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Abstract: The aim of this paper is inform the reader with possibilities of deriving equations 

of motion for arbitrarily complex multibody systems using Python programming language. 

Sympy is a library of functions for Python and a full computer algebra system (CAS) which 

has among others a built-in feature that allows assembling a multibody system and derive 

corresponding equations of motion. 
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1. INTRODUCTION 

Solving multibody dynamics problems is possible by hand. There are methods such 

as Lagrange equations that allow that. However, this approach is only viable for 

simple systems with limited number of degrees of freedom, as hand-derivation of 

EOMs is a tedious and error-prone process. Sympy provides an alternative that is 

under BSD license which means it is free for both academic and commercial use. 

The initial phase consisting of setting up the environment and gathering required 

libraries is made simple thanks to Python scientific distributions such as Anaconda 

that involve all the necessary features. In this paper it is shown how one can obtain 

equations of motion describing dynamics of a simple four bar mechanism as shown 

in Figure 1. 

 
Figure 1. Four bar mechanism 
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2. GENERAL PROCEDURE WHEN USING SYMPY 

When using Sympy it is good practice to follow a certain path. In this case we will 

start with defining kinematics of the mechanism, followed by inertia, forces, EOM 

generation and simulation. 

 

2.1. Kinematics 

The first step is to decide how many generalized coordinates will be used to describe 

the mechanism. The four bar mechanism as described here has only one degree of 

freedom and can be unambiguously described by one angular coordinate. However 

in this example three generalized coordinates corresponding to each link will be 

used. Python indexing starts with 0 therefore the same approach will be used when 

naming variables.  

The first three lines in the block of code bellow import all the necessary functions. 

Time-dependant variables are created using dynamicsymbols() command, whereas 

for time-independent constants symbols() is used. 

 

 
Figure 2. Definition of variables 

 

In the second step reference frames are defined. An inertial frame is introduced and 

then three other frames, one for each link, are oriented with respect to the inertial 

frame. The rotations are given by theta angles and their direction is the z-axis of the 

inertial frame. In a similar fashion angular velocities of the reference frames are 

introduced. There is more than one way to define rotation between reference frames. 

For non-planar systems it is easier to use type ‘Body’ since less lines of code are 

needed for the definition as shown in the block of code for bar2_frame. 

from __future__ import print_function, division 
from sympy.physics.mechanics import * 
from sympy.physics.vector import time_derivative 
from sympy import symbols 
from numpy import array, linspace, rad2deg, deg2rad 
from scipy.integrate import odeint 
from pydy.codegen.ode_function_generators import 
generate_ode_function 
  
# number of links in the mechanism 
n = 3 
# generalized speeds and coordinates   
theta = dynamicsymbols('theta:{}'.format(n)) 
theta_d = dynamicsymbols('theta:{}'.format(n), 1)  
omega = dynamicsymbols('omega:{}'.format(n))  
omega_d = dynamicsymbols('omega:{}'.format(n), 1)   
# the extra symbol thanks to n+1 stands for the distance   
# between the grounding joints   
length_bars = symbols('L_B:{}'.format(n+1))   
g = symbols('g') # gravity 
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Figure 3. Orientation and velocity 

 

Once orientation and velocity of frames is set important points of the system such as 

joints and centres of mass can be introduced. X-axis of each frame defines link 

orientation and centres of mass are assumed to be in the middle of each link for 

simplicity. 

 

 
Figure 4. Joint and centre of mass locations 

 

Just like angular velocities were defined separately linear velocities of the points 

need to be defined in a similar way. Velocity of the grounding joints j0 and j3 is set 

to 0 as they are stationary. 

 

 
Figure 5. Velocities of points 

 

# reference frames   

inertial_frame = ReferenceFrame('I')   

bar0_frame = inertial_frame.orientnew('B0', 'Axis', (theta[0],  

                                                    inertial_frame.z))   

bar1_frame = inertial_frame.orientnew('B1', 'Axis', (theta[1], 

                                                    inertial_frame.z))   

bar2_frame = inertial_frame.orientnew('B2', 'Body', [0, 0, theta[2]], 

                                                    'XYZ')   

# angular velocities   

bar0_frame.set_ang_vel(inertial_frame, omega[0]*inertial_frame.z)   

bar1_frame.set_ang_vel(inertial_frame, omega[1]*inertial_frame.z)   

bar2_frame.set_ang_vel(inertial_frame, omega[2]*inertial_frame.z)  

