Subje	ct name:	Neptun code:	
Linear	Algebra		
Respo	nsible Lecturer: Dr. Béla Kovács, senior lect	urer. PhD. CSc	
Co-Leo	cturer(s): -		
Sugge	sted semester: 1. semester	Preliminary requirements: -	
Classe	s per week:	Requirement type: exam	
Theor	etical: 2		
Practi	cal: 2		
Credit	s: 5	Program: Full time	
Obiec	tive and purpose of the subject:		
St	udents can use the knowledge to understan	d and write down processes in their mathematical	
ele	ements.		
Know	ledge:		
Th	ney have comprehensive knowledge of the b	asic facts, directions and boundaries of logistics	
Skills:	, , , , , , , , , , , , , , , , , , , ,		
Th	ney can analyse at a basic level the discipline	s which make up the knowledge system of the technical	
fie	eld, formulate interrelationships syntheticall	y and carry out adequate assessment activities.	
Th	ney can apply the principles and methods of	calculation and modelling of logistical processes.	
Attitu	de:		
Th	ney take responsibility and credibly represen	it the social aspects of the profession and its fundamental	
re	lation to the world.		
Auton	omy and responsibility:		
Th	ney make independent and professionally we	ell-founded decisions even in unexpected decision-	
m	aking situations.		
Subject description:			
A concise but informative description of the knowledge to be acquired. The 3-dimensional real			
vector	space, vector algebra, equations of straight	and plane, vector spaces, linear dependence,	
indepe	endence, base, dimension, complex number	s, operation, polynomials, operations radical factor	
shape	, matrices, matrix operations, matrix rank, d	eterminant, matrix inverse, base transformation,	
homo	geneous and inhomogeneous systems of line	ear equations, solvability, solution methods, linear	
mappings, characteristic polynomial, eigenvector, eigenvalue, diagonalizability, the real number n's are			
spaces.			
Assignment and requirements of signature:			
Active participation in exercises; successfully (at least 50%) writing the mid-year midterm thesis.			
Requirement end evaluation of the practical mark/ exam:			
To complete the subject, it is necessary to pass a written exam, which consists of theoretical and practical			
tasks			
Required readings:			
1.	1. Jim Hefferon: Linear Algebra, 4. edition (2020) <u>https://joshua.smcvt.edu/linearalgebra/book.pdf</u>		
2.	2. David Cherney, Tom Denton, Rohit Thomas, Andrew Waldron: Linear Algebra, 1. Edition. Davis		
California, (2013); <u>https://www.math.ucdavis.edu/~linear/linear-guest.pdf</u>			
Suggested readings:			
1. Kenneth Hoffman, Ray Kunze: Linear Algebra 4. Edition Released: Prentice-Hall, Inc. Englewood			
	Cliffs, New Jersey (1971); https://www.ma	th.pku.edu.cn/teachers/anjp/textbook.pdf	
2.	Stephen Boyd, Lieven Vandenberghe: Intro	oduction to Applied Linear Algebra; Vectors, Matrices,	
	and Least Squares, Cambridge University Press (2018) DOI: 10.1017/9781108583664;		
	https://web.stanford.edu/~boyd/vmls/vmls.pdf		

Subject name:	Neptun code:	
Mathematics in Logistics I.		
Responsible Lecturer: Dr. Béla Kovács, senior lecturer, PhD, CSC		
Co-Lecturer(s):		
Suggested semester: 1. semester	Preliminary requirements:	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 6	Program: Full time	
Objective and purpose of the subject:		
Basic concepts of mathematics, that can applied i	n Logistics.	
Knowledge		
They have comprehensive knowledge of the basic	facts directions and boundaries of logistics	
Skills.	facts, directions and boundaries of logistics.	
They can analyse at a basic level the disciplines wh	nich make up the knowledge system of the technical	
field, formulate interrelationships synthetically an	d carry out adequate assessment activities.	
They can apply the principles and methods of calc	ulation and modelling of logistical processes.	
Attitude:		
They take responsibility and credibly represent the	e social aspects of the profession and its fundamental	
relation to the world.		
Autonomy and responsibility:		
They make independent and professionally well-for	ounded decisions even in unexpected decision-making	
situations.		
Subject description:		
Set theory, relations, functions, range of interpretation, set of values, series, limit of series, limit of		
univariate real functions, continuity, notable curves, differential calculus and its applications, function		
testing, indefinite integral calculus, rules of integration. The definite integral and its applications, impropius		
integral.		
Assignment and requirements of signature:		
Active participation in exercises; successfully (at le	east 50%) writing the mid-year midterm thesis.	
Requirement end evaluation of the practical mar	k/ exam:	
To complete the subject, it is necessary to pass a written exam, which consists of theoretical and practical		
tasks		
Required readings:		
1. Vitali Liskevich Analysis 1Lecture Notes 20	13/2014; University of Bristol	
https://people.maths.bris.ac.uk/~maxmr/analysis1/notes1.pdf		
 Joseph L. Taylor: Foundations of Analysis, Version 2.3, (2010) https://sites.neith.usekin.etem.edu/foreserver/2214_42/sech.eteTaylog. 		
2 John K. Hunter: An Introduction to Peal A	ow/334_13/allalysistayiol.pul	
S. John K. Hunter. An Infoduction to Kear A	avis edu/~bunter/intro_analysis_pdf/intro_analysis.pdf	
Camornia at Davis <u>https://www.math.ucuavis.cuu/_hunter/intro_analysis_pui/intro_analysis.pui</u>		
Suggested readings:		
1. John F. Hutchinson: Introduction To Mathematical Analysis (1994) Department of Mathematics		
School of Mathematical Sciences ANU https://maths-		
people.anu.edu.au/~iohn/Assets/Lecture	%20Notes/B21H 97.pdf	
2. Elias Zakon: Mathematical Analysis Volum	e I (1975), The Saylor Foundation	
https://resources.saylor.org/wwwresourc	es/archived/site/wp-content/uploads/2012/02/Real-	
Analysis-I-Zakon-1-30-11-OTC.pdf		

Subject name:	Neptun code:	
Mathematics in Logistics II.		
Responsible Lecturer: Dr. Béla Kovács, senior l	ecturer, PhD, CSC	
Co-Lecturer(s):		
Suggested semester: 2. semester	Preliminary requirements: Mathematics in Logistics I.	
Classes per week:	Requirement type: term mark	
Theoretical: 2		
Practical: 2		
Credits: 5	Program: Full time	
Objective and purpose of the subject:		
Basic concepts of mathematics, that can applie	ed in Logistics.	
Knowledge:		
They have comprehensive knowledge of the ba	asic facts, directions and boundaries of logistics.	
Skills:		
They can analyse at a basic level the disciplines	which make up the knowledge system of the technical	
field, formulate interrelationships synthetically	and carry out adequate assessment activities.	
They can apply the principles and methods of c	alculation and modelling of logistical processes.	
Attitude:		
They take responsibility and credibly represent	the social aspects of the profession and its fundamental	
relation to the world.		
Autonomy and responsibility:		
They make independent and professionally we	II-founded decisions even in unexpected decision-making	
situations.		
Subject description:		
The definite integral, its properties, areas of ap	plication. Improprius integrals. Bivariate functions. Numeric	
rows. Dual integral and its applications. Triple i	ntegral and its applications. Differential equations. Vector-	
scalar functions. Scalar vector functions. Vector-vector functions.		
Assignment and requirements of signature:		
Active participation in exercises; successfully (a	at least 50%) writing the mid-year midterm thesis.	
Requirement end evaluation of the practical n	nark/ exam:	
To complete the subject, it is necessary to pass a written exam, which consists of theoretical and practical		
tasks.		
Required readings:		
1. Joseph L. Taylor: Foundations of Analys	sis, Version 2.3, (2010)	
nttps://sites.matn.washington.edu/~m	torrow/334_13/analysis1aylor.pdf	
2. John E. Hutchinson: Introduction To M	athematical Analysis (1994) Department of Mathematics	
school of Mathematical Sciences ANU	IIIIUps.//IIIdlilis- uro%20Notos/P21H_07.pdf	
3 William Ted Martin, H. Spanier, G. Spri	inger and P. I. Davis : International Series In Pure And	
Annlied Mathematics (1964) ISBN 0-07		
https://web.math.ucsb.edu/~agboola/	teaching/2021/winter/1226/rudin ndf	
https://web.math.ucsb.euu/_agboola/teaching/2021/winter/122A/rudin.pdf		
Suggested readings:		
1 http://www.ru.ac.hd/wn-content/unloads/sites/25/2019/03/205_04_Apostol_Mathematical_		
Analysis-1973.pdf		
2. Christoph Thiele: Analysis II Lecture no	tes. (2016) https://www.math.uni-	
bonn.de/ag/ana/SoSe2015/analysis2/l	ecture notes/Analysis 2.pdf	

Subject name:	Nentun codo:	
Subject name.	Neptun coue.	
Responsible Lecturer: Dr. Gabor Pszota, associate	professor, PhD	
Co-Lecturer(s):		
Suggested semester: 2. semester	Preliminary requirements:	
Classes per week:	Requirement type: exam	
Ineoretical: 2		
Practical: 1		
Credits: 3	Program: Full time	
Objective and purpose of the subject:		
Summary of basic knowledge and concepts of Phy	/SICS.	
Knowledge:		
They have comprehensive knowledge of the basic	facts, directions and boundaries of logistics.	
Skills:		
They can analyse at a basic level the disciplines	which make up the knowledge system of the technical	
field, formulate interrelationships synthetically	and carry out adequate assessment activities.	
Attitude:		
They take responsibility and credibly represent th	e social aspects of the profession and its fundamental	
relation to the world		
Autonomy and responsibility:		
They make independent and professionally well-founded decisions even in unexpected decision-making		
situations.		
Subject description:		
Fundamental concepts of kinematics. Newton's la	ws. Power, work, energy. Linear free oscillation. Forced	
oscillation. Electric charge, field, potential. Condu	ctors in electric field. The flow of electric charges.	
Concept of current density and current. Conduction	on of current in metals. DC circuits. The integral form of	
Joule's law. The concept of magnetic induction. Forces in magnetic field. Dia-, para-, and ferromagnetism.		
Ampere's law. Electromagnetic induction. Neumann's law. Faraday's law of induction. AC current. Ampere-		
Maxwell law. EM waves.		
Assignment and requirements of signature:		
Mid semester test		
Requirement end evaluation of the practical mark/ exam:		
Exam		
Required readings:		
1. Sears and Zemansky: University Physics, PEARSON, 2015, ISBN: 978-1323142776		
2. Alonso and Finn: Fundamental University Physics I, II, Addison-Wesley Pub., 1980. ISBN:		
9780201000764, 9780201001624		
Suggested readings:		

Subject name:	Neptun code:	
Technical chemistry	•	
Responsible Lecturer: Dr. Ferenc Mogyoródy, sen	ior lecturer, PhD	
Co-Lecturer(s):		
Suggested semester: 1. semester	Preliminary requirements:	
Classes per week:	Requirement type: term mark	
Theoretical: 2		
Practical: 1		
Credits: 3	Program: Full time	
Objective and purpose of the subject:		
Summary of basic knowledge and concepts of technical chemistry, introduction to and mastery of the basics		
of special fields related to mechanical engineering, for example, lubrication, corrosion, etc. The lecture		
should cover the basic chemical knowledge essential for engineering practice.		
Knowledge:		
 They know the workplace and fire safety, safety technology requirements and standards, as well as the relevant environmental regulations related to logistics. 		
 They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment. 		
Skills:		
 They can plan, organise and carry out independent learning. 		
 They take decisions in situations requiring a 	- They take decisions in situations requiring a complex approach and unexpected decision-making by	

taking full account of legal and ethical standards.

Attitude:

- They are committed to broad-based enforcement of health and environmental protection.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They are aware of the legal, economic, safety, social, health protection and environmental consequences of their work and decisions.

Subject description:

General basic chemistry concepts: chemical substance, physical field, elements of atomic structure. Chemical bonds: first and second order bonds. States of matter and their characterization. Constituents and their changes. Equilibrium phase diagrams. Acids, bases, salts. Dissolution. Hydration, solvation, hydrolysis. Basic electrochemical concepts. Colloidal systems. Lubrication technology, basics of corrosion protection. Basics of environmental protection. Basics of organic chemistry and materials chemistry.

Assignment and requirements of signature:

The condition for obtaining the signature is the completion of at least an appropriate qualification level (min. 60%) of the theoretical knowledge-based thesis at the end of the semester.

Requirement end evaluation of the practical mark/ exam:

The practical grade is calculated based on the result of the closed-door written test at the end of the semester, the evaluation is graded in 5 grades: insufficient (1), sufficient (2), average (3), good (4), excellent (5).

Required readings:

1. Soren Prip Beier, Peter Dybdahl Hede: Chemistry -2nd edition, Ventus Publishing AsP, ISBN 978-87-7681-535-6, 2010.

Suggested readings:

1. Peter G. Nelson: Introduction to Inorganic Chemistry: Key ideas and their experimental basis, Ventus Publishing ApS, ISBN 978-87-7681-732-9

Subject name:	Neptun code:
Statics	
Responsible Lecturer: Dr. Balázs Tóth, associate	professor, PhD
Co-Lecturer(s):	
Suggested semester: 2. semester	Preliminary requirements: Linear Algebra, Mathematics
	in Logistics I.
Classes per week:	Requirement type: exam
Theoretical: 2	
Practical: 2	
Credits: 5	Program: Full time
Objective and purpose of the subject:	
Introduction to engineering mechanics. Fundamental concepts and models in mechanics.	

Knowledge:

They know logistics processes, the ways in which they are carried out and their technical possibilities. They know the methods, implementation possibilities and practices of assessing basic logistics needs. They know the principles of operation and structural characteristics of vehicles and machinery systems suitable for logistics processes.

Skills:

They can analyse at a basic level the disciplines which make up the knowledge system of the technical field, formulate interrelationships synthetically and carry out adequate assessment activities. They can apply the principles and methods of calculation and modelling of logistical processes. They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.

Attitude:

They take responsibility and represent the values of the engineering profession and openly accept wellfounded critical comments. They monitor legislative, technical, technological and administrative changes related to logistics. They strive to ensure that their self-directed learning in the field of logistics is continuous and consistent with their professional goals.

Autonomy and responsibility:

They make independent and professionally well-founded decisions even in unexpected decision-making situations. They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.

