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Calculation of deflections and slopes of shafts 

 

Modelling a shaft as a simply supported beam or an overhanging beam (both statically 

determinate), and applying the principle of superposition, we examine the following cases. 

 

The simply supported beam being subject to just a concentrated force, F a distance a from left 

support (pin connection) and b from right support (roller connection), shown in Fig. 1. 

 
Fig. 1. The simply supported beam is loaded between the supports with concentrated force, 

placed in a Cartesian coordinate system 

 

The overhanging beam being subject to a concentrated force, F at the free end, shown in 

Fig. 2. 

 
Fig. 2.  The overhanging beam is loaded at the free end with concentrated force, placed in a 

Cartesian coordinate system 

 

In both load cases, at points 1 and 2, the deflections of the beam in the x direction and the 

slope of the beam can be determined, i.e.  x1, x2, 1 and 2, as the function of the z 

coordinate. From these, the deflection and slope of the beam can be calculated at each 

selected point, such as x_F, _F, _A and _B. If forces act on the beam both at the free end 

and between the support, the resulting deflection function will be the sum of the functions 

obtained from the above two load cases, based on the principle of superposition. 

In the following, the elastic curve of the beam is calculated according to Castigliano's 

theorem. In the case of a statically determined structure and a prismatic beam, it is easier to 

obtain the result by solving the differential equation of the elastic curve, but Castigliano's 

theorem can be used much more generally, so the use of this method is presented here. 

The work done in bending the beam by external forces, is stored as strain energy, U. 

According to Castigliano's theorem, the partial derivative of the total strain energy of the 

beam (or system) with respect to the force or pair of forces concerned, is equal to the 

deflection or slope of the given point of the beam (or system) in the direction of the particular 

force, F or couple, M. 

i

i
F

U
u




= ,  or 

i

i
M

U




= . (1) 

At any point of the structure, the projection of the deflection or twist in any direction can be 

calculated if a force Q (of any size) is applied in the direction of the desired deflection at the 
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desired location, or a couple Q (of any size) is applied in the direction of the desired twist and 

is produced together with it the strain energy of the beam (or system), then we get the partial 

derivative of it with respect to Q, and at the last, by substituting Q=0, we obtain the desired 

component of the deflection or  slope. 

Q is called a generalized force (it can be a force or a couple), and q is called a generalized 

displacement (deflection or twist). If we need to calculate a deflection or slope at a point 

where no force or couple was originally acting, then with the help of the introduced 

generalized force and generalized displacement, the Castigliano theorem 

will have the form of  

0Q
Q

U
q

=



=  (2) 

[1]. 

The loads in the beam consist of the original force system (indicated by a zero subscript) and 

the generalized force Q (and its reaction system) additionally applied to the beam. 

 

mQMM 0hh += , (3) 

where the relative load (here relative bending moment) is 

Q

M
m

hQ
= . (4) 

The dimension of m is mm if Q is a force, and dimensionless if Q is a couple. 

If the stain energy resulting from only bending is considered as the standard, the strain energy 

is written in the form of 

( )
ds

EI2

mQM
U

)L(

2

0h

 

+
= . (5) 

Hence the generalized displacement, according to (2) is 

 

( )
ds

EI

mM
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EI

mmQM

Q

U
q

)L(

0h

0Q)L(

0h

0Q

 


=



+
=




=

==

,  

that is 

ds
EI

mM
q

)L(

0h

 


= . (6) 

In the case of prismatic and homogeneous isotropic bars, both the area moment of inertia and 

the modulus of elasticity are constant (independent of s) so we obtain the form of 

dsmM
EI

1
q

)L(

0h= . (7) 

Using the designations of Fig. 1 and Fig. 2 the deflection of a straight bar can be obtain by the 

integral of the product of the functions of the original load and the relative loads, that is  

( ) ( ) dzzmzM
EI

1
q

)L(

0h= . (8) 

 

Deformation of a straight, simply supported beam, loaded by concentrated force 

between the supports 

 

Let’s consider a simply supported beam according to Figure 1 and plot the functions of 

bending moments of equation (8). Figure 3 shows the change of the torque associated with the 
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original load along z, and the relative loads associated with the generalized forces Q acting at 

points 1 and 2. The  dimensionless ones belong to the couples, those with the dimension of m 

belong to the force. The directionality of the generalized force was taken everywhere in the 

positive direction of the x-coordinate, and in the positive direction of rotation of the right-

handed coordinate system, and accordingly we plot the loading diagram of the beam with the 

original load, and the diagrams of the relative loads. 

 
Fig. 3. The bending moment of the actual force system and the relative loads at a simply 

supported beam (loaded between the supports) 

 

The system of reactions can be calculated with the static equations, the bending moment and 

relative moment functions are equations of lines. They are straight lines, as the loads are 

concentrated forces or concentrated couples. The equation of a line, given its two points is 

( )0

01

01
0 zz

zz

xx
xx −

−

−
=− , (9) 

where x can be substituted by the function of bending moment or relative moments, and the 

two given points are 0P and 
1P  . 

Table 1. summarize the reactions at A pin and at B roller, and the equations of bending 

moments at stage 1 and 2. 

