

Digital Elevation Modelling

- Introduction, International Data Bases -

Pecsmány Péter, PhD

Research fellow

University of Miskolc Department of Physical Geography and Environmental Science

DEMs and DTMs

- Some definitions...
 - DEM (Digital Elevation Model)
 - set of regularly or irregularly spaced height values
 - no other information
 - DTM (Digital Terrain Model)
 - set of regularly or irregularly spaced height values
 - but, with other information about terrain surface
 - ridge lines, spot heights, troughs, coast/shore lines, drainage lines, faults, peaks, pits, passes, etc.
 - Terrain function: h(x, y) with continuous partial derivatives, excepting some special cases:
 - the function is not continuous (bench).
 - partial derivatives are not continuous (breakline).

Conversion of printed contour lines

- Existing map plates are scanned
- Resulting raster is vectorized and edited contours are "tagged" with elevations
- Additional elevation data are created from the hydrography layer (e.g. shorelines provide additional contours)
- Algorithm is used to interpolate elevations at every grid point from the contour data

Photogrammetry

- Manually: an operator looks at a pair of stereophotos through a stereoplotter and must move two dots together until they appear to be one lying just at the surface of the ground
- <u>Automatically</u>: an instrument calculates the parallax displacement of a large number of points (e.g. for USGS 7.5 minute quadrangles, the Gestalt Photo Mapper II correlates 500,000 points)
- Correction of elevation from photographs: water bodies are assumed to be flat.

Stereo Satellite

 Two satellite passes are combined to get effective "stereo" view

Stereo Radar

- Works like photogrammetry but use radar wave instead.
- Can be done from space or airborne with side-lookingairborne-radar (SLAR)
- Can penetrate vegetation canopy

Radar Interferometry

- Use phase difference in two radar signals to measure elevation differences
- Signals are from two receivers so called "synthetic aperture radar" or SAR.

Laser Altimetry

• Fly laser over area, and time reflection of laser.

Light Detection And Ranging

DTM Data Sources

Primary Data Sources:

Shuttle Radar Topography Mission (SRTM) or other airborne sensors

Secondary Sources from existing maps:

- 30m DEMs from 1:24,000 scale map
- 1" National Elevation Dataset
- 3" (100m) DEMs from 1:250,000 scale maps
- 30" DEM of the earth (GTOPO30)

Shuttle Radar Topography Mission (SRTM)

- 1 arc-second elevation data for the United States, 3 arc-second data for the globe
- Produced by radar measurements from a Shuttle mission, Feb 11-22, 2000

Shuttle Radar Topography Mission (SRTM)

ASTER DEM

- Advanced Spaceborne Thermal Emission and Reflection Radiometer
- Off-Nadir pointing allows DEM
- First international DEM of decent quality available.
- Must request generation of DEM (slow turnaround) but FREE!

ASTER DEM - BUG

DTMs

• GTOPO30 (1 km²/pixel)

EUDEM (25 m)

- The Digital Elevation Model over Europe from the GMES RDA project (EU-DEM) is a Digital Surface Model (DSM) representing the first surface as illuminated by the sensors.
- The EU-DEM dataset is a realisation of the Copernicus programme, managed by the European Commission, DG Enterprise and Industry.

Problems with DEMs

- Issues worth considering when creating/using DTMs
 - quality of data used to generate DEM
 - interpolation technique
 - give rise to errors in surface such as:
 - sloping lakes and rivers flowing uphill
 - local minima
 - stepped appearance
 - etc.

Example applications

- Visualisation
 - terrain and other 3D surfaces
- Visibility analysis
 - intervisibility matrices and viewsheds
- Hydrological modelling
 - catchment modelling and flow models
- Engineering
 - cut & fill, profiles, etc.

Terrain visualisation

- Analytical hillshading
- Orthographic views
 - any azimuth, altitude, view distance/point
 - surface drapes (point, line and area data)
- Animated 'fly-through'
- What if? modelling
 - photorealism
 - photomontage
 - CAD

Example surface drape

Other derived variables

- Many other variables describing terrain features/characteristics
 - hillshading
 - profile and plan curvature
 - feature extraction
 - etc.

Calculating slope

- Inclination of the land surface measured in degrees or percent
 - 3 x 3 cell filter
 - find best fit tilted plane that minimises squared difference in height for each cell
 - determine slope of centre (target) cell

10	9	8
8	8	7
7	6	5

$$Slope = b^2 + c^2$$

Calculating aspect

- Direction the land surface is facing measured in degrees or nominal classes (N, S, E, W, NE, SE, NW, SW, etc.)
 - use 3 x 3 filter and best fit tilted plane
 - determine aspect for target cell

10	9	8
8	8	7
7	6	5

 $Aspect = tan^{-1} c / b$

Examples