Subject description:

Equilibrium of a particle. Moment of a force about a point and an axis. Three-dimensional force systems acting on a rigid body. Resultants of a force and couple system. Equivalent and equilibrated systems of forces. The main theorem of statics. The Coulomb-model of dry friction. Supports for rigid bodies. Equilibrium of a rigid body. The free-body diagram. Distributed loading and its resultant. Center of gravity, center of mass and the centroid. Equilibrium of structures. Plane and space trusses. The method of joints and the method of sections. Internal forces and moments in structural members. Bars and beams. Equations of equilibrium for internal forces and moments. Axial force, shear force and bending moment diagrams. Cables.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Beer, F.P., Johnston, E.R., Mazurek, D.F., Cornwell, P.J.: Vector Mechanics for Engineers: Statics & Dynamics, McGraw-Hill, 2012
- 2. Bedford, A.M., Fowler, W.L.: Engineering Mechanics: Statics & Dynamics, Pearson 2022
- 3. Hibbeler, R.C.: Engineering Mechanics: Statics & Dynamics, Pearson, 2022

Subject name:	Neptun code:	
Mechanics of Materials		
Responsible Lecturer: Dr. Sándor Szirbik, associate professor, PhD		
Co-Lecturer(s):		
Suggested semester: 3. semester	Preliminary requirements: Statics	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 5	Program: Full time	
Objective and purpose of the subject:		
Basic concepts of mechanics of materials. Introdu	iction to matrix and tensor algebra.	
Knowledge:	h they are carried out and their technical necribilities	
They know logistics processes, the ways in which	n they are carried out and their technical possibilities.	
They know the principles of operation and struc	tural characteristics of vehicles and machinery systems	
suitable for logistics processes	itural characteristics of vehicles and machinery systems	
Skills:		
They can analyse at a basic level the disciplines	which make up the knowledge system of the technical	
field, formulate interrelationships synthetically	and carry out adequate assessment activities.	
They can apply the principles and methods of ca	alculation and modelling of logistical processes.	
They can recognise the transportation, shipmen	t and material handling processes in industrial	
production and economic systems, and the equi	ipment requirements for logistics implementation.	
Attitude:		
They take responsibility and represent the values of the engineering profession and openly accept well-		
founded critical comments.		
They monitor legislative, technical, technological and administrative changes related to logistics.		
They strive to ensure that their self-directed learning in the field of logistics is continuous and consistent		
with their professional goals.		
Autonomy and responsibility:		
I ney make independent and professionally well-founded decisions even in unexpected decision-making		
Situations. They cooperate responsibly with qualified professionals of other (primarily economic and logal)		
disciplines during their professional duties		
Subject description:		
Deformable bodies, Deformation gradient, displacement gradient, Strain tensor and rotation tensor. Stress		
tensor. The tension-compression test. Hooke's law, Poisson's ratio. Strain energy. Elastic deformation of an		
axially loaded member. Torsion of circular shafts. Bending of straight members. Shear in straight members.		
Moments of inertia for an area. Combined loading, design of beams and shafts. General equations of		
elasticity: equilibrium equations, kinematic equations, generalized Hooke's law. Mohr's circle. Principal		
stresses and strains. The concept of equivalent stress. Theories of failure. Deflection of beams and shafts.		
Curved beams. Statically indeterminate beams and shafts. Buckling and stability of columns.		
Assignment and requirements of signature:		
Requirement end evaluation of the practical mark/ exam:		
Required readings:		
1. Beer, F.P Johnston, E.R.: Mechanics of Materials, McGraw-Hill, 2007		

- 2. Bedford, A.M., Liechti, K.M., Fowler, W.L.: Statics and Mechanics of Materials, Pearson, 2002
- 3. Hibbeler, R.C.: Mechanics of Materials, Pearson, 2022

Subject name:	Neptun code:	
Dynamics		
Responsible Lecturer: Dr. Edgár Bertóti, f	ull professor, PhD, DSc	
Co-Lecturer(s):		
Suggested semester: 4. semester	Preliminary requirements: Mechanics of Materials	
Classes per week:	Requirement type: term mark	
Theoretical: 2		
Practical: 2		
Credits: 5	Program: Full time	
Objective and purpose of the subject:		
Basic concepts of dynamics in physical sys	stems.	
Knowledge:		
They know logistics processes, the ways in	which they are carried out and their technical possibilities. They	
know the methods, implementation possi	bilities and practices of assessing basic logistics needs. They	
know the principles of operation and struc	ctural characteristics of vehicles and machinery systems suitable	
for logistics processes.		
Skills:		
They can analyse at a basic level the discip	plines which make up the knowledge system of the technical	
field, formulate interrelationships synthet	ically and carry out adequate assessment activities. They can	
apply the principles and methods of calcul	lation and modelling of logistical processes. They can recognise	
the transportation, shipment and material handling processes in industrial production and economic		
systems, and the equipment requirements for logistics implementation.		
Attitude:		
They take responsibility and represent t	he values of the engineering profession and openly accept well-	
founded critical comments. They monitor legislative, technical, technological and administrative changes		
related to logistics. They strive to ensure	e that their self-directed learning in the field of logistics is	
continuous and consistent with their professional goals.		
Autonomy and responsibility:		
They make independent and professionally well-founded decisions even in unexpected decision-making		
situations. They cooperate responsibly with qualified professionals of other (primarily economic and legal)		
disciplines during their professional duties.		
Subject description:		
Kinematics of a particle. Kinematics of a rigid body: translation and rotation, relations for velocities and		
accelerations. Relative-motion analysis of particles and rigid bodies. Kinetics of a particle. Newton's laws of		
motion. Principle of impulse and moment	motion. Principle of impulse and momentum. Power and work of a force. Principle of work and energy.	
Conservative forces and potential energy.	Equation of motion for a system of particles. Kinetics of a rigid	
body. Linear and angular momentum. Mo	ments of inertia. Tensor of inertia. Newton-Euler equations of	
motion for a rigid body. Kinetic energy of	a rigid body. Power and work of system of forces acting on a rigic	
body. D'Alembert's principle. Constrained	motions. Planar kinetics of a system of rigid bodies. One-degree	
of-freedom vibration of a rigid body. Equa	of-freedom vibration of a rigid body. Equation of motion, circular and natural frequency. Undamped,	

1. Beer, F.P., Johnston, E.R., Mazurek, D.F., Cornwell, P.J.: Vector Mechanics for Engineers: Statics &

2. Bedford, A.M., Fowler, W.L.: Engineering Mechanics: Statics & Dynamics, Pearson, 2022

3. Hibbeler, R.C.: Engineering Mechanics: Statics & Dynamics, Pearson, 2022

damped and forced vibrations. Resonance. Assignment and requirements of signature:

Dynamics, McGraw-Hill, 2012

Required readings:

Requirement end evaluation of the practical mark/ exam:

Subje	ct name:	Neptun code:
Electro	otechnics-electronics	
Respo	insible Lecturer: Judit Somogyine Dr. Molna	ar, associate professor, PhD
Co-Leo	cturer(s):	
Sugge	sted semester: 3. semester	Preliminary requirements: Fundamentals of Physics
Classe	s per week:	Requirement type: exam
Theor	etical: 2	
Practi	cal: 2	
Credit	s: 5	Program: Full time
Objec	tive and purpose of the subject:	
Summ	nary of basic knowledge and concepts of Ele	ctronics.
Know	ladaa	
Though	leage:	facts directions and houndaries of logistics
They	nave comprehensive knowledge of the basic	lacts, directions and boundaries of logistics.
пеук	and the measurement procedures used in	logistics, their tools, instruments and measuring
equip	ment.	
JKIIIS:	an analyse at a basic lovel the dissiplines wi	aich make up the knowledge system of the technical
field f	formulate interrolationships synthetically an	a carry out adequate assessment activities. They can
neiu, i	et cub processes of logistics systems and the	a sub units corruing out their functions (motorial boarding)
conne	ct sub-processes of logistics systems and the	e sub-units carrying out their functions (material handling
	de.	alabase systems, etc.).
Thous	ue: where their experience with colleagues to be	In them grow
They s	share their experience with colleagues to he	ip them grow.
Auton	omy and responsibility:	
They e	evaluate the efficiency, effectiveness and sat	fety of their subordinates' work
Subject description:		
Introd	ucing the basic electrical and magnetic pher	nomenal laws and circuit calculations in the case of direct
currer	t single and three-phase alternating curren	t excited networks. Introducing the main characteristics
ofeau	inment used in electrical energy generation	distribution conversion and utilization (one and three-
nhase	transformers one and three-phase synchro	nous and induction machines DC machines) Introducing
somic	anductors diade transistor rectifier circuity	s nower electronic converters
Acciar	mont and requirements of signature:	s, power electronic converters.
Assignment and requirements of signature.		
Requi	rement end evaluation of the practical mar	k/ exam:
Requi	red readings:	
1.	William H. Hayt: Engineering Circuit Analys	is with CD-ROM, McGraw-Hill, 2001, ISBN: 0072283645
2.	Theodore Wildi: Electrical machines, drives	and power systems, Prentice Hall, 2005, ISBN: 978-
	0131776913	
3.	Leon O. Chua, Charles A. Desoer, Ernest S.	Kuh: Linear and nonlinear circuits, McGraw-Hill College,
	1987, ISBN: 978-0070108981	
4.	Tietze, U., Schenk, Electronic Circuits - Han	dbook for Design and Applications, 2008, ISBN: 978-3-
	540-78655-9	
Sugge	sted readings:	
1.	Fraser, Milne: Integrated Electrical and Electrical	ctronic Engineering for Mechanical Engineers. McGraw-
	Hill Publ., 1994, ISBN: 978-0077079734	
2	https://www.khanacademy.org/science/ph	nysics/electrical-engineering
3	Robert W. Erickson, Dragan Maksimovic: Fi	undamentals of Power Electronics, 2001, ISBN: 978-0-
5.	306-48048-5	

Subject name:	Neptun code:	
Occupational Health and Safety in Logistics		
Responsible Lecturer: Dr. Róbert Skapinyecz, asso	ociate professor, PhD	
Co-Lecturer(s): Dr. Ákos Cservenák, senior lecturer, PhD		
Suggested semester: 2. semester	Preliminary requirements:	
Classes per week:	Requirement type: term mark	
Theoretical: 2		
Practical: 0		
Credits: 2	Program: Full time	

During the course, the students are introduced to the basics of the occupational safety approach and its main areas of application in logistics, especially in the area of material handling. A basic presentation of regulatory environments and areas of expertise relevant to the above for the students.

Knowledge:

They know the principles of operation and structural characteristics of vehicles and machinery systems suitable for logistics processes.

They know the workplace and fire safety, safety technology requirements and standards, as well as the relevant environmental regulations related to logistics.

Skills:

They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process. They take decisions in situations requiring a complex approach and unexpected decision-making by taking full account of legal and ethical standards.

Attitude:

They monitor legislative, technical, technological and administrative changes related to logistics. They are open to know, accept and credibly communicate professional and technological development and innovation in logistics. They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them. They are committed to broad-based enforcement of health and environmental protection.

Autonomy and responsibility:

They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties. They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them. They are aware of the legal, economic, safety, social, health protection and environmental consequences of their work and decisions.

Subject description:

The place and role of occupational health and safety in logistics. Getting to know the basic workplace hazards, as well as the basic methods and procedures for minimizing the risks they pose in relation to material handling systems. Getting to know the comprehensive organization and main areas of application of the relevant standards, provisions and regulations. Presentation of examples of correct and incorrect occupational health and safety practices.

Assignment and requirements of signature:

thematic tests

Requirement end evaluation of the practical mark/ exam:

thematic tests

Required readings:

1. Reese, Charles D. Occupational health and safety management: a practical approach. CRC press, 2018.

Suggested readings:

Friend, Mark A., James P. Kohn: Fundamentals of occupational safety and health, Rowman & Littlefield, 2018.

Subject name:	Neptun code:
Rules of Logistics Processes	
Responsible Lecturer: Prof. Dr. Csilla Gabriella Cs	ák, full professor, PhD, CSC
Co-Lecturer(s): Dr. jur. Balázs Szabó, assistant lecturer, PhD	
Suggested semester: 7. semester	Preliminary requirements:
Classes per week:	Requirement type:
Theoretical: 2	
Practical: 0	
Credits: 1	Program: Full time
Objective and murphese of the subjects	

Students learn about the laws and rules of inner and outer logistical processes, and with this knowledge they can design systems that is also legally accepted.

Knowledge:

They know the workplace and fire safety, safety technology requirements and standards, as well as the relevant environmental regulations related to logistics. They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.

Skills:

They can plan, organise and carry out independent learning. They can understand and use the literature, computer technology and library resources of logistics. They take decisions in situations requiring a complex approach and unexpected decision-making by taking full account of legal and ethical standards **Attitude:**

They take responsibility and credibly represent the social aspects of the profession and its fundamental relation to the world. They are committed to broad-based enforcement of health and environmental protection. They share their experience with colleagues to help them grow.

Autonomy and responsibility:

They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties. They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them. They are aware of the legal, economic, safety, social, health protection and environmental consequences of their work and decisions. Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles. They evaluate the efficiency, effectiveness and safety of their subordinates' work.

Subject description:

The legal background and regulation of logistics processes, the system and practice of Hungarian legislation, the most important areas of regulations. The role of the state organization (with particular regard to the domestic administrative system and its authorities and bodies affecting the logistics sector) and private investments in the development and operation of logistics systems. Coordination of technical development and regulatory requirements, enforcement of standards, furthermore guidelines and recommendations, especially in the area of device development and system design. The safety technology of machine systems, unit loads, and transportation. Regulation of harmful effects on the environment, compliance with energy efficiency regulations. Insurance systems, risk analysis of complex processes. Authority activity and control systems. The social role of logistics companies, their impact on the economy, labor needs, human resources development. Effects of the EU and the global economy on regulation, harmonization issues.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Dr. Miro Cerar: The Relationship Between Law and Politics, 2009
- https://digitalcommons.law.ggu.edu/cgi/viewcontent.cgi?article=1126&context=annlsurvey

- 2. United Nations Convention on Contracts for the International Carriage of Goods Wholly or Partly by Sea, 2009, https://uncitral.un.org/sites/uncitral.un.org/files/media-documents/uncitral/en/rotterdam-rules-e.pdf
- 3. Carriage of Goods by Air: A Guide to the International Legal Framework, 2006, <u>https://unctad.org/system/files/official-document/sdtetlb20061_en.pdf</u>

Subject name:	Neptun code:
Basics of Economics	
Responsible Lecturer: Andrea S. Gubik, associate	professor (GTK)
Co-Lecturer(s):	
Suggested semester: 3rd semester	Preliminary requirements:
Classes per week:	Requirement type: exam
Theoretical: 1	
Practical: 1	
Credits: 2	Program: Full time

The aim of the course is to provide a basic knowledge of economics for engineering students who will be working in an economic environment at some level and will encounter economic issues in their work. In order to achieve this objective, the curriculum includes an introduction to the basic concepts of economics, an introduction to and interpretation of economic thinking.

Knowledge:

They know the operation and maintenance systems of vehicles and mobile machinery used in logistics processes. They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.

