
Design of Machines and Structures, Vol. 7, No. 1 (2017), pp. 15–22.

SOLVING MULTIBODY DYNAMICS PROBLEMS USING PYTHON

PAVEL FLORIAN–ROMAN ČERMÁK
University of West Bohemia, Department of Machine Design

Univerzitni 8, 306 14 Pilsen

pflorian@kks.zcu.cz

rcermak@kks.zcu.cz

Abstract: The aim of this paper is inform the reader with possibilities of deriving equations

of motion for arbitrarily complex multibody systems using Python programming language.

Sympy is a library of functions for Python and a full computer algebra system (CAS) which

has among others a built-in feature that allows assembling a multibody system and derive

corresponding equations of motion.

Keywords: multibody dynamics, Python, Sympy, EOM

1. INTRODUCTION

Solving multibody dynamics problems is possible by hand. There are methods such

as Lagrange equations that allow that. However, this approach is only viable for

simple systems with limited number of degrees of freedom, as hand-derivation of

EOMs is a tedious and error-prone process. Sympy provides an alternative that is

under BSD license which means it is free for both academic and commercial use.

The initial phase consisting of setting up the environment and gathering required

libraries is made simple thanks to Python scientific distributions such as Anaconda

that involve all the necessary features. In this paper it is shown how one can obtain

equations of motion describing dynamics of a simple four bar mechanism as shown

in Figure 1.

Figure 1. Four bar mechanism

16 Pavel Florian–Roman Čermák

2. GENERAL PROCEDURE WHEN USING SYMPY

When using Sympy it is good practice to follow a certain path. In this case we will

start with defining kinematics of the mechanism, followed by inertia, forces, EOM

generation and simulation.

2.1. Kinematics

The first step is to decide how many generalized coordinates will be used to describe

the mechanism. The four bar mechanism as described here has only one degree of

freedom and can be unambiguously described by one angular coordinate. However

in this example three generalized coordinates corresponding to each link will be

used. Python indexing starts with 0 therefore the same approach will be used when

naming variables.

The first three lines in the block of code bellow import all the necessary functions.

Time-dependant variables are created using dynamicsymbols() command, whereas

for time-independent constants symbols() is used.

Figure 2. Definition of variables

In the second step reference frames are defined. An inertial frame is introduced and

then three other frames, one for each link, are oriented with respect to the inertial

frame. The rotations are given by theta angles and their direction is the z-axis of the

inertial frame. In a similar fashion angular velocities of the reference frames are

introduced. There is more than one way to define rotation between reference frames.

For non-planar systems it is easier to use type ‘Body’ since less lines of code are

needed for the definition as shown in the block of code for bar2_frame.

from __future__ import print_function, division
from sympy.physics.mechanics import *
from sympy.physics.vector import time_derivative
from sympy import symbols
from numpy import array, linspace, rad2deg, deg2rad
from scipy.integrate import odeint
from pydy.codegen.ode_function_generators import
generate_ode_function

number of links in the mechanism
n = 3
generalized speeds and coordinates
theta = dynamicsymbols('theta:{}'.format(n))
theta_d = dynamicsymbols('theta:{}'.format(n), 1)
omega = dynamicsymbols('omega:{}'.format(n))
omega_d = dynamicsymbols('omega:{}'.format(n), 1)
the extra symbol thanks to n+1 stands for the distance
between the grounding joints
length_bars = symbols('L_B:{}'.format(n+1))
g = symbols('g') # gravity

Solving Multibody Dynamics Problems Using Python 17

Figure 3. Orientation and velocity

Once orientation and velocity of frames is set important points of the system such as

joints and centres of mass can be introduced. X-axis of each frame defines link

orientation and centres of mass are assumed to be in the middle of each link for

simplicity.

Figure 4. Joint and centre of mass locations

Just like angular velocities were defined separately linear velocities of the points

need to be defined in a similar way. Velocity of the grounding joints j0 and j3 is set

to 0 as they are stationary.

Figure 5. Velocities of points

reference frames

inertial_frame = ReferenceFrame('I')

bar0_frame = inertial_frame.orientnew('B0', 'Axis', (theta[0],

 inertial_frame.z))

bar1_frame = inertial_frame.orientnew('B1', 'Axis', (theta[1],

 inertial_frame.z))

bar2_frame = inertial_frame.orientnew('B2', 'Body', [0, 0, theta[2]],

 'XYZ')

angular velocities

bar0_frame.set_ang_vel(inertial_frame, omega[0]*inertial_frame.z)

bar1_frame.set_ang_vel(inertial_frame, omega[1]*inertial_frame.z)

bar2_frame.set_ang_vel(inertial_frame, omega[2]*inertial_frame.z)

joints

joint0 = Point('j0')

joint1 = joint0.locatenew('j1', length_bars[0] * bar0_frame.x)

joint2 = joint1.locatenew('j2', length_bars[1] * bar1_frame.x)

joint3 = joint2.locatenew('j3', -length_bars[2] * bar2_frame.x)

