkáv Young függvények halmazát.