Skills:

They can analyse at a basic level the disciplines which make up the knowledge system of the technical field, formulate interrelationships synthetically and carry out adequate assessment activities. They can apply the principles and methods of calculation and modelling of logistical processes. They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.

Attitude:

They take responsibility and credibly represent the social aspects of the profession and its fundamental relation to the world. They strive to ensure that their self-directed learning in the field of logistics is continuous and consistent with their professional goals.

Autonomy and responsibility:

They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties. They are aware of the legal, economic, safety, social, health protection and environmental consequences of their work and decisions.

Subject description:

The function of market. Supply and demand, market equilibrium. Consumer behavior. Modelling utility. The budget constraint. Optimal consumer choice, effects of price changes and income changes. The demand curve. Firm production in the short and long run. Costs of the firm. The perfectly competitive market. Forms of imperfect competition. Comparison of perfect competition and monopoly. Input demand of a perfectly competitive firm and a monopoly. Valuation of capital. Market failures. Indicators of macroeconomics. National income: production, distribution, consumption. Economic growth. Relationship between labor, goods, and money markets. Economic fluctuations. Inflation. Phillips curve: the relationship between inflation and unemployment.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Varian, H.L. (2019): Intermediate microeconomics: A modern approach. Ninth Edition. Norton & Comp, New York/London (ISBN 978-0-393-68986-0)
- 2. Gubik, S.A., Kis-Orloczki, M (2013). Student workbook of Microeconomics (e-book only) http://gtk.uni-miskolc.hu/gei/micro

- 3. Mankiw, N.G. (2022). Macroeconomics. Eleventh Edition Macmillan (ISBN:9781319263904)
- 4. Gubik, S.A., Kis-Orloczki, M (2013). Student workbook of Macroeconomics (e-book only) http://gtk.uni-miskolc.hu/gei/macro

- 1. Heyne, P.L., Boettke, P.J., Prychitko, D.L. (2014): Economic Way of Thinking, The 13th Edition. Pearson (ISBN-13: 9780132992695)
- 2. Miller, R.L. (2021): Economics Today: The Micro View, 20th Edition. Pearson (ISBN-13: 9780135857458)
- 3. Samuelson, P.A., Nordhaus, W.D. (2010): Microeconomics: A version of economics. 19th Edition. McGraw-Hill, New York (ISBN10: 0073511293)
- 4. Blanchard, O. (2021) Macroeconomics, 8th Edition. Pearson (ISBN-13: 9780136713883)
- 5. Miller, R.L. (2021): Economics Today: The Macro View, 20th Edition. Pearson (ISBN-13: 9780136714071)
- 6. Snowdon, B. Vane, H. R. (2005) Modern macroeconomic: Its origins, development and current state. Cheltenham Northampton: Elgar (1 84376 394 X)

Subject name:	Neptun code:	
Cost Analysis of Logistics Processes		
Responsible Lecturer: Dr. Zoltán Musinszki, assoc	iate professor, Phd	
Co-Lecturer(s): Dr. Klára Szűcsné Markovics, associate professor, PhD		
Suggested semester: 4. semester	Preliminary requirements:	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 4	Program: Full time	

The aim of this course is to provide an introduction to the methods of planning and analyzing the resource requirements and costs of logistics processes. The aim of the course is to enable students to make decisions on the basis of resource utilization and relevant indicators, and to meet the information needs of managers to an appropriate standard.

Knowledge:

They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment. They know the learning, knowledge acquisition, data collection methods of logistics, their ethical limitations and problem-solving techniques.

Skills:

They can apply the principles and methods of calculation and modelling of logistical processes. They can use their knowledge in a creative way to effectively manage the resources of the workplace. They take decisions in situations requiring a complex approach and unexpected decision-making by taking full account of legal and ethical standards.

Attitude:

They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them. They share their experience with colleagues to help them grow.

Autonomy and responsibility:

They make independent and professionally well-founded decisions even in unexpected decision-making situations. They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.

Subject description:

Basic concepts for cost analysis: cost, expenditure, expense. Classification of costs, accounting, and management content of costs. Methods of costing and cost allocation. The tasks, objectives, and role of cost analysis in business management. General methodology of cost planning and analysis. Planning of resource requirements and costs of logistics processes, analysis of variance between plan and reality. The basis for logistics decisions: efficiency and cost-effectiveness indicators for purchasing logistics, material handling and transport, warehousing and picking, and distribution logistics. Preparing reports and accounts for managers and external users. Formulating management information requirements and exploiting data assets.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Material for lectures <u>https://elearning.uni-miskolc.hu/</u>
- 2. Musinszki Z.: Cost to be a cost? Cost in the management accounting. In: Zéman, Zoltán (szerk.) Controller Info Studies I. Budapest, Copy & Consulting Kft. (2014) pp. 134-138.
- 3. Musinszki Z.: Hierarchies and dimensions in the service of cost controlling. In: Zéman, Zoltán (szerk.) Controller Info Studies I. Budapest, Copy & Consulting Kft. (2014) pp. 129-133.

- 1. Björn Oskarsson: Total Cost Analysis in Logistics, Linköping University, Linköping, Sweden, 2019.
- 2. Victor E. Sower, Christopher H. Sower: Better Business Decisions Using Cost Modeling: For Procurement, Operations, and Supply Chain Professionals, Business Expert, 2011.
- 3. Drury, C.: Management and Cost Accounting, 7. kiadás, Thomson Learning, 2008.
- 4. Matthew Zander: Supply Chain Cost Control Using Activity-Based Management, Auerbach Publications, 2006.

Subject name:	Neptun code:
Accounting	
Responsible Lecturer: Dr. Judit Füredi-Fülöp, asso	ociate professor, PhD
Co-Lecturer(s):	
Suggested semester: 5. semester	Preliminary requirements:
Classes per week:	Requirement type: exam
Theoretical: 2	
Practical: 2	
Credits: 4	Program: Full time
Objective and purpose of the subject:	
Be an all the day of the second of the second s	

By mastering the requirements of the subject, the student will acquire the basic knowledge of the operation of the accounting information system, the process and framework of accounting activity, and the methodological foundations of accounting. The students will be able to review accounting processes, to take a systems approach, to define the place of accounting among the economic sciences.

Knowledge:

 They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.

Skills:

- They can use their knowledge in a creative way to effectively manage the resources of the workplace.

Attitude:

 They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.

Subject description:

- The place and role of accounting within economics.
- The concept of wealth in accounting. Content of asset and liability categories.
- Detailed content of balance sheet items.
- Accounting regulation and governance in Hungary.
- The Accounting Act and related government regulations.
- The role of balance sheet and economic transactions, general ledger accounts.
- Types of accounting. Cost concepts. Introduction of cost and profit and loss accounts. The single chart of accounts. The chart of accounts. Cost accounting methods.
- Interpretation of income and expenditure in accounting. The derivation of profit and loss, types of profit and loss account.
- Valuation of assets and liabilities: information needed to draw up the balance sheet, valuation procedures, valuation principles, balance sheet theories, depreciation.
- Framework for accounting activity: accounting principles, content of accounting policies, how they are drawn up.
- Function of the accounting information system. The process of accounting activity. Basis of accounting information.
- Closure of the financial year closing operations.
- International accounting practice.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Material for lectures: <u>https://elearning.uni-miskolc.hu/</u>
- 2. Kevin J. Hastings: Introduction to Financial Mathematics Taylor and Francis 2016 ISBN: 978-1498723909
- 3. B. Elliott, J. Elliott: Financial accounting and reporting, Financial Times Prentice Hall, 2008

- Rose Peter Hudgins Sylvia: Bank Management & Financial Services McGraw-Hill 2012 ISBN: 9780078034671
- 2. Dr. Chandra Shekhar: INTRODUCTION TO ACCOUNTING: http://www.ddegjust.ac.in/studymaterial/bba/bba-104.pdf 2021 10 11

Subject name:	Neptun code:	
Performance Management		
Responsible Lecturer: Veresné Prof. Dr. Mariann Éva Somosi, full professor, PhD, CSc		
Co-Lecturer(s): Daniella Kucsma , assistant le	ecturer	
Suggested semester: 5. semester	Preliminary requirements:	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 0		
Credits: 2	Program: Full time	
Objective and purpose of the subject:	applied in Logistics	
Knowledge:	applied in Logistics.	
- They know the basics boundaries and	requirements of logistics management environmental	
 They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment. 		
 They know organisational, management 	nt and communication techniques.	
Skills:		
 They can organise, manage and contro 	I the operation of logistics systems.	
 They can manage and control logistics quality control. 	processes, considering the elements of quality assurance and	
 They can use their knowledge in a crea 	tive way to effectively manage the resources of the workplace.	
 They take decisions in situations requir taking full account of legal and ethical 	ing a complex approach and unexpected decision-making by standards.	
Attitude:		
 They monitor legislative, technical, tec 	hnological and administrative changes related to logistics.	
 They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them. 		
 They pay attention to promoting professional development of their subordinates, managing and assisting them in their efforts. 		
 They share their experience with colleagues to help them grow. 		
Autonomy and responsibility:		
- They cooperate responsibly with qualified professionals of other (primarily economic and legal)		
disciplines during their professional duties.		
- They are aware of the legal, economic, safety, social, health protection and environmental		
consequences of their work and decisions.		
- Under the guidance of their line manager, they manage the work of the staff assigned to them,		
supervise the operation of processes and vehicles.		
 They evaluate the efficiency, effectiveness and safety of their subordinates' work. 		
Subject description:	ant the importance of performance management. Basic	
The scientific field of performance management, the importance of performance management. Basic		
management Areas of performance manage	ement. The performance management system (problems and	
shortcomings of preventive systems). The cycle and process of performance management. The importance		

shortcomings of preventive systems). The cycle and process of performance management. The importance of performance measurement. Performance management philosophy, performance prism. Performance models, BSC. Place of performance evaluation in the organization. The purpose of the performance evaluation. The appraisers and the appraised. 360° evaluation. Subject and approaches of evaluation. Evaluation techniques. Conditions of performance evaluation. Timing and frequency of performance evaluation. Communication of the performance assessment within the organization. The evaluation interview and its goals, applied styles. Factors of success and failure. Pitfalls of performance appraisal. The basis of the performance evaluation: judgment. The person perception process. Detection errors.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Lebas, M.J. (1995) Performance Measurement and Performance Management. International Journal of Production Economics, 41.
- 2. Satterfield T. (2003), From performance management performance leadership, Worldat-Work Journal, First Quarter

Subject name: Organization-Management	Neptun code:	
Responsible Lecturer: Veresné Prof. Dr. Mariann Éva Somosi, professor, PhD, CSs		
Co-Lecturer(s): Daniella Kucsma, assistant lecturer		
Suggested semester: 6. semester	Preliminary requirements:	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 3	Program: Full time	
Objective and purpose of the subject:		
Basic concepts of management, that can applied in Logistics.		

Knowledge:

They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment. They know organisational, management and communication techniques **Skills:**

They can organise, manage and control the operation of logistics systems. They can manage and control logistics processes, considering the elements of quality assurance and quality control. They can use their knowledge in a creative way to effectively manage the resources of the workplace. They take decisions in situations requiring a complex approach and unexpected decision-making by taking full account of legal and ethical standards.

Attitude:

They monitor legislative, technical, technological and administrative changes related to logistics. They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them. They pay attention to promoting professional development of their subordinates, managing and assisting them in their efforts. They share their experience with colleagues to help them grow.

Autonomy and responsibility:

They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties. They are aware of the legal, economic, safety, social, health protection and environmental consequences of their work and decisions. Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles. They evaluate the efficiency, effectiveness and safety of their subordinates' work.

Subject description:

Basic concepts of management. Change-management. Leadership style, leadership roles, motivation. Organization planning, organizational structure. Organizational forms, Apples and Oranges case study. Divisional organizations, matrix organizations. Situation management (Hersey - Blanchard). Organization formation process. Basic elements of organization planning, Belbin test - group dynamics. Purpose and steps of process organization. Managerial decision making. Development of decision and information systems. Creating and managing groups. Organizational culture: welcome to my village. Conflict management. Control and communication.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Hersey Blanchard Johnson: Management of organizational behavior. Prentice Hall, 2007.
- 2. French, Ray Rayner, Charlotte Rees, Gary Rumbles, Sally (2008): Organizational Behaviour, John Wiley & Sons, Ltd. Sussex

- 1. Morgan, Gareth (2006): Images of Organization. Thousand Oaks: Sage Publications, Inc.
- 2. Schein, Edgar H. (2006): Organizational Culture and Leadership, John Whiley & Sons

Subject name: Operation of Corporate	Neptun code:
Management Systems	
Responsible Lecturer: Viktor Lates, senior lecturer	
Co-Lecturer(s):	
Suggested semester: 6. semester	Preliminary requirements:
Classes per week:	Requirement type: term mark
Theoretical: 2	
Practical: 2	
Credits: 4	Program: Full time

Using system-theory to describe how companies and corporate governance systems work. Types of company management systems: transaction processing, management information systems, decision support systems, senior management information systems. Other information systems supporting company processes. The role of the communication chain in the transmission of data and information in the operation of information systems, and the requirements for corporate management systems. The structure of corporate management systems and their relationship with the corporate organization, Modeling of corporate management systems: structure, operation and states. The development process, the possibilities and requirements of the introduction. Elements of systems maintenance. The task of information security in corporate management systems: types of risks, possible solutions. Elements of the ISO 27000 standard system. GDPR requirements and their fulfillment in corporate management systems.

Knowledge:

- They have comprehensive knowledge of the basic facts, directions and boundaries of logistics.
- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.
- They know organisational, management and communication techniques.

Skills:

- They can apply the principles and methods of calculation and modelling of logistical processes.
- They can apply the acquired IT knowledge in solving the tasks arising in transportation and shipment.
- They take decisions in situations requiring a complex approach and unexpected decision-making by taking full account of legal and ethical standards.

Attitude:

- They monitor legislative, technical, technological and administrative changes related to logistics.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.

Autonomy and responsibility:

- They make independent and professionally well-founded decisions even in unexpected decisionmaking situations.
- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They are aware of the legal, economic, safety, social, health protection and environmental consequences of their work and decisions.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.
- They evaluate the efficiency, effectiveness and safety of their subordinates' work.

Subject description:

History and characteristics of the SAP S/4 HANA system. Operation and use of SAP enterprise management systems. Commonly used modules. Create and search in transactions and documents. Steps of the standard material procurement process in the SAP system. Purchase order, management of material receipts. Inquiries related to procurement and material handling. Tasks and operation of the production planning module in the SAP system. Forecasting data and material requirements planning in the SAP system. Mapping the discrete manufacturing process. Queries used for production process.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Olaf Shulz: Using SAP: An introduction for Beginners and Business Users (3rd ed.), SAP Press, Rheinwerk Publishing , Boston, 2017.
- 2. Mária Illés (2012): Transforming the Net Present Value for a Comparable One. Theory Methodology Practice: Club of Economics in Miskolc:(1) pp. 24-32.