cm positions

bar0_cm = joint0.locatenew('b0cm', length_bars[0]/2 * bar0_frame.x)

bar1_cm = joint1.locatenew('b1cm', length_bars[1]/2 * bar1_frame.x)

bar2_cm = joint3.locatenew('b2cm', length_bars[2]/2 * bar2_frame.x)

velocity of the grounding joints is 0

joint0.set_vel(inertial_frame, 0)

joint3.set_vel(inertial_frame, 0)

velocity if the remaining joints

joint1.v2pt_theory(joint0, inertial_frame, bar0_frame)

joint2.v2pt_theory(joint1, inertial_frame, bar1_frame)

velocity if centres of mass

bar0_cm.v2pt_theory(joint0, inertial_frame, bar0_frame)

bar1_cm.v2pt_theory(joint1, inertial_frame, bar1_frame)

bar2_cm.v2pt_theory(joint2, inertial_frame, bar2_frame)

18 Pavel Florian–Roman Čermák

When defining kinematics of the mechanism the last step is to introduce

configuration and velocity constraints. As mentioned above the mechanism has only

one degree of freedom, but three angular coordinates were used to define it. In this

case we need to implement two configuration constraints, one for each excessive

coordinate, and two velocity constraints in order to obtain the correct solution. The

configuration constraints say that the joint j3 is located at distance of length_bars[3]

from joint j0 on the x-axis of the inertial frame. There are two constraints, one for

each x and y direction. The velocity constraints simply mean that these two points

are not moving with respect to each other. The following block of code concludes

the definition of kinematics.

Figure 6. Constraints

2.2. Mass and inertia

This particular mechanism is only a planar problem therefore the definition of inertia

is fairly simple. In this case we only introduce rotational inertia related to the xy

plane of the inertial frame. In Sympy inertia is implemented in terms of dyadic.

Inertia is defined in a frame that is stationary with respect to a given body. The

information about mass and inertia is then coupled in a RigidBody object.

Figure 7. Mass and inertia

configuration constraint

zero = joint3.pos_from(joint0) + length_bars[3] * inertial_frame.x

f_c = [zero & inertial_frame.x, zero & inertial_frame.y]

velocity constraint

dzero = time_derivative(zero, inertial_frame)

f_v = [dzero & inertial_frame.x, dzero & inertial_frame.y]

mass and inertia
mass_bars = symbols('m_B:{}'.format(n))
inertia_bars = symbols('I_B:{}'.format(n))
inertia(frame, ixx=0, iyy=0, izz, ixy=0, iyz=0, izx=0)
bar0_indyad = inertia(bar0_frame, 0, 0, inertia_bars[0])
bar1_indyad = inertia(bar1_frame, 0, 0, inertia_bars[1])
bar2_indyad = inertia(bar2_frame, 0, 0, inertia_bars[2])
bar0_inertia = (bar0_indyad, bar0_cm)
bar1_inertia = (bar1_indyad, bar1_cm)
bar2_inertia = (bar2_indyad, bar2_cm)
bodies
bar0 = RigidBody('Bar 0', bar0_cm, bar0_frame, mass_bars[0],
 bar0_inertia)
bar1 = RigidBody('Bar 1', bar1_cm, bar0_frame, mass_bars[1],
 bar1_inertia)
bar2 = RigidBody('Bar 1', bar2_cm, bar0_frame, mass_bars[2],
 bar2_inertia)
bodies = [bar0, bar1, bar2]

Solving Multibody Dynamics Problems Using Python 19

2.3. Forces

In this case the only applied forces are the ones due to gravity. In order to introduce for

example driving torque an extra tuple needs to be created and added to the loads list.

Figure 8. Loads

2.4. EOM generation

Once kinematics, inertia and forces are specified the following step is generation of

equations of motion. There are two methods available is Sympy. In this paper Kane’s

method is used [2]; however it is also possible to utilize Lagrange’s method. Firstly

we need to introduce kinematic differential equations that bind variables for

coordinates with speeds. After that Kane’s method is initialized. This method has

many arguments as shown below. Lastly Fr and Fr* need to be calculated as

described in [2].

Figure 9. Kane’s method

After running the code above mass matrix of the system can be finally shown running

kane.mas_matrix_full command. Unfortunately despite the mechanism being fairly

simple the output matrix is too large to be included in this paper. In this case the

shape of the mass matrix is 6 by 6 since we used three coordinates to describe the

mechanism and it is already converted to a set of first-order differential equations.