 

 

# joints   

joint0 = Point('j0')   

joint1 = joint0.locatenew('j1', length_bars[0] * bar0_frame.x)   

joint2 = joint1.locatenew('j2', length_bars[1] * bar1_frame.x)   

joint3 = joint2.locatenew('j3', -length_bars[2] * bar2_frame.x)   

# cm positions   

bar0_cm = joint0.locatenew('b0cm', length_bars[0]/2 * bar0_frame.x)   

bar1_cm = joint1.locatenew('b1cm', length_bars[1]/2 * bar1_frame.x)   

bar2_cm = joint3.locatenew('b2cm', length_bars[2]/2 * bar2_frame.x) 

# velocity of the grounding joints is 0   

joint0.set_vel(inertial_frame, 0)   

joint3.set_vel(inertial_frame, 0)   

# velocity if the remaining joints   

joint1.v2pt_theory(joint0, inertial_frame, bar0_frame)   

joint2.v2pt_theory(joint1, inertial_frame, bar1_frame)   

# velocity if centres of mass 

bar0_cm.v2pt_theory(joint0, inertial_frame, bar0_frame)   

bar1_cm.v2pt_theory(joint1, inertial_frame, bar1_frame)   

bar2_cm.v2pt_theory(joint2, inertial_frame, bar2_frame)   
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When defining kinematics of the mechanism the last step is to introduce 

configuration and velocity constraints. As mentioned above the mechanism has only 

one degree of freedom, but three angular coordinates were used to define it. In this 

case we need to implement two configuration constraints, one for each excessive 

coordinate, and two velocity constraints in order to obtain the correct solution. The 

configuration constraints say that the joint j3 is located at distance of length_bars[3] 

from joint j0 on the x-axis of the inertial frame. There are two constraints, one for 

each x and y direction. The velocity constraints simply mean that these two points 

are not moving with respect to each other. The following block of code concludes 

the definition of kinematics. 

 

 
Figure 6. Constraints 

 
2.2. Mass and inertia 

This particular mechanism is only a planar problem therefore the definition of inertia 

is fairly simple. In this case we only introduce rotational inertia related to the xy 

plane of the inertial frame. In Sympy inertia is implemented in terms of dyadic. 

Inertia is defined in a frame that is stationary with respect to a given body. The 

information about mass and inertia is then coupled in a RigidBody object. 

 

 
Figure 7. Mass and inertia 

 

# configuration constraint   

zero = joint3.pos_from(joint0) + length_bars[3] * inertial_frame.x   

f_c = [zero & inertial_frame.x, zero & inertial_frame.y]   

# velocity constraint   

dzero = time_derivative(zero, inertial_frame)   

f_v = [dzero & inertial_frame.x, dzero & inertial_frame.y]   

 

# mass and inertia   
mass_bars = symbols('m_B:{}'.format(n))   
inertia_bars = symbols('I_B:{}'.format(n))   
#     inertia(frame, ixx=0, iyy=0, izz, ixy=0, iyz=0, izx=0)   
bar0_indyad = inertia(bar0_frame, 0, 0, inertia_bars[0])   
bar1_indyad = inertia(bar1_frame, 0, 0, inertia_bars[1])   
bar2_indyad = inertia(bar2_frame, 0, 0, inertia_bars[2])   
bar0_inertia = (bar0_indyad, bar0_cm)   
bar1_inertia = (bar1_indyad, bar1_cm)   
bar2_inertia = (bar2_indyad, bar2_cm)   
# bodies   
bar0 = RigidBody('Bar 0', bar0_cm, bar0_frame, mass_bars[0],  
                 bar0_inertia)   
bar1 = RigidBody('Bar 1', bar1_cm, bar0_frame, mass_bars[1],  
                 bar1_inertia)   
bar2 = RigidBody('Bar 1', bar2_cm, bar0_frame, mass_bars[2],  
                 bar2_inertia) 
bodies = [bar0, bar1, bar2]     
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2.3. Forces 

In this case the only applied forces are the ones due to gravity. In order to introduce for 

example driving torque an extra tuple needs to be created and added to the loads list. 

 

 
Figure 8. Loads 

 
2.4. EOM generation 

Once kinematics, inertia and forces are specified the following step is generation of 

equations of motion. There are two methods available is Sympy. In this paper Kane’s 

method is used [2]; however it is also possible to utilize Lagrange’s method. Firstly 

we need to introduce kinematic differential equations that bind variables for 

coordinates with speeds. After that Kane’s method is initialized. This method has 

many arguments as shown below. Lastly Fr and Fr* need to be calculated as 

described in [2].  