- Peter Atrill, Eddie McLaney (1999) Management Accounting for Decision Makers. Sixth Edition. Pearson Education Limited. Harlow, England (561 pages). http://elibrary.com.ng/UploadFiles/file0_10055.pdf
- 2. Peter Verdaasdonk (1999). Accounting information for operations management decisions. Technische Universiteit Eindhoven DOI: 10.6100/IR519787 (184 pages)

Subject name:	Neptun code:	
Materials Science and Testing		
Responsible Lecturer: Dr. Péter Zoltán Kovács, as	sociate professor, PhD	
Co-Lecturer(s):		
Suggested semester: 1. semester	Preliminary requirements:	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 4	Program: Full time	

Introduction to material-related engineering concepts, acquisition of the basic knowledge necessary to develop an engineering approach, definition of the main material properties and an overview of their definition options, exploration of the relationship system of material properties and material structure and the principle possibilities of modifying properties.

Knowledge:

- They have comprehensive knowledge of the basic facts, directions and boundaries of logistics.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.
- They know the measurement procedures used in logistics, their tools, instruments and measuring equipment.
- They know the learning, knowledge acquisition, data collection methods of logistics, their ethical limitations and problem-solving techniques.

Skills:

- They can apply the principles and methods of calculation and modelling of logistical processes.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.
- They can organise, manage and control the operation of logistics systems.

Attitude:

- They take responsibility and credibly represent the social aspects of the profession and its fundamental relation to the world.
- They strive to ensure that their self-directed learning in the field of logistics is continuous and consistent with their professional goals.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.
- They are committed to broad-based enforcement of health and environmental protection.

Autonomy and responsibility:

- They make independent and professionally well-founded decisions even in unexpected decisionmaking situations.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

Introduction to material-related engineering concepts, acquisition of the basic knowledge necessary to develop an engineering approach, definition of the main material properties and an overview of their definition options, exploration of the relationship system of material properties and material structure and the principle possibilities of modifying properties.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

1. Tisza, M.: Physical metallurgy for engineers by Materials Park, Ohio : ASM International ; London : Freund Pub. 2001. p. 421. (ISBN 087170725X)

2. Callister, W. D: Material Science and Engineering, John Wiley& Sons, New York, 1994. p. 721. Suggested readings:

Subject name:	Neptun code:	
Mechanical Technologies		
Responsible Lecturer: Dr. László Kuzsella, assoc	iate professor, PhD	
Co-Lecturer(s):		
Suggested semester: 2. semester	Preliminary requirements: Materials Science and Testing	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 4	Program: Full time	
Objective and purpose of the subject:		
Introduction to material technologies, such as heat treatment, forming, casting and welding of materials. It		
describes the theoretical background and the most relevant technologies beside of these fields.		
Knowledge		
They have comprehensive knowledge of the basis facts directions and hour derive of locistics		
 Iney nave comprehensive knowledge of the basic facts, directions and boundaries of logistics. 		
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.		
 They know the measurement procedures used in logistics, their tools, instruments and measuring equipment. 		
 They know the learning, knowledge acquisition, data collection methods of logistics, their ethical limitations and problem-solving techniques. 		

Skills:

- They can apply the principles and methods of calculation and modelling of logistical processes.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.
- They can organise, manage and control the operation of logistics systems.

Attitude:

- They take responsibility and credibly represent the social aspects of the profession and its fundamental relation to the world.
- They strive to ensure that their self-directed learning in the field of logistics is continuous and consistent with their professional goals.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.
- They are committed to broad-based enforcement of health and environmental protection.

Autonomy and responsibility:

- They make independent and professionally well-founded decisions even in unexpected decisionmaking situations.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

The student will be able to apply the most important terminologies, theories, and procedures of the given technical fields when performing related tasks. Able to identify routine professional problems, to explore the theoretical and practical background necessary for their solution, to formulate them and to solve them (with the practical application of standard operations).

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Tisza, M.: Physical metallurgy for engineers by Materials Park, Ohio : ASM International ; London : Freund Pub. 2001. p. 421. (ISBN 087170725X)
- 2. Callister, W. D: Material Science and Engineering, John Wiley& Sons, New York, ISBN-10: 0471736961, 2006
- 3. G. Krauss: Steels and its Heat Treatment ASM International, ISBN-087170370X, 2002
- 4. Lange, K.: Metal Forming, McMillan Co. New York, 1983.
- 5. Cynthia L. Jenney: Welding Handbook, Welding Science and Technology, American Welding Society, 0-87171-657-7, 2001.

Subject name:	Neptun code:
Fundamentals of Machine Elements	
Responsible Lecturer: Prof. Dr. Gabriella Vadászn	i é Bognár, professor, DSc
Co-Lecturer(s): Dr. Ágnes Takács, associate professor, PhD	
Suggested semester: 1. semester	Preliminary requirements:
Classes per week:	Requirement type: exam
Theoretical: 2	
Practical: 2	
Credits: 4	Program: Full time
Objective and purpose of the subject:	
The aim of the course is to acquaint students with the various machines, machine elements, their	

The aim of the course is to acquaint students with the various machines, machine elements, their mechanism of operation and to use the basic physical connections in practice. **Knowledge:**

- They have comprehensive knowledge of the basic facts, directions and boundaries of logistics.

- They know logistics processes, the ways in which they are carried out and their technical possibilities. **Skills:**
 - They can analyse at a basic level the disciplines which make up the knowledge system of the technical field, formulate interrelationships synthetically and carry out adequate assessment activities.
 - They can apply the principles and methods of calculation and modelling of logistical processes.
 - They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
 - They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.

- They can organise, manage and control the operation of logistics systems.

Attitude:

- They take responsibility and credibly represent the social aspects of the profession and its fundamental relation to the world.
- They take responsibility and represent the values of the engineering profession and openly accept well-founded critical comments.
- They monitor legislative, technical, technological and administrative changes related to logistics.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to ensure that their self-directed learning in the field of logistics is continuous and consistent with their professional goals.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They make independent and professionally well-founded decisions even in unexpected decisionmaking situations.

Subject description:

Mechanical work and performance in motion on straight line. Sliding friction and rolling resistance. Weightlifting work, potentional energy. The law of conservation of energy in a closed mechanical system. The force of acceleration and inertia. Characteristics of rotating motion. Torque work and performance. Efficiency, machine losses, energy figures. Periodic motion of machines. Bevel gear, crank gear. Determination of motion characteristics. Main types of gears. The flywheel, the degree of inequality. Drive systems. Friction drive. Flexible drive. Gear drive. Brakes, single-jaw and double-jaw brakes. Band brakes. Springs. The spring characteristic. Spring constant of a spring connected in series and in parallel. Laboratory exercises:

- Measurement of coefficient of friction
- Measurement of flow losses
- Gear pump capacity and volumetric efficiency

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. P. Sandori: The Logic of Machines and Structures (Dover Books on Engineering) Dover 2016.
- 2. M. Clifford, R. Brooks, A. Howe, A. Kennedy, S. McWilliam, S. Pickering, P. Shayler, P. Shipway: An Introduction to Mechanical Engineering Part I. Hodder Education Co, UK 2009.

- 1. R.C. Hibbeler: Engineering Mechanics, 14. Edition, Pearson Education Inc, 2016.
- 2. K. Otto K. Wood: Product Design, Prentice Hall, New Jersey, 2001.

Subject name:	Nontun codo:	
Subject name: Vehicle Components	Neptun code.	
Pernonsible Lecturer: Dr. Forone Sarka accoriate	professor PhD	
Co Locturor(s):	professor, PhD	
Co-Lecturer(s).	Broliminary requirements:	
Classes per week:	Prenimilary requirements.	
Theoretical: 2	Requirement type. exam	
Practical: 2		
Credits: 5	Program: Full time	
Objective and purpose of the subject:		
The aim of the subject is to wide the horizons of	the students. The subject is used for individual logistical	
purposes, or describes the basic characteristics of	of usable vehicles and the tracks and roads they use, with	
increased emphasis placed on independent work	and continuous discussion of topics.	
Knowledge:	·	
 They have comprehensive knowledge of the 	e basic facts, directions and boundaries of logistics.	
 They know logistics processes, the ways in y 	which they are carried out and their technical possibilities.	
Skills:		
 They can analyse at a basic level the disciplines which make up the knowledge system of the technical field, formulate interrelationships synthetically and carry out adequate assessment activities. 		
 They can plan, organise and carry out indep 	endent learning.	
Attitude:		
 They take responsibility and credibly repres fundamental relation to the world. 	ent the social aspects of the profession and its	
 They take responsibility and represent the values of the engineering profession and openly accept well-founded critical comments. 		
 They strive to ensure that their self-directed consistent with their professional goals. 	l learning in the field of logistics is continuous and	
Autonomy and responsibility:		
 They make independent and professionally well-founded decisions even in unexpected decision- making situations. 		
 They cooperate responsibly with qualified produced disciplines during their professional duties. 	rofessionals of other (primarily economic and legal)	
 They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them. 		
 They are aware of the legal, economic, safety, social, health protection and environmental consequences of their work and decisions. 		
Subject description:		
Assignment and requirements of signature:		
Requirement end evaluation of the practical mark/ exam:		
Required readings:		
 Robert C Juvinal - Kurt Marshek: Fundamentals of Machine Component Design, John Wiley & Sons, New York, 2000, ISBN 0-471-24448-1 		
 Heinrich Riedl: Handbuch praktische Trakt Colin Garratt: Illustrated Guide to Locomo Publishing 	torentechnik Gebundene Ausgabe, Ulmer, 2014. otives of the World, ISBN10 0857233734, Anness	

Subject name:	Neptun code:	
Basics of Technical Description		
Responsible Lecturer: Dr. Erika Szilvásiné R	ozgonyi, associate professor, PhD	
Co-Lecturer(s): Sándor Lajos, master lecture	er	
Suggested semester: 1. semester	Preliminary requirements:	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 4	Program: Full time	
 Knowledge: They have comprehensive knowledge of the basic facts, directions and boundaries of logistics. They know computer communication, major software applications in the field. Skills: 		
 They can apply the principles and methods of calculation and modelling of logistical processes. They can understand and use the literature, computer technology and library resources of logistics. Attitude: 		
- They monitor legislative, technical, technological and administrative changes related to logistics.		
Autonomy and responsibility:		
 They make independent and professionally well-founded decisions even in unexpected decision- making situations 		
Subject description:		
Sketching in axonometry, Constructions in the representation of Monge, mapping of points, lines and planes		

Sketching in axonometry. Constructions in the representation of Monge, mapping of points, lines and planes, intersection problems. Introducing new image planes. Representation of circles. Representation of polyhedra and surfaces of revolution, and their intersection with plane. Preparations of technical drawings and documentations. Standards, drawing types, lines and captions, Views, section views, profiles for mechanical drawings. Special representation methods. Dimensioning, building of dimensions, special dimensions. Representation of threaded parts. The ISO tolerance system. Geometric and position tolerance, surface finishing. Connecting parts, ISO system of fits. The basics of Computer Aided Design (CAD), rapid prototyping.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

Pottmann, H., Asperl, A., Hofer, M., Kilian, A.: Architectural geometry, Bentley Institute Press, 2010.
 Creamer, Robert H.: Machine design. Addison-Wesley,1983.

- 1. Kathryn Holliday-Darr: Applied Descriptive Geometry, Delmar, 1998
- 2. Lee, Kunwoo: Principles of CAD/CAM/CAE Systems, Addison-Wesley, 1999.

Subject name:	Nentun code:	
Computer Studies		
Pasponsible Lecturer: Dr. Károly Nebáz, associate	a professor BhD	
Co Locturor(c):		
Co-Lecturer(s).	Proliminary requirements:	
Classes per week:	Prenimilary requirements.	
Theoretical: 2	Requirement type, term mark	
Practical: 2		
Credits: 4	Program: Full time	
Objective and nurnose of the subject:		
Familiarization with the structure and operation	o of the Computers, building user competencies for the	
advanced use of MS Office applications, prov	viding knowledge on the topic of viruses, developing	
intermediate Clanguage programming skills.		
Knowledge:		
 They know the basics, boundaries and require 	ments of logistics, management, environmental	
protection, quality assurance, information to	echnology, law and economics closely related to	
transportation and shipment.		
Skills:		
 They can plan, organise and carry out indep 	endent learning.	
 They can apply the acquired IT knowledge in 	n solving the tasks arising in transportation and shipment.	
Attitude:		
 They are committed to broad-based enforce 	ement of health and environmental protection.	
 They monitor legislative, technical, technology 	gical and administrative changes related to logistics.	
Autonomy and responsibility:		
 They cooperate responsibly with qualified pressure 	rofessionals of other (primarily economic and legal)	
disciplines during their professional duties.		
Subject description:		
 PC hardware basic concepts. A functional 	system diagram of a computer. The microprocessor. The	
bus. Memory, libraries. Turing machine. N	eumann principle.	
 Software basic concepts. Tasks of the ope 	rating system.	
 Advanced Excel knowledge. 		
 The general structure of C programs. Data 	structures. In- and out.	
- The concept of title, value, indicator, C language instructions. Branch organization cycle		
organization.		
 Basic algorithms interpreted on vectors. Structures. File management 		
- Library functions Computer viruses protection		
Assignment and requirements of signature:		
Requirement end evaluation of the practical mark/ exam:		
Required readings:		
1. Michael Vine: C Programming for the Abso	olute Beginner (2nd Edition) 2008.	
2. T. Bailey: An Introduction to the C Programming Language and Software Design, 2005.		
3. Alan Murray: Advanced Excel Success, Apr	3. Alan Murray: Advanced Excel Success, Apress, 2020. ISBN-1484264665	
4. John Michaloudis: 101 most popular excel formulas, 2019, ISBN: 1700300911		
Suggested readings:		

Subject na	me:	Neptun code:	
Control En	gineering		
Responsib	Responsible Lecturer: Dr. Attila Trohák, associate professor, PhD		
Co-Lecture	r(s):		
Suggested semester: 4. semester Preliminary requirements: Electrotechnics-Electro		Preliminary requirements: Electrotechnics-Electronics	
Classes pe	r week:	Requirement type: exam	
Theoretica	l: 2		
Practical: 2	2		
Credits: 5		Program: Full time	
Objective	and purpose of the subject:		
In this cou	rse the students get familiar with the Pl	LC and SCADA/HMI systems	
Knowledge	2:		
– They	know the methods, implementation p	ossibilities and practices of assessing basic logistics needs.	
Skills:			
– They	can connect sub-processes of logistics	systems and the sub-units carrying out their functions	
(mat	erial handling equipment, sensors, actu	ators, control systems, database systems, etc.).	
Attitude:			
– They	are open to know, accept and credibly	communicate professional and technological	
deve	lopment and innovation in logistics.		
Autonomy	and responsibility:		
– They	identify gaps in the technologies used,	the risks of the processes and initiate action to reduce	
them	۱.		
Subject de	scription:		
We learn a	bout the structure, operation, and prog	gramming of PLC-based control systems. We deal with	
the basics of operation of sensors and actuators and their installation. We learn about structure,			
operation, and configuration of human-machine interfaces.			
Assignmer	Assignment and requirements of signature:		
Poquiromo	Description and evaluation of the prestical month (success		
Requirement end evaluation of the practical marky exam:			
Required readings:			
1.	1. Hans Berger: Automating with SIMATIC S-1200, Publicis Publishing, 2011., ISBN 978-3-89578-		
	356-2		
2.	2. Practical Industrial Programming using IEC 61131-3 for PLCs, IDC Technologies		
3.	3. David Bailey, Edwin Wright: Practical SCADA ofr Industry, Elsevier, 2003, ISBN 07506 58053		
4.	J. Park, S. Mackay, E. Wright: Practical	Data Communications for Instrumentation and Control.	
Elsevier, 2003. ISBN: 07506 57979.			
Suggested readings:			
Juggesteu	i cuulibs.		