2.5. Simulation

In order to proceed with integration of equations of motion we need generate the

right hand side. Then numerical integration methods can be used to solve such

equation:

forces

bar0_force = (bar0_cm, -mass_bars[0] * g * inertial_frame.y)

bar1_force = (bar1_cm, -mass_bars[1] * g * inertial_frame.y)

bar2_force = (bar2_cm, -mass_bars[2] * g * inertial_frame.y)

loads = [bar0_force, bar1_force, bar2_force]

kinematic differential equations

KDE = [theta_d[0] - omega[0], theta_d[1] - omega[1],

 theta_d[2] - omega[2]]

Kanes Method

kane = KanesMethod(inertial_frame, q_ind=[theta[0]],

 u_ind=[omega[0]],

 q_dependent=[theta[1],theta[2]],

 u_dependent=[omega[1],omega[2]],

 configuration_constraints=f_c,

 velocity_constraints=f_v,

 kd_eqs=KDE)

fr, frstar = kane.kanes_equations(bodies, loads)

20 Pavel Florian–Roman Čermák

𝒈 = 𝑴−1(𝒙, 𝑡)𝒇(𝒙, 𝑡), (1)

where 𝑴−1(𝒙, 𝑡) is the inverted mass matrix and 𝒇(𝒙, 𝑡) stands for the forcing vector.

Firstly we need to group all constants into a list and pass it into right hand side

generator function. Then vector of initial conditions needs to be created. After we

define time step and length of simulation the integration itself might begin.

Figure 10. Simulation

list of constants
constants = [g,
 mass_bars[0],
 mass_bars[1],
 mass_bars[2],
 length_bars[0],
 length_bars[1],
 length_bars[2],
 length_bars[3],
 inertia_bars[0],
 inertia_bars[1],
 inertia_bars[2]]
kdd = kane.kindiffdict()
mass_matrix = kane.mass_matrix_full.subs(kdd)
forcing_vector = kane.forcing_full.subs(kdd)
right_hand_side = generate_ode_function(forcing_vector,
 theta, omega, constants, mass_matrix=mass_matrix)
list of numerical values
numerical_constants = [9.81,
 2.0,
 5.0,
 4.0,
 2.0,
 5.0,
 5.0,
 4.0,
 1.0,
 1.0,
 1.0]
inital conditions
x0 = array([deg2rad(135), deg2rad(41.3340), deg2rad(109.3884), 0.0,
 0.0, 0.0])
timeframe
frames_per_sec = 100
final_time = 20.0
t = linspace(0.0, final_time, final_time * frames_per_sec)
integration
y = odeint(right_hand_side, x0, t,
 args=(dict(zip(constants, numerical_constants)),))

Solving Multibody Dynamics Problems Using Python 21

3. RESULTS

In Figure 11 results for angular coordinates are shown. The plots were created using

matplotlib library but the code itself to do that is not included here. There are many

examples of usage available on the internet.

Figure 11. Results – angular coordinates

From the plot above the reader can see that angle of the first link θ0 oscillates between

135 and 395 degrees. It means that it never completes a full loop. Angular velocities

can be plotted in a similar way as shown in Figure 12.

Figure 12. Results – angular velocities

Thanks to another Python library PyDy it is possible to create 3D animations based

on simulation results easily. However the code to do that is not included in this paper.

22 Pavel Florian–Roman Čermák

4. CONCLUSION

This paper showed an automated method that allows assembling an arbitrary

multibody system and extracting it’s equations of motion. Such functionality is

possible thanks to Sympy which is a free library for Python. This library is included

in Anaconda distribution. It actually possible to copy the whole code shown in this

paper into a Python editor to obtain the same results. The usage of Sympy is rather

straightforward when dealing with open loop mechanisms and when having same

number of coordinates as there are degrees of freedom. Closed loop mechanisms

require introducing constraint equations that need to be correctly defined. The user

must have a good understanding of the problem.

5. ACKNOWLEDGEMENT

The research work shown here was made possible by SGS-2016-012.

6. REFERENCES

[1] MEURER, A.–SMITH, C. P.–PAPROCKI, M.–ČERTÍK, O.–KIRPICHEV, S. B.–

ROCKLIN, M.–KUMAR, A.–IVANOV, S.–MOORE, J. K.–SINGH, S.–

RATHNAYAKE, T.–VIG, S.–GRANGER, B. E.–MULLER, R. P.–BONAZZI, F.–

GUPTA, H.–VATS, S.–JOHANSSON, F.–PEDREGOSA, F.–CURRY, M. J.–

TERREL, A. R.–ROUČKA, Š.–SABOO, A.–FERNANDO, I.–KULAL, S.–

CIMRMAN, R.–SCOPATZ, A.: SymPy: symbolic computing in Python. PeerJ

Computer Science, 3:e103, https://doi.org/10.7717/peerj-cs.103, 2017

[2] KANE, T. R.–LEVINSON, D. A.: Dynamics: Theory and Applications. McGraw

Hill, New York, NY, 1985.

[3] GEDE, G.–PETERSON, D. L.–NANJANGUD, A. S.–MOORE, J. K.–HUBBARD,

M.: Constrained multibody dynamics with Python: From symbolic equation

generation to publication. Proceedings of ASME 2013 IDETC/CIE 2013,

Portland, USA, DOI 10.1115/DETC2013-13470

[4] Sympy documentation. https://docs.sympy.org.