The functions of deflection can be computed by equation (8) and the Table 1. The functions 

of moments are continuous only intermittently, so the integration can be made only domain 

by domain. The domains can be assigned by figure 3. There are different functions for the 

deflection and slope at the stage 1 and 2 (to the left or right of the force). 
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Table 1. Functions of moments of the simply supported beam 

Forces or couples,  

and loading 

diagrams 

Reactions The bending moment and the relative moments 

maximum value and functions of z 

 A B maximum Stage 1.  Stage 2.  

+F ( )zM  

[Nm] 
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F−  



a
F−  



ab
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
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To the left of the force F 

( ) ( ) dzzmzM
EI

1
q

)L(

10h=  

( ) ( ) ( ) ( ) ( ) ( ) dzzmzMdzzmzMdzzmzMqEI
a

22

a

1z
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1z

0

11  ++=



 (10) 

The generalized displacement of formula (10) specifies both the deflection of the beam in 

direction of x, fx and the slope around the axis y, y, substituting the moments of first row and 

the relative moments of the second (for deflection) or third rows (for slope) of Table 1. The 

obtained equations from the first and second rows are 

 

( ) ( ) ( ) dzz
z
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a

Fdzz
z
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b
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b
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a
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z
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F
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F
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
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( ) 1

2223

11x zab2ba2ba3bzf
F

EI6
+−+−=


 

( ) 1

3

11x zb2aabbzf
F

EI6
++−=


, (11) 

 

where the deflection of 
1xf  is computable from. The other deflections are available similarly. 

The slope around the axis y, also to the left of the force can be obtained by the equation (10), 

using the first and third rows of Table 1., i.e. 

( ) ( ) ( ) dzz
1

z
a

Fdzz
1

z
b

Fdzz
1
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b

FEI
a

a
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0
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
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

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
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
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
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
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
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( ) ( )32

1

2
3

1y a
a

2zab3
ba

2
F

EI6





−−−+−=  

32

1

2
3

1y b
a

2bz3ba3
ba

2
F

EI6




+−+−=  

2

1

2
22

1y bz3ba3
ba

ab2
F

EI6
−+

−
−=




 

( ) 2

11y bz3aba3baab2
F

EI6
−+−−=


 

2
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F

EI6 2
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 (12) 

 

where the slope of 1y  is computable from. The other slopes are available similarly. 

 

To the right of the force F 

( ) ( ) ( ) ( ) ( ) ( ) dzzmzMdzzmzMdzzmzMqEI
2z

22

2z

a

12

a

0

11  ++=



 (13) 

equation determines the deflection and slope of beam, substituting the relative moments from 

fourth and fifth rows of Table 1. The obtained equations are 

 

( ) ( )( )2

3

22x zba2abzaf
F

EI6
−++−−= 


 (14) 
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F

EI6 2

22y +−−= 


 (15) 
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Deflection and slope of an overhanging beam loaded at the free end by concentrated 

force F 

 
Fig. 4. The bending moment of the actual force system and the relative loads at an 

overhanging beam, loaded at the free end 

 

The functions of deflection at the overhanging beam, loaded at the free end, can be computed 

by equation (8) and the Table 2. The functions of moments are continuous only intermittently, 

too, so the integration can be made only domain by domain. The domains can be assigned by 

figure 4. There are different functions for the deflection and slope to the left or right of the left 

support A. 

 

To the left of the support A 

( ) ( ) ( ) ( ) dzzmzMdzzmzMqEI
0

22

0

1z

11  +=
−



. (16) 

The generalized displacement of formula (16) specifies both the deflection of the beam in 

direction of x, fx and the slope around the axis y , y, substituting the moments of first row and 

the relative moments of the second (for deflection) or third rows (for slope) of Table 2 . The 

obtained equations from the first and second rows are 

 

( )1

2

1

3

11x za2az3zf
F

EI6



++−=  (17) 
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
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F
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1

2

11y ++−−=  (18) 
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Table 2. Functions of moments of the overhanging beam, loaded at the free end 

Forces or couples,  

and loading 

diagrams 

Reactions The bending moment and the relative 

moments 

maximum value and functions of z 

 A B maximum Stage 1.  Stage 2.  

+F ( )zM  

[Nm] 





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
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

a
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
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
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
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z
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
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
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
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To the right of the support A 

( ) ( ) ( ) ( ) dzzmzMdzzmzMqEI
2z

22

2z

0

12  +=



 (19) 

equation determines the deflection and slope of beam, substituting the relative moments from 

fourth and fifth rows of Table 2. The obtained equations are 

( )2

22

2

3

22x z2z3zaf
F

EI6



+−−=  (20) 

( )2

2

2

22y 2z6z3a
F

EI6



−+−=  (21) 

The deflection of the shaft in the direction of axis x is equal to the sum of the two functions of 

deflection ( )zfx
, considering the sign of them, of course. If there are forces at the plane yz, 

too, then there should be summarized two other deflection functions ( )zf y considering their 

signs, and at last the full deflection at a given coordinate of z (for example at the location of a 

meshing gear Fz ) can be computed as  

)z(f)z(ff F

2

yF

2

x +=  (22) 

The slope of a given point of axis of the shaft can be computed similarly by the equation  

)z()z( F

2

yF

2

x += . 

 (23) 
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