Neptun code:		
Responsible Lecturer: Dr. Zsolt Maros, associate professor, PhD		
Co-Lecturer(s):		
Preliminary requirements: Materials Science and Testing		
Requirement type: exam		
Program: Full time		

Main scientific fields, basic terms structure and systems approach characteristics of manufacturing technology

Knowledge:

- They have comprehensive knowledge of the basic facts, directions and boundaries of logistics. **Skills:**

 They can analyse at a basic level the disciplines which make up the knowledge system of the technical field, formulate interrelationships synthetically and carry out adequate assessment activities.

Attitude:

 They take responsibility and represent the values of the engineering profession and openly accept well-founded critical comments.

Autonomy and responsibility:

- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.

Subject description:

Manufacturing technological process. Cutting by tools with define edge geometry. Main characteristics of chip removal. Basic elements, workpiece, tool, movements cutting parameters. Edge geometry materials of cutting tools. Determination of cutting forces. Main cutting methods: turning, shaping, drilling, boring, faceand slab milling. Fine machining methods, grinding superfinishing, honing, lapping, polishing. Machining of gears and threads. Basics of industrial assembly. Activities and bonding methods. Production structure, assembly family tree, basics of assembly systems. Machine industrial measurements and their tools. Mechanical, optical, electrical and laser measuring devices used in length and angle measurements.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. E. Trent P. Wright: Metal Cutting, Butterworth–Heinemann Boston, 2000, p446, ISBN 0-7506-7069-X
- 2. Heinz Tschätsch: Applied Machining Technology, Springer Dordrecht Heidelberg London 2008, p398, ISBN 978-3-642-01006-4

Subject name:	Neptun code:	
Material Handling Machines		
Responsible Lecturer: Dr. Péter Telek, associate professor, PhD		
Co-Lecturer(s): Dr. Szabolcs Szentesi, senior lecturer, PhD		
Suggested semester: 3. semester	Preliminary requirements: Technical Logistics	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 4	Program: Full time	

Main objective of the course is to present the types, operation characteristics and elements of material handling machines for the students. During the semester the planning, operation and maintenance aspects of the machines are also presented. At the end of the course, students gain sufficient knowledge for the application, operation and control of handling machines. During the practical lessons students get deeper knowledge about the machines and apply the theoretical methods.

Knowledge:

- They know the principles of operation and structural characteristics of vehicles and machinery systems suitable for logistics processes.
- They know the operation and maintenance systems of vehicles and mobile machinery used in logistics processes

Skills:

- They can apply the principles and methods of calculation and modelling of logistical processes.
- They can organise, manage and control the operation of logistics systems.

Attitude:

- They monitor legislative, technical, technological and administrative changes related to logistics.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

Main topics of the course: Types, structures and functional elements of continuous and discontinuous material handling equipment. Calculation methods for the selection and analysis of the elements and parameters of typical piece handling machines. Planning methods of transport, loading and storing machines of bulk solids.

Assignment and requirements of signature:

thematic tests

Requirement end evaluation of the practical mark/ exam:

Required readings:

1. R. A. Kulwiec: Materials handling handbook. J. Wiley and Sons, 1985.

- 1. D. McGlinchey: Bulk solids Handling, Blackwell Publishing, 2008.
- 2. P. M. McGuie: Conveyors. Application, selection and integration, CRC Press, 2010.

Subject name:	Neptun code:	
Fluid Transport Systems and Machines		
Responsible Lecturer: Dr. Péter Bencs, associate professor, PhD.		
Co-Lecturer(s):		
Suggested semester: 4. semester	Preliminary requirements:	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 5	Program: Full time	
Objective and purpose of the subject:		

Basic concepts of fluid dynamics and fluid transport, that can be applied in Logistics.

Knowledge:

- They have comprehensive knowledge of the basic facts, directions and boundaries of logistics.
- They know the operation and maintenance systems of vehicles and mobile machinery used in logistics processes.
- They know the measurement procedures used in logistics, their tools, instruments and measuring equipment.
- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.

Skills:

- They can analyse at a basic level the disciplines which make up the knowledge system of the technical field, formulate interrelationships synthetically and carry out adequate assessment activities.
- They can apply the principles and methods of calculation and modelling of logistical processes.
- They can organise, manage and control the operation of logistics systems.
- They can detect errors in the logistics process and select remedial actions.
- They can plan, organise and carry out independent learning.
- They can apply the acquired IT knowledge in solving the tasks arising in transportation and shipment.
- They can use their knowledge in a creative way to effectively manage the resources of the workplace.
- They take decisions in situations requiring a complex approach and unexpected decision-making by taking full account of legal and ethical standards.

Attitude:

- They take responsibility and credibly represent the social aspects of the profession and its fundamental relation to the world.
- They take responsibility and represent the values of the engineering profession and openly accept well-founded critical comments.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to ensure that their self-directed learning in the field of logistics is continuous and consistent with their professional goals.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.
- They pay attention to promoting professional development of their subordinates, managing and assisting them in their efforts.
Autonomy and responsibility:

- They make independent and professionally well-founded decisions even in unexpected decisionmaking situations.
- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.
- They are aware of the legal, economic, safety, social, health protection and environmental consequences of their work and decisions.

Subject description:

Properties of fluids (density, velocity field, streamlines, potential function, vorticity vector). Equation of continuity. Bernoulli equation for ideal and non-ideal, incompressible and compressible flows. Flow losses in pipelines and fittings. Equivalent pipe length. Classification of machines. Main characteristics of flow machines. External energy diagram of working machines. Realistic characteristic curves of pumps. Suction power of pumps. Working point of pumps, series and parallel connection. Starting and control of pumps. Types of water turbines. Characteristic curves of water turbines. Energy diagram and characteristic curve of fans. Fan types.

Assignment and requirements of signature:

The condition for acquiring a signature from the subject is that the student must attend at least 60% of the lectures and at least 70% of the practical lessons.

Requirement end evaluation of the practical mark/ exam:

The type of exam is oral (evaluation criteria according to faculty rules).

Required readings:

- 1. Roberson, J.A. Crowe, C.T.: Engineering Fluid Mechanics. 3rd Edition, Houghton Mifflin Company, Boston, 1985.
- 2. Streeter, V.L. and Wylie, E:B.: Fluid Mechanics. McGraw-Hill, Auckland, 1987.
- Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein: Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, 8th Edition, Wiley Loose-Leaf Print Edition, 2018, ISBN: 978-1-119-54799-0

Subject name:	Neptun code:
Technical Logistics	
Responsible Lecturer: Prof. Dr. Péter Tamás, head	d of institute and full professor, PhD. dr. habil.
Co-Lecturer(s): Dr. Péter Telek, associate professor	
Suggested semester: 2. semester	Preliminary requirements:
Classes per week:	Requirement type: exam
Theoretical: 3	
Practical: 2	
Credits: 6	Program: Full time

During the course, the students are introduced to the professional knowledge of logistics; to show the development of logistics and its relationship with material handling; determine the professional content of logistics; to develop the technical-logistics approach; explore the relational system of material and information flow; describe the main technical and IT equipment belonging to the operation of the logistics system.

Knowledge:

- They have comprehensive knowledge of the basic facts, directions and boundaries of logistics.
- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the principles of operation and structural characteristics of vehicles and machinery systems suitable for logistics processes.

Skills:

- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.
- They can organise, manage and control the operation of logistics systems.

Attitude:

- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

Development of material handling, closed chain complex material flow system, structure of material flow system, LTS operations, concept of logistics, logistics as an integrated science, logistics principles and goals, logistics operations, logistics costs and performances, material and information flow of logistics system, mathematical methods of material flow description, logistics development trends, logistics concept, variants of logistics organization, procurement logistics process, JIT delivery, kanban delivery, production logistics process, distribution logistics process, recycling logistics process, logistics strategies.

Practice: Material handling techniques, types of cranes and their structural elements, structure and operation of types of forklifts, main types and structural elements of conveyor material handling equipment, material handling equipment with suspended rails, elements of roller track systems, main elements of belt conveyor equipment, design of warehouse systems.

Assignment and requirements of signature:

The condition for obtaining the signature is to achieve at least 50% of the maximum score that can be obtained for the closed-door thesis at the end of the semester, as well as to attend at least 60% of the classes held during the semester (§ 50 HKR)

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Langford, J.: Logistics principles and applications, Sole Press, ISBN-10: 0-07-147224-X, 2007.
- 2. James M. Apple: Plant layout and material handling, John Wiley & Sons, ISBN 0471-07171-4

Suggested readings:

 Davis, F. W., & Manrodt, K. B. (1991). Service Logistics: An Introduction. International Journal of Physical Distribution & Logistics Management, 21(7), 4–13., <u>https://doi.org/10.1108/eum000000000393</u>

Subject name:	Neptun code:
Logistics Systems	
Responsible Lecturer: Dr. Ágota Bányainé Tóth, a	issociate professor, PhD
Co-Lecturer(s):	
Suggested semester: 3. semester	Preliminary requirements: Technical Logistics
Classes per week:	Requirement type: term mark
Theoretical: 2	
Practical: 2	
Credits: 4	Program: Full time
Objective and purpose of the subject:	
The course introduces students to the planning and management methods of the various subsystems of the	
enterprise logistics system. The course will introduce the structure and main elements of the enterprise	

logistics system. The aim is to provide the theoretical basis for the optimal design and operation of logistics systems and to introduce the design principles, which can be further developed in the Master's programme.

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.
- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment).

Skills:

- They can apply the principles and methods of calculation and modelling of logistical processes.
- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.
- They can organise, manage and control the operation of logistics systems.
- They can use their knowledge in a creative way to effectively manage the resources of the workplace.

Attitude:

- They monitor legislative, technical, technological and administrative changes related to logistics.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

- 1. Structure of enterprise logistics system.
- 2. Strategic, tactical and operational level of enterprise logistics system.
- 3. Process of purchasing logistics.
- 4. Design and management methods of purchasing logistics.
- 5. Supplier evaluation methods.
- 6. Make or buy decision.

- 7. Just-in-time supply.
- 8. Process of production logistics.
- 9. Design and management methods of production logistics.
- 10. Process of distribution logistics.
- 11. Design and management methods of distribution logistics.
- 12. Process of reverse logistics.
- 13. Design and management methods of reverse logistics.

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Langford, J.: Logistics principles and applications, Sole Press, ISBN-10: 0-07-147224-X, 2007.
- 2. Gianpaolo Ghiani, Gilbert Laporte, Roberto Musmanno: Introduction to logistics systems management. Wiley 2013, ISBN: 978-1-119-94338-9

- 1. Rushton, A., Croucer, P., Baker, P.: The handbook of logistics and distribution management, 3rd edition, Kogan Page Limited, ISBN 9780749446697, 2006.
- 2. Gunasekaran A.: Agile manufacturing: The 21st Century Competitive Strategy, Elsevier, 2001. ISBN 978-0-08-043567-1

Subject name:	Neptun code:
Simulation Modelling of Logistics Processes	
Responsible Lecturer: Prof. Dr. Péter Tamás, head	d of institute, full professor, PhD, dr. habil.
Co-Lecturer(s): Dr. Ákos Cservenák, senior lecture	er, PhD
Suggested semester: 3. semester	Preliminary requirements: Technical Logistics
Classes per week:	Requirement type: term mark
Theoretical: 2	
Practical: 2	
Credits: 5	Program: Full time
Objective and purpose of the subject:	
The course introduces the simulation modelling, evaluation and efficiency improvement capabilities of	

The course introduces the simulation modelling, evaluation and efficiency improvement capabilities of typical logistics systems. Using the knowledge gained, students will be able to model, evaluate, improve, and design logistics processes using a simulation framework.

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.
- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.
- They know computer communication, major software applications in the field.

Skills:

- They can analyse at a basic level the disciplines which make up the knowledge system of the technical field, formulate interrelationships synthetically and carry out adequate assessment activities.
- They can apply the principles and methods of calculation and modelling of logistical processes.
- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.
- They can apply integrated knowledge from the field of transportation, mobile machines, process theory, industrial production processes, as well as electronics and informatics.
- They can detect errors in the logistics process and select remedial actions.
- They can use their knowledge in a creative way to effectively manage the resources of the workplace.

Attitude:

- They take responsibility and credibly represent the social aspects of the profession and its fundamental relation to the world.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.

Subject description:

Objectives for modelling logistics systems. Principles and possibilities of simulation modelling. Simulation in process improvement. Major logistic objects of complex systems and the material flow characteristics to be considered in their modelling. Methods to model logistics operations and processes in a simulation framework. Presentation of case studies on modelling and development of logistics systems. Solving practical problems.

Requirement end evaluation of the practical mark/ exam:

Required readings:

- Tamás, P.: Innovative simulation testing methods in logistics: Miskolc, 2021., ISBN: 978-963-358-239-8
- 2. Bányai, T.: Design of Material flow systems. 2021. ISBN 978-963-358-237-4
- 3. Langford, J.: Logistics principles and applications, Sole Press, ISBN-10: 0-07-147224-X, 2007.

- 1. Pedro García Márquez, F.; Segovia R. I.; Bányai, T., Tamás, P.: Lean Manufacturing and Six Sigma Behind the Mask: London, Egyesült Királyság/Anglia: InTech Open Access Publisher, 2021.,
- 2. Tamás, P., Kovács, Gy.: Simulation methods in logistics: Miskolc, 2015., ISBN:978-963-358-120-9, 195 p.,

Subject name:	Neptun code:
Transportation Systems	
Responsible Lecturer: Dr. Róbert Skapinyecz, asso	ociate professor, PhD
Co-Lecturer(s): Dr. Ákos Cservenák, senior lecturer, PhD	
Suggested semester: 4. semester	Preliminary requirements: Technical Logistics
Classes per week:	Requirement type: exam
Theoretical: 3	
Practical: 2	
Credits: 6	Program: Full time
Objective and purpose of the subject:	

During the course, introducing the students to the system-oriented transport curriculum is essential for the application of the complex logistics approach. To enable students to use the knowledge of other subjects to solve the transport logistics tasks of goods and passenger transport.

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the operation and maintenance systems of vehicles and mobile machinery used in logistics processes.
- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.

Skills:

- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.

Attitude:

- They monitor legislative, technical, technological and administrative changes related to logistics.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

Characterization and development of transport systems, transport system connections. Transport sectors, transport technical systems, transport lanes, vehicles, energy supply, drive systems, transport service facilities. Trans-European networks (TEN) and pan-European corridors. Rail, road, water, air and combined transport. Environmental effects of transport, environmental impact, sustainability aspects. Evaluation and qualification of transport services, service quality assurance. Transport strategies, National Transport Strategy, EU Mobility Strategy. Introduction to the basics of traffic simulation software.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Taniguchi E., Thompson R. G., Yamada T., van Duin R.: City logistics: Network modelling and intelligent transport systems, Emerald Group Publishing Limited, 2001, ISBN 978-0-08-043903-7
- 2. Stroh, M. B.: A practical guide to transportation and logistics, Logistics Network Inc., 2006.

- Tettamanti, Tamás, Tamás Lupsay, and István Varga. "Road Traffic Modeling and Simulation." (2019), Budapest, Hungary: Akadémiai Kiadó, ISBN 978 963 454 385 5
- 2. James H. Bookbinder: Handbook of Global Logistics Transportation in International Supply Chains, ISBN: 978-1-4419-6132-7, 2013

Subject name:	Neptun code:
Basics of Process Development	
Responsible Lecturer: Prof. Dr. Péter Tamás, head	d of institute, full professor, PhD, dr. habil.
Co-Lecturer(s):	
Suggested semester: 4. semester	Preliminary requirements:
Classes per week:	Requirement type: term mark
Theoretical: 2	
Practical: 2	
Credits: 5	Program: Full time

The course introduces the lean management philosophy and its tools. At the end of the course, students will be able to analyze and improve material flow systems in line with the lean philosophy.

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.
- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.
- They know organisational, management and communication techniques.

Skills:

- They can apply the principles and methods of calculation and modelling of logistical processes.
- They can detect errors in the logistics process and select remedial actions.
- They can use their knowledge in a creative way to effectively manage the resources of the workplace. **Attitude:**
 - They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
 - They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

The history of the development of Lean. 5 principles. Methods to define value-creating, non-value-creating processes, and losses (MURI, MUDA, MURA). Steps to draw a value stream map. Preparation of a present and future state map. Introduction to Lean tools (5S, Andon system, visual management principles, Poka Yoke, SMED, Pull principle, JIT, Kanban, Jidoka, Heijunka, Kaizen, etc.). Application of Lean tools in practice.

Assignment and requirements of signature:

Active participation in exercises; successfully (at least 50%) writing the mid-year midterm thesis.

Requirement end evaluation of the practical mark/ exam:

To complete the subject, it is necessary to pass a written exam, which consists of theoretical and practical tasks! Additional (specific) ways to be used in knowledge verification: none

Required readings:

- 1. Tamás, P.: Innovative simulation testing methods in logistics: Miskolc, 2021., ISBN: 978-963-358-239-8
- 2. Bányai, T.: Design of Material flow systems. 2021. ISBN 978-963-358-237-4
- 3. Bartholdi, J. J., Hackman, S. T.: Warehouse & Distribution Science, Release 0.85, www.warehouse-science.com
- 4. Rother, M., Shook, J.: Learning to See: Value Stream Mapping to Add Value and Eliminate Muda, Lean Enterprise Institute, 2003.

- 1. Langford, J.: Logistics principles and applications, Sole Press, ISBN-10: 0-07-147224-X, 2007.
- 2. Pedro García Márquez, F.; Segovia R. I.; Bányai, T., Tamás, P.: Lean Manufacturing and Six Sigma Behind the Mask: London, Egyesült Királyság/Anglia: InTech Open Access Publisher, 2021.

Subject name:	Neptun code:	
Quality Assurance in Logistics		
Responsible Lecturer: Dr. Róbert Skapinyecz, ass	ociate professor, PhD	
Co-Lecturer(s):		
Suggested semester: 5. semester	Preliminary requirements: Technical Logistics	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 6	Program: Full time	
During the course, students are introduced to the relationship system of quality assurance and logistics; comparison of quality assurance and logistics process based on material and information flow; tasks of quality assurance of the logistics process; quality assurance issues of the logistics activities of a manufacturing company; quality assurance issues of logistics activities of a service company; quality loop in logistics activity; logistical aspects of quality assurance standards. Knowledge:		
 They know logistics processes, the ways in which they are carried out and their technical possibilities. They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment. Skills: 		
 They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process. 		

- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.
- They can manage and control logistics processes, considering the elements of quality assurance and quality control.

Attitude:

- They monitor legislative, technical, technological and administrative changes related to logistics.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

Concept of quality, product quality, development of quality management, closed material flow system, concept of logistics, structure of corporate logistics, structure of the quality loop in a manufacturing company, material tracking models, product identification in quality assurance, quality loop in logistics services, types and purposes of audits, quality assurance standards, responsibility for processes , documenting processes.

Practice: Quality, quality assurance, quality policy, quality control, factors affecting quality, logistics information system and its requirements, elements that make up customer satisfaction, quality assurance of production process logistics, quality assurance in storage, design variants of product identification, case studies: audits, process structure development, quality assurance of logistics activities.

Assignment and requirements of signature: thematic tests

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Pyzdek, Thomas, and Paul Keller. Handbook for quality management: A complete guide to operational excellence. McGraw-Hill Education, ISBN 978-0071799249, 2013.
- 2. Gianpaolo Ghiani, Gilbert Laporte, Roberto Musmanno: Introduction to logistics systems management. Wiley 2013, ISBN: 978-1-119-94338-9

Suggested readings:

1. Pedro García Márquez, F.; Segovia R. I.; Bányai, T., Tamás, P.: Lean Manufacturing and Six Sigma – Behind the Mask: London, Egyesült Királyság/Anglia: InTech Open Access Publisher, 2021.

Subject name:	Neptun code:
Service Logistics	
Responsible Lecturer: Prof. Dr. Tamás Bányai, ful	l professor, PhD, dr. habil
Co-Lecturer(s): Dr. Róbert Skapinyecz, associate professor, PhD	
Suggested semester: 5. semester	Preliminary requirements: Logistics Systems
Classes per week:	Requirement type: term mark
Theoretical: 2	
Practical: 0	
Credits: 3	Program: Full time
Objective and numbers of the subjects	

The course introduces students to the logistics aspects of services. The course will introduce the typical service systems and the logistics tasks involved in their operation. The aim is to provide a theoretical basis for the planning and management of service tasks and to acquire knowledge of the operation of service systems that can be further developed in the Master's degree.

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.
- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.

Skills:

- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.

Attitude:

- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

- 1. Impact of globalisation on the production-services sector.
- 2. Development strategies of logistics services.
- 3. General models and characteristics of services.
- 4. Typical service groups, some areas of service logistics.
- 5. Logistics in health-care services.
- 6. Logistics in offices (banking).
- 7. Postal services.
- 8. Commercial logistics.
- 9. Logistics aspects of e-commerce.
- 10.Service network logistics.
- 11. Definition of logistics service centre, main types, range of services provided, impact on the environment.
- 12.Criteria for the choice of location of logistics service centres, domestic deployment and development options.
- 13. Definitions, types of industrial parks, their development, services.

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Bányai, T.: Design of Material flow systems. 2021. ISBN 978-963-358-237-4
- Klingebiel, K., Wagenitz, A. (2013). An Introduction to Logistics as a Service. In: Clausen, U., ten Hompel, M., Klumpp, M. (eds) Efficiency and Logistics. Lecture Notes in Logistics. Springer, Berlin, Heidelberg. <u>https://doi.org/10.1007/978-3-642-32838-1_22</u>
- Davis, F. W., & Manrodt, K. B. (1991). Service Logistics: An Introduction. International Journal of Physical Distribution & Logistics Management, 21(7), 4–13. <u>https://doi.org/10.1108/eum000000000393</u>

- Bányai, T., Bányai, Á., Kaczmar, I. Supply Chain Recent Advances and New Perspectives in the Industry 4.0 Era. London, Egyesült Királyság / Anglia : IntechOpen (2022) , 226 p. ISBN: 9781803553733
- 2. Bányai, T., Petrillo, A., De Felice, F. Industry 4.0 Impact on Intelligent Logistics and Manufacturing. London, Egyesült Királyság / Anglia : IntechOpen (2020) ISBN: 9781789854534

Subject name:	Neptun code:
Reverse Logistics	
Responsible Lecturer: Dr. Ágota Bányainé Tóth, a	ssociate professor, PhD
Co-Lecturer(s): Dr. Péter Veres, senior lecturer, PhD	
Suggested semester: 6. semester	Preliminary requirements: Technical Logistics
Classes per week:	Requirement type: term mark
Theoretical: 2	
Practical: 0	
Credits: 3	Program: Full time

The course introduces students to the "circular economy" model, the EU and national harmonised legislative background and recommendations that define its development. The course will cover the typical solutions of logistic systems related to the processing and recycling of hazardous substances, municipal waste and spent consumer durables, as well as the legal and economic methods that operate the system, in addition to the technical solutions.

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.

Skills:

- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.

Attitude:

- They take responsibility and credibly represent the social aspects of the profession and its fundamental relation to the world.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.
- They are committed to broad-based enforcement of health and environmental protection.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

- 1. The concept of reverse logistics, its application to internal processes and external logistics systems.
- 2. The model of the "circular economy", characteristics and technical solutions of the logistics subprocesses, specificities of the management of different types of waste.
- 3. Design of collection systems, fixed and mobile logistics systems, presentation of landfill problems.
- 4. Logistics systems for reverse (specialised transport and loading equipment).
- 5. Waste storage technologies.
- 6. Used product processing systems, loading and dispatch scheduling issues, production scheduling issues.
- 7. Disassembly technologies of used products, e-market solutions, optimisation of disassembly strategies.

- 8. IT background of reverse logistics systems, application issues of modern product identification procedures.
- 9. Linkage to corporate management systems.
- 10. Life cycle analysis methodology.
- 11. Validation of the cleaner technologies concept in specific technologies and service systems.
- 12. Environmental safety issues, ISO 14000 regulation methodology.
- 13. Recycling oriented design approach.

Requirement end evaluation of the practical mark/ exam:

Required readings:

- Tchobanoglous, G., Kreith, F.: Handbook of solid waste management, McGraw-Hill, 2002, ISBN: 9780071356237
- 2. Langford, J.: Logistics principles and applications, Sole Press, ISBN-10: 0-07-147224-X, 2007.

- 1. Lund, H. F.: Recycling Handbook, McGraw-Hill, 2001, ISBN 0070391564
- 2. Bányai, T., Kaczmar, I.: Green Supply Chain: Competitiveness and Sustainability. London, Egyesült Királyság / Anglia : IntechOpen (2021) ISBN: 9781839683015

Subject name:	Neptun code:
International Logistics	
Responsible Lecturer: Dr. Péter Veres, senior lect	urer, PhD
Co-Lecturer(s):	
Suggested semester: 5. semester	Preliminary requirements:
Classes per week:	Requirement type: exam
Theoretical: 2	
Practical: 2	
Credits: 5	Program: Full time
Objective and purpose of the subject:	
During the course, students are introduced to the basic concepts of international logistics, with transport systems through countries and continents, multimodal system and shipping companies with their inner and	

Knowledge:

outer tasks.

- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.
- They know organisational, management and communication techniques.

Skills:

- They can apply the principles and methods of calculation and modelling of logistical processes.
- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can organise, manage and control the operation of logistics systems.
- They can apply the acquired IT knowledge in solving the tasks arising in transportation and shipment.
- They can communicate professionally in their mother tongue and in at least one foreign language both orally and in writing in a professionally adequate manner.
- They take decisions in situations requiring a complex approach and unexpected decision-making by taking full account of legal and ethical standards.

Attitude:

- They take responsibility and credibly represent the social aspects of the profession and its fundamental relation to the world.
- They strive to ensure that their self-directed learning in the field of logistics is continuous and consistent with their professional goals.
- They are committed to broad-based enforcement of health and environmental protection.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They are aware of the legal, economic, safety, social, health protection and environmental consequences of their work and decisions.
- They evaluate the efficiency, effectiveness and safety of their subordinates' work.

Subject description:

Basics and types of International Logistics. Conceptual system of international transportation -with 3rd and 4th parties. Types and paricipants of supply chains. International shipping laws and regulations. International shipping planning. Cost implications of international shipping.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Ann M. Brewer, Kenneth J. Button, David A. Hensher: Handbook of Logistics and Supply-Chain Management: Volume 2, ISBN:978-0-0804-3593-0, 2008
- 2. James H. Bookbinder: Handbook of Global Logistics Transportation in International Supply Chains, ISBN: 978-1-4419-6132-7, 2013
- 3. Rolf Neise: Container Logistics, ISBN: 0749481242 Kogan Page Ltd, 2018

Subject name:	Neptun code:	
International Trade		
Responsible Lecturer: Dr. Hajdú Noémi, associate professor, PhD		
Co-Lecturer(s):		
Suggested semester: 7. semester	Preliminary requirements:	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 0		
Credits: 2	Program: Full time	
Objective and purpose of the subject:		
Aim of the course is to ensure that the participant	ts actively practice the English language while expanding	
their professional knowledge. During the semeste	er, students can learn the casual relationships that can be	
explored in international trade. Practice will be su	apported with actual case studies and articles.	
Knowledge:		
 They know the operation and maintenance systems of vehicles and mobile machinery used in logistics processes. 		
- They know the basics, boundaries and requirements of logistics, management, environmental		
protection, quality assurance, information technology, law and economics closely related to		
transportation and shipment.		
Skills:		
 They can analyse at a basic level the discipling 	nes which make up the knowledge system of the technical	
field, formulate interrelationships synthetically and carry out adequate assessment activities.		
- They can apply the principles and methods of calculation and modelling of logistical processes.		
- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.		
Attitude:		
 They take responsibility and credibly represent the social aspects of the profession and its fundamental relation to the world. 		
 They strive to ensure that their self-directed learning in the field of logistics is continuous and consistent with their professional goals. 		
Autonomy and responsibility:		
 They cooperate responsibly with qualified professionals of other (primarily economic and legal) 		
disciplines during their professional duties.		
 They are aware of the legal, economic, safety, social, health protection and environmental 		
consequences of their work and decisions.		
Subject description:		
Introduction to International Trade		
Theoretical Overview		
Trends and Key Players: SMEs and multis		
The Political, Legal, Economic, Technological and Sociocultural Environment		
Trade processes, Rules,		
Trade political instruments, Customs,		

Top Trading Countries – EUROPE, EU Statistics

Globalization, Regionalisation: BRICS

Global Market Places in the World I.: North and South America, Middle East, Africa

Global Market Places in the World II.: Eastern, Western and Central Europe, Asia

Top Trading Countries – USMCA

Top Trading Countries - CHINA

BREXIT

Case study

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Giffin, R. W. Pustay, M. (2020): International Business: A Managerial Perspective. Pearson
- 2. Daniels, J. D. Radebaugh, L. H. Sulivan, D. P. Click, R. W. (2022): Isternational Business, Pearson
- Hill, C. (2021): ISE International Business: Competing in the Global Marketplace. McGraw-Hill
 Cateora et. al: International Marketing. McGraw-Hill, 2015
- https://docs.google.com/file/d/0B85wBQKZ1oaReGI1NEJXT2IYNIU/edit
- 5. Khan, M. Hajdú, N. (2022): Analysis of International Trade Relation Regarding India and the European Union. International Journal of Business and Applied Social Science 8 : 5 pp. 26-35. , 10 p. (2022)

Subject name:	Neptun code:
Integrated Enterprise Systems	
Responsible Lecturer: Dr. Samad Dadvandipour, a	associate professor PhD
Co-Lecturer(s):	
Suggested semester: 5. semester	Preliminary requirements:
Classes per week:	Requirement type: exam
Theoretical: 2	
Practical: 2	
Credits: 5	Program: Full time

The subject is the industry tenure used to define a comprehensive set of activities supported by the multimodule application software that helps a manufacturer or other significant issues of its business. These include production planning, paying for or acquiring parts /spare parts, maintaining stocks, cooperating with suppliers, making customer services available, and following orders. ERP can also include application modules for a business's finance and human resources aspects. Some of the ERP subcontracting markets are J. D.Edwards, System Application and Production (SAP), People soft, as well as IBM, Microsoft, and Oracle.

Knowledge:

- They have comprehensive knowledge of the basic facts, directions and boundaries of logistics.
- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.

Skills:

- They can analyse at a basic level the disciplines which make up the knowledge system of the technical field, formulate interrelationships synthetically and carry out adequate assessment activities.
- They can apply the principles and methods of calculation and modelling of logistical processes.
- They can connect sub-processes of logistics systems and the sub-units carrying out their functions (material handling equipment, sensors, actuators, control systems, database systems, etc.).
- They can detect errors in the logistics process and select remedial actions.

Attitude:

- They take responsibility and credibly represent the social aspects of the profession and its fundamental relation to the world.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.
- They are committed to broad-based enforcement of health and environmental protection.

Autonomy and responsibility:

- They make independent and professionally well-founded decisions even in unexpected decisionmaking situations.
- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.
- They are aware of the legal, economic, safety, social, health protection and environmental consequences of their work and decisions.

Subject description:

Enterprise Resource Planning (ERP) is a technique to integrate the data and processes of a business organization or company into a single system. ERP systems have many components, including hardware and software, to achieve integration. However, the majority of ERP systems use an incorporated database to store data for various functions found in organizations.

Thematic presentation, Theme development

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Alexi Leon.: Enterprise Resource Planning Publishing by McGraw Hill Publishing Company Limited, Copyright 2008, Alexi Leon. ISBN(13) 978-0-07-065680-2.
- 2. Khalid Sheikh, .: Manufacturing Resource Planning (MRP II), "Introduction to ERP, SCM, and CRM," by Publisher: McGraw-Hill. ISBN-13: 978-0071392303 ISBN-10: 0071392300
- 3. The Impact of Enterprise Systems on Corporate Performance: A study of ERP, SCM, and CRM System Implementations [An article from Journal of Operations Management] by K.B. Hendricks; V.R. Singhal; and J.K. Stratman, Publisher: Elsevier
- 4. ERP and Supply Chain Management by Christian N. Madu, Publisher: CHI- ISBN-13 : 978-0967602349
- 5. Implementing SAP ERP Sales & Distribution by Glynn C. Williams, Publisher McGraw-Hill: ISBN-13: 978-0071497053

- 1. Claus Ibsen: Camel in action, Manning Publications, ISBN-10: 1935182366, p. 552, 2011.
- 2. G. Hohpe, B. Woolf: Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley Professional, ISBN: 0321200683, 2003.
- 3. D. S. Linthicum: Enterprise Application Integration. Addison Wesley, ISBN: 0201615835, 1999.

Subject name:	Neptun code:
Service Logistics Systems	
Responsible Lecturer: Dr. Róbert Skapinyecz, asso	ociate professor, PhD
Co-Lecturer(s):	
Suggested semester: 5. semester	Preliminary requirements: Logistics Systems
Classes per week:	Requirement type: exam
Theoretical: 2	
Practical: 2	
Credits: 5	Program: Full time

During the course, students are introduced to the models of service logistics systems and the aspects that determine their design. Within the scope of the subject, supply chain solutions related to service activities, first-mile and last-mile processes, logistical aspects of services supporting recycling activities, typical solutions of urban logistics systems, logistical aspects of service-related maintenance and quality management activities related to production activities are presented.

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.
- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.

Skills:

- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.

Attitude:

- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

Supply chain solutions in various areas of services. City logistics solutions in settlements of different sizes. First-mile logistics. Last-mile logistics. Typical systems of recycling logistics service. Logistics aspects of quality management. Maintenance logistics. Application of Industry 4.0 technologies in service systems.

Assignment and requirements of signature:

thematic tests and semester assignment

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Hans-Christian Pfohl: Logistics Systems, Business Fundamentals, ISBN: 978-3-662-64349-5, Springer 2022
- 2. Gianpaolo Ghiani, Gilbert Laporte, Roberto Musmanno: Introduction to logistics systems management. Wiley 2013, ISBN: 978-1-119-94338-9

- 1. Langford, J.: Logistics principles and applications, Sole Press, ISBN-10: 0-07-147224-X, 2007.
- 2. Bányai, T., Kaczmar, I.: Green Supply Chain: Competitiveness and Sustainability. London, Egyesült Királyság / Anglia : IntechOpen (2021) ISBN: 9781839683015

Subject name:	Neptun code:	
Planning of Logistics Services		
Responsible Lecturer: Prof. Dr. Péter Tamás, head of institute, full professor, PhD, dr. habil.		
Co-Lecturer(s): Dr. Róbert Skapinyecz, associate p	professor, PhD	
Suggested semester: 6. semester	Preliminary requirements: Service Logistics Systems	
Classes per week:	Requirement type: exam	
Ineoretical: 2 Dractical: 2		
Credits: 5	Program: Full time	
Objective and purpose of the subject:		
The course introduces the planning tasks and met	hods related to logistics services.	
Knowledge:	-	
 They know logistics processes, the ways in w 	which they are carried out and their technical possibilities.	
 They know the methods, implementation po 	ossibilities and practices of assessing basic logistics needs.	
Skills:		
 They can apply the principles and methods o 	of calculation and modelling of logistical processes.	
 They can connect sub-processes of logistics s 	systems and the sub-units carrying out their functions	
(material handling equipment, sensors, actu	ators, control systems, database systems, etc.).	
 They can apply the acquired IT knowledge in 	solving the tasks arising in transportation and shipment.	
 They can use their knowledge in a creative w 	vay to effectively manage the resources of the workplace.	
Attitude:		
 They monitor legislative, technical, technological 	ogical and administrative changes related to logistics.	
 They are open to know, accept and credibly development and inpovation in logistics 	communicate professional and technological	
They share their experience with colleagues	to help them grow	
- They shall them experience with conceasues	to help them grow.	
- They cooperate responsibly with qualified n	rofessionals of other (primarily economic and legal)	
disciplines during their professional duties.	Tolessionals of other (primarily contonic and legar)	
 Thev identify gaps in the technologies used, 	the risks of the processes and initiate action to reduce	
them.		
 They evaluate the efficiency, effectiveness and safety of their subordinates' work. 		
Subject description:		
Introducing logistics services. Guidelines and steps for planning logistics services. Application of process		
improvement methods to logistics services. Application of simulation test methods to logistics services.		
Process of implementation of logistics services after design. Evaluation and condition monitoring of		
logistics services.		
Assignment and requirements of signature:		
Requirement end evaluation of the practical mark/ evam:		
Required readings:		
1. Rushton, A., Croucer, P., Baker, P.: The handbook of logistics and distribution management, 3rd		
edition, Kogan Page Limited, ISBN 9780749446697, 2006.		
2. James M. Apple: Plant layout and material handling, John Wiley & Sons, ISBN 0471-07171-4		
3. Bartholdi, J. J., Hackman, S. T.: Warehouse & Distribution Science, Release 0.85, <u>www.warehouse-</u>		
Science.com		
Suggested readings:		

- 1. Tamás, P.: Innovative simulation testing methods in logistics: Miskolc, 2021., ISBN: 978-963-358-239-8
- 2. Bányai, T.: Design of Material flow systems. 2021. ISBN 978-963-358-237-4

Subject name:	Neptun code:	
Maintenance Logistics		
Responsible Lecturer: Dr. Péter Telek, associate professor, PhD		
Co-Lecturer(s): Dr. Ákos Cservenák, senior lecturer, PhD		
Suggested semester: 6. semester	Preliminary requirements: Technical Logistics	
Classes per week:	Requirement type: term mark	
Theoretical: 2		
Practical: 1		
Credits: 3	Program: Full time	

Main objective of the course is to present the logistics integrated maintenance management activities for the students. During the semester, the typical production systems and their maintenance aspects, and the integrated scheduling of the maintenance and logistic tasks are presented

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.
- They know the operation and maintenance systems of vehicles and mobile machinery used in logistics processes.

Skills:

- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can organise, manage and control the operation of logistics systems.
- They can perform basic engineering tasks related to the design, production, repair and organisation of certain components of logistics systems.
- They can apply integrated knowledge from the field of transportation, mobile machines, process theory, industrial production processes, as well as electronics and informatics.
- They can detect errors in the logistics process and select remedial actions.

- They can use their knowledge in a creative way to effectively manage the resources of the workplace. **Attitude:**

- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

Main topics of the course: Principles of the maintenance processes and methods. Material and information flow of maintenance processes. Logistic tasks and parameters related to the maintenance process. Maintenance networks and their logistic aspects. Recycling aspects of the maintenance activities. Control and identification in maintenance systems. Reliability of handling machines. Stock management in maintenance systems. Optimisation and lean in the maintenance process. Project oriented maintenance.

Assignment and requirements of signature: thematic tests

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Venkatesh, J.: An Introduction to Total Productive Maintenance (TPM). 2007.
- https://www.academia.edu/36412225/ An_Introduction_to_Total_Productive_Maintenance_TPM Suggested readings:
 - 1. Bloch, H. P., Geitner, F. K.: Machinery Component Maintenance and Repair. Elsevier, 2005.

Subject name:	Neptun code:	
Warehouse Logistics		
Responsible Lecturer: Prof. Dr. Tamás Bányai, professor, PhD, dr. habil		
Co-Lecturer(s): Dr. Péter Veres, senior lecturer, PhD		
Suggested semester: 7. semester	Preliminary requirements: Logistics Systems	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 4	Program: Full time	
Objective and purpose of the subject:		
The course introduces students to warehousing services, the tools of warehousing services and their		
impact on the efficiency of service activities. Students will learn the typical warehousing service strategies		
to ensure efficient production and service delivery through warehousing services. The course provides a		
level of knowledge that will also form the basis for the MSc in Logistics		

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.
- They know the principles of operation and structural characteristics of vehicles and machinery systems suitable for logistics processes.
- They know computer communication, major software applications in the field.
- They know organisational, management and communication techniques.

Skills:

- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.
- They can organise, manage and control the operation of logistics systems.
- They can use their knowledge in a creative way to effectively manage the resources of the workplace.

Attitude:

- They monitor legislative, technical, technological and administrative changes related to logistics.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

- 1. Inventories in production and services.
- 2. Classification and characterisation of warehouse services.
- 3. Warehousing services in logistics centres.
- 4. Consignment warehousing as a service.
- 5. Characterisation of crossdocking warehousing services.
- 6. Description of warehousing tools, with particular reference to their impact on service quality.

- 7. Stocking strategies for independent demands. EOQ.
- 8. Stocking strategies for dependent demands. MRP.
- 9. Models for determining optimal order lot sizes.
- 10. Determination of production material requirements for a warehouse with service activities.
- 11. Management process for warehousing services.
- 12. Characterisation of warehousing services in global supply chains.
- 13. Application of Industry 4.0 technologies to increase the efficiency of warehousing services.

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Bányai, T.: Design of Material flow systems. 2021. ISBN 978-963-358-237-4
- 2. Wayne L. Winston: Operations research applications and algorithms, ISBN 0-534-38058-1

- 1. David Simci-Levi, Xin Chen, Julien Bramel: The logic of logistics, Springer, ISBN 0-387-22199-9
- 2. James M. Apple: Plant layout and material handling, John Wiley & Sons, ISBN 0471-07171-4

Subject name:	Neptun code:	
Optimization of Logistics Processes		
Responsible Lecturer: Prof. Dr. Tamás Bányai, professor, PhD, dr. habil.		
Co-Lecturer(s): Dr. Péter Veres, senior lecturer, PhD		
Suggested semester: 6. semester	Preliminary requirements: Logistics Systems	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 6	Program: Full time	

The course introduces students to the main design tasks of logistics systems. The course will introduce the main design methods of logistics systems. The aim is to provide the theoretical basis for the optimal design of logistics systems and to introduce the design principles, which can be further developed in the Master's degree.

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs. **Skills:**
 - They can apply the principles and methods of calculation and modelling of logistical processes.
 - They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
 - They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.
 - They can use their knowledge in a creative way to effectively manage the resources of the workplace.

Attitude:

- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.

Subject description:

- 1. Basics of logistics systems.
- 2. Description of logistcis problems with functions, graphs and matrixes.
- 3. Design tasks and methods for purchasing.
- 4. Design tasks and methods for production.
- 5. Design tasks and methods for distribution.
- 6. Design tasks and methods for recycling.
- 7. Analytical methods.
- 8. Linear programming.
- 9. Heuristic design methods (genetic algorithm).
- 10. Heuristic design methods (ant colony).
- 11. Heuristic design methods (harmony search).
- 12. Basics of large-scale systems design.
- 13. Numerical examples.

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Bányai, T.: Design of Material flow systems. 2021. ISBN 978-963-358-237-4
- 2. Wayne L. Winston: Operations research applications and algorithms, ISBN 0-534-38058-1

- 1. James M. Apple: Plant layout and material handling, John Wiley & Sons, ISBN 0471-07171-4
- 2. David Simci-Levi, Xin Chen, Julien Bramel: The logic of logistics, Springer, ISBN 0-387-22199-9

Subject name:	Neptun code:	
Logistics Projects		
Responsible Lecturer: Prof. Dr. Péter Tamás, head of institute and full professor, PhD, dr. habil.		
Co-Lecturer(s): Dr. Ákos Cservenák, senior lecturer, PhD		
Suggested semester: 6. semester	Preliminary requirements: Service Logistics Systems	
Classes per week:	Requirement type: term mark	
Theoretical: 0		
Practical: 1		
Credits: 2	Program: Full time	

During the course, students are introduced to the typical objectives and structure of complex logistics projects, the engineering tasks to be performed in each project phase, through real-life development examples. In the course, students will be required to develop a concrete practical project using the knowledge acquired in the various logistics subjects in a complex way under the professional guidance of an institute/industry consultant. This will enable the student to practice the steps and methods of independent engineering work, which will equip him/her with the skills of practical problem identification, exploration and analysis in the field of logistics.

Knowledge:

- They have comprehensive knowledge of the basic facts, directions and boundaries of logistics.
- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.
- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.
- They know the learning, knowledge acquisition, data collection methods of logistics, their ethical limitations and problem-solving techniques.

Skills:

- They can apply the principles and methods of calculation and modelling of logistical processes.
- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.
- They can detect errors in the logistics process and select remedial actions.
- They can plan, organise and carry out independent learning.
- They can understand and use the literature, computer technology and library resources of logistics.
- They can communicate professionally in their mother tongue and in at least one foreign language both orally and in writing in a professionally adequate manner.

Attitude:

- They take responsibility and represent the values of the engineering profession and openly accept well-founded critical comments.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to ensure that their self-directed learning in the field of logistics is continuous and consistent with their professional goals.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.

Subject description:

Within the framework of the course, students get acquainted with various logistics projects implemented in practice and their main characteristics through lectures by lecturers and invited industry experts. Using this knowledge, the students get the task of presenting in detail the entire logistics system of a base company, either chosen by themselves or by the Institute, covering the processes of the individual logistics subsystems, the implementation, tools, and organization of the flow of materials and information in these subsystems. Evaluate the system presented from a logistical point of view and identify problems independently. Under the professional guidance of the institute supervisor and the institute/industry consultant, further analysis of selected problems in a given sub-area, exploration of cause-and-effect relationships through the complex application of previously acquired knowledge. Formulation of a generous improvement concept to remedy the problems identified. Use manual and computer-assisted techniques to develop the task. The independent preparation of the end-of-semester written submission or presentation is supervised or assisted by the institute supervisor and the institute/industry consultant, with the related tasks being coordinated by the subject supervisor

Assignment and requirements of signature:

The condition for obtaining a signature and a successful term mark is the preparation and submission of the end-of-semester "Logistics project" application that meets the content and form requirements, as well as its presentation before the institute committee.

Requirement end evaluation of the practical mark/ exam:

The condition for obtaining a signature and a successful term mark is the preparation and submission of the end-of-semester "Logistics project" application that meets the content and form requirements, as well as its presentation before the institute committee.

Required readings:

- 1. Tamás, P.: Innovative simulation testing methods in logistics: Miskolc, 2021., ISBN: 978-963-358-239-8
- 2. Bányai, T.: Design of Material flow systems. 2021. ISBN 978-963-358-237-4
- 3. Rushton, A., Croucer, P., Baker, P.: The handbook of logistics and distribution management, 3rd edition, Kogan Page Limited, ISBN 9780749446697, 2006.

- 1. Pedro García Márquez, F.; Segovia R. I.; Bányai, T., Tamás, P.: Lean Manufacturing and Six Sigma Behind the Mask: London, Egyesült Királyság/Anglia: InTech Open Access Publisher, 2021.
- 2. Langford, J.: Logistics principles and applications, Sole Press, ISBN-10: 0-07-147224-X, 2007.

Subject name:	Neptun code:	
Production Logistics Systems		
Responsible Lecturer: Dr. Péter Veres, senior lecturer, PhD		
Co-Lecturer(s):		
Suggested semester: 5. semester	Preliminary requirements: Logistics Systems	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 5	Program: Full time	

During the course, students are introduced to the role and content of the production logistics systems. Students will gain an overview of typical production philosophies, strategies, supporting manufacturing and assembly systems, and basic inventory concepts and methods.

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.
- They know the basics, boundaries and requirements of logistics, management, environmental protection, quality assurance, information technology, law and economics closely related to transportation and shipment.
- They know organisational, management and communication techniques.

Skills:

- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.
- They can apply integrated knowledge from the field of transportation, mobile machines, process theory, industrial production processes, as well as electronics and informatics
- They can use their knowledge in a creative way to effectively manage the resources of the workplace.

Attitude:

- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

The process, tasks and strategies of production logistics. The method and modules of the planning of the production logistics system. Supply chain management. Characteristics of a push-pull production philosophy. Basic pillars and characteristics of JIT production. Application of Kanban philosophy. The foundations, building blocks and tools of Lean philosophy. Presentation of typical production systems. Presentation of typical installation systems. Basics of inventory management and buffers.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Fausto P. G. M.: Lean Manufacturing and Six Sigma Behind the Mask, Published by IntechOpen, ISBN 978-1-78923-908-9, 2020.
- 2. Peter N., Hans-Peter W.: Fundamentals of Production Logistics: Theory, Tools and Applications: DOI: 10.1007/978-3-540-34211-3, ISBN: 978-3-540-34210-6, 2008

Suggested readings:

 Bandyopadhyay A. K.: 5 Case Study Ideas In Production, Operation, Supply Chain And Logistics Management: With Questions and Suggested Answers, Orangebooks Publication, ISBN: 9789356210295, 2022
Subject name:	Neptun code:	
Design of Production Logistics Systems		
Responsible Lecturer: Dr. Tamás Bányai, professor, PhD, dr. habil.		
Co-Lecturer(s): Dr. Péter Veres, senior lecturer, PhD		
Suggested semester: 6. semester	Preliminary requirements: Production Logistics Systems	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 5	Program: Full time	
Objective and purpose of the subject:		
The course introduces students to the main design tasks of production logistics systems. The course will		
introduce the main design methods of production logistics systems in terms of installation and layout		
planning, route planning, unit load planning, mass handling systems.		
Knowledge:		
 They know logistics processes, the ways in which they are carried out and their technical 		
possibilities.		
 They know the methods, implementation 	possibilities and practices of assessing basic logistics	
needs		
 They know the basics, boundaries and rec 	uuirements of logistics, management, environmental	
protection, quality assurance, information technology, law and economics closely related to		
transportation and shipment		
Skills:		
 They can interpret and characterise the elements of logistics processes their interrelationships 		
roles and importance in the overall process.		
 They can recognise the transportation, shipment and material handling processes in industrial 		
nroduction and economic systems, and the equinment requirements for logistics implementation		
Attitude		
 They are open to know, accept and credibly communicate professional and technological 		
development and innovation in logistics		
- They strive to solve problems and make management decisions by getting to know the opinions of		
- They share to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them		
Autonomy and responsibility:		
- They cooperate responsibly with qualified professionals of other (primarily economic and legal)		
disciplines during their professional duries		
- Inder the guidance of their line manager, they manage the work of the staff assigned to them		
supervise the operation of processes and vehicles		
Subject description:		
1. Methods to describe material flow tasks in	n logistics processes	
 Typical models and solution methods for deployment tasks in production processes 		
3. Facility location problems.		
4. Centre search tasks.		
5. In-plant supply design.		
6. Routing problems in production.		
7. Inventories in production.		
8. Models and methods of flow planning in production processes.		
9. Application of queuing models in product	ion processes.	
10. Application of newsagent models.		
11. Reliability of production systems.		
12. MRP in production.		
13. ERP systems and production logistics.		

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Bányai, T.: Design of Material flow systems. 2021. ISBN 978-963-358-237-4
- 2. Wayne L. Winston: Operations research applications and algorithms, ISBN 0-534-38058-1

Suggested readings:

- 1. James M. Apple: Plant layout and material handling, John Wiley & Sons, ISBN 0471-07171-4
- 2. David Simci-Levi, Xin Chen, Julien Bramel: The logic of logistics, Springer, ISBN 0-387-22199-9

Subject name:	Neptun code:	
Warehousing Processes and Inventory		
Management		
Responsible Lecturer: Prof. Dr. Péter Tamás, head of institute and full professor, PhD, dr. habil.		
Co-Lecturer(s): Dr. Péter Veres, senior lecturer, PhD		
Suggested semester: 7. semester	Preliminary requirements: Logistics Systems	
Classes per week:	Requirement type: exam	
Theoretical: 2		
Practical: 2		
Credits: 4	Program: Full time	
Objective and numbers of the subjects		

Objective and purpose of the subject:

The course introduces the warehousing systems and methods, the characteristics of warehouse storage and loading equipment and their typical applications. Students learn typical warehouse strategies, warehouse activities and their indicators of efficiency and how to operate efficiently. Providing a level of knowledge that will also form the basis for the MSc in Logistics.

Knowledge:

- They know logistics processes, the ways in which they are carried out and their technical possibilities.
- They know the methods, implementation possibilities and practices of assessing basic logistics needs.
- They know the principles of operation and structural characteristics of vehicles and machinery systems suitable for logistics processes.
- They know computer communication, major software applications in the field.
- They know organisational, management and communication techniques. _

Skills:

- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can recognise the transportation, shipment and material handling processes in industrial production and economic systems, and the equipment requirements for logistics implementation.
- They can organise, manage and control the operation of logistics systems.
- They can use their knowledge in a creative way to effectively manage the resources of the workplace. Attitude:

- _ They monitor legislative, technical, technological and administrative changes related to logistics.
- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.
- They strive to solve problems and make management decisions by getting to know the opinions of the employees they manage, preferably in cooperation with them.

Autonomy and responsibility:

- They cooperate responsibly with qualified professionals of other (primarily economic and legal) disciplines during their professional duties.
- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

Structure of warehouse systems. Types of rack and rackless storage, their characteristics, and applications. Types of automated storage systems, their characteristics, and applications. Types and characteristics of ULDs (Unit Load Device) for different storage systems. Structure of warehouse service systems. Introduction to the characteristics of manual or hand-operated and automated storage and retrieval systems. Management strategies and information systems for warehouse systems. Types and characteristics of other services related to warehouse activities (order picking, creating unit load, packaging). Structure of warehousing costs. Indicators of efficiency of warehousing activities. Methodology for planning warehouse structure. Description of typical warehouse stock control systems.

Assignment and requirements of signature:

Requirement end evaluation of the practical mark/ exam:

Required readings:

- 1. Rushton, A., Croucer, P., Baker, P.: The handbook of logistics and distribution management, 3rd edition, Kogan Page Limited, ISBN 9780749446697, 2006
- 2. Bartholdi, J. J., Hackman, S. T.: Warehouse & Distribution Science, Release 0.85, <u>www.warehouse-science.com</u>

Suggested readings:

- 1. Bányai, T.: Design of Material flow systems. 2021. ISBN 978-963-358-237-4
- S. Klingebiel, K., Wagenitz, A. (2013). An Introduction to Logistics as a Service. In: Clausen, U., ten Hompel, M., Klumpp, M. (eds) Efficiency and Logistics. Lecture Notes in Logistics. Springer, Berlin, Heidelberg. <u>https://doi.org/10.1007/978-3-642-32838-1_22</u>

Subject name:	Neptun code:	
Mechatronics in Logistics		
Responsible Lecturer: Dr. Ákos Cservenák, senior lecturer, PhD		
Co-Lecturer(s):		
Suggested semester: 6. semester	Preliminary requirements: Material Handling Machines	
Classes per week:	Requirement type: term mark	
Theoretical: 2		
Practical: 1		
Credits: 3	Program: Full time	

Objective and purpose of the subject:

The course introduces to the concepts of automation and mechatronics and the functions, design and operation of mechatronic devices used in intelligent material handling machines and material flow systems.

Knowledge:

- They know the principles of operation and structural characteristics of vehicles and machinery systems suitable for logistics processes.
- They know the operation and maintenance systems of vehicles and mobile machinery used in logistics processes.
- They know the measurement procedures used in logistics, their tools, instruments and measuring equipment.
- They know organisational, management and communication techniques.

Skills:

- They can interpret and characterise the elements of logistics processes, their interrelationships, roles and importance in the overall process.
- They can organise, manage and control the operation of logistics systems.
- They can apply integrated knowledge from the field of transportation, mobile machines, process theory, industrial production processes, as well as electronics and informatics.
- They can connect sub-processes of logistics systems and the sub-units carrying out their functions (material handling equipment, sensors, actuators, control systems, database systems, etc.).

Attitude:

- They are open to know, accept and credibly communicate professional and technological development and innovation in logistics.

Autonomy and responsibility:

- They identify gaps in the technologies used, the risks of the processes and initiate action to reduce them.
- Under the guidance of their line manager, they manage the work of the staff assigned to them, supervise the operation of processes and vehicles.

Subject description:

Basics, main types and characteristics of material flow systems. Definition of automatics, automation, mechatronics. Types and main characteristics of automated material handling equipment and intelligent machines. The role of mechatronics in the development of automated material flow systems. The framework of the Industry 4.0 concept and the main related technologies. Sensor technology, types and functional characteristics of sensors and their application in material flow. Types and characteristics of actuators. Robot, robotics, concept of robotization, typical robot types. Characteristics of industrial and mobile robots: structure, movement modes, coordinate systems, operational characteristics. Design and characteristics of robotic workplaces.

Assignment and requirements of signature:

The condition for obtaining a signature and a successful practical certificate is to achieve at least 50% of the maximum score that can be obtained for the end-of-semester closed paper and to attend at least 60% of the classes held during the semester (HKR § 50 (5)).

Requirement end evaluation of the practical mark/ exam:

The condition for obtaining a signature and a successful practical certificate is to achieve at least 50% of the maximum score that can be obtained for the end-of-semester closed paper and to attend at least 60% of the classes held during the semester (HKR § 50 (5)).

Required readings:

- 1. Habib, M.K.: Handbook of research on advanced mechatronic systems and intelligent robotics, Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics, 2019. p. 466.
- 2. Robert H. Bishop: The Mechatronics Handbook, CRC Press, Boca Raton-London-New York-Washington, D.C., 2002.

Suggested readings:

1. Hans-Peter Schöner: Automotive mechatronics, Control Engineering Practice, Volume 12, Issue 11, ISSN 0967-0661, 2004. p. 1343-1351.