 

 
Figure 9. Kane’s method 

 

After running the code above mass matrix of the system can be finally shown running 

kane.mas_matrix_full command. Unfortunately despite the mechanism being fairly 

simple the output matrix is too large to be included in this paper. In this case the 

shape of the mass matrix is 6 by 6 since we used three coordinates to describe the 

mechanism and it is already converted to a set of first-order differential equations. 

 

2.5. Simulation 

In order to proceed with integration of equations of motion we need generate the 

right hand side. Then numerical integration methods can be used to solve such 

equation: 

# forces   

bar0_force = (bar0_cm, -mass_bars[0] * g * inertial_frame.y)   

bar1_force = (bar1_cm, -mass_bars[1] * g * inertial_frame.y)   

bar2_force = (bar2_cm, -mass_bars[2] * g * inertial_frame.y)   

loads = [bar0_force, bar1_force, bar2_force]   

# kinematic differential equations   

KDE = [theta_d[0] - omega[0], theta_d[1] - omega[1],   

       theta_d[2] - omega[2]]   

# Kanes Method   

kane = KanesMethod(inertial_frame, q_ind=[theta[0]],   

                   u_ind=[omega[0]],   

                   q_dependent=[theta[1],theta[2]],   

                   u_dependent=[omega[1],omega[2]],   

                   configuration_constraints=f_c,   

                   velocity_constraints=f_v,   

                   kd_eqs=KDE)   

fr, frstar = kane.kanes_equations(bodies, loads)   
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𝒈 = 𝑴−1(𝒙, 𝑡)𝒇(𝒙, 𝑡), (1) 

 

where 𝑴−1(𝒙, 𝑡) is the inverted mass matrix and 𝒇(𝒙, 𝑡) stands for the forcing vector. 

Firstly we need to group all constants into a list and pass it into right hand side 

generator function. Then vector of initial conditions needs to be created. After we 

define time step and length of simulation the integration itself might begin.  

 

 
Figure 10. Simulation 

 

 

# list of constants 
constants = [g,   
             mass_bars[0],   
             mass_bars[1],   
             mass_bars[2],   
             length_bars[0],   
             length_bars[1],   
             length_bars[2],   
             length_bars[3],    
             inertia_bars[0],   
             inertia_bars[1],   
             inertia_bars[2]]   
kdd = kane.kindiffdict()   
mass_matrix = kane.mass_matrix_full.subs(kdd)   
forcing_vector = kane.forcing_full.subs(kdd)   
right_hand_side = generate_ode_function(forcing_vector, 
                   theta, omega, constants, mass_matrix=mass_matrix)
# list of numerical values   
numerical_constants = [9.81,   
                       2.0,   
                       5.0,   
                       4.0,     
                       2.0,   
                       5.0,   
                       5.0,   
                       4.0,   
                       1.0,   
                       1.0,   
                       1.0]   
# inital conditions   
x0 = array([deg2rad(135), deg2rad(41.3340), deg2rad(109.3884), 0.0,           
            0.0, 0.0])   
# timeframe   
frames_per_sec = 100   
final_time = 20.0   
t = linspace(0.0, final_time, final_time * frames_per_sec)   
# integration   
y = odeint(right_hand_side, x0, t, 
           args=(dict(zip(constants, numerical_constants)),))   
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3. RESULTS 

In Figure 11 results for angular coordinates are shown. The plots were created using 

matplotlib library but the code itself to do that is not included here. There are many 

examples of usage available on the internet. 

 

 
Figure 11. Results – angular coordinates 

 

From the plot above the reader can see that angle of the first link θ0 oscillates between 

135 and 395 degrees. It means that it never completes a full loop. Angular velocities 

can be plotted in a similar way as shown in Figure 12. 

  

 
Figure 12. Results – angular velocities 

 

Thanks to another Python library PyDy it is possible to create 3D animations based 

on simulation results easily. However the code to do that is not included in this paper. 
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4. CONCLUSION 

This paper showed an automated method that allows assembling an arbitrary 

multibody system and extracting it’s equations of motion. Such functionality is 

possible thanks to Sympy which is a free library for Python. This library is included 

in Anaconda distribution. It actually possible to copy the whole code shown in this 

paper into a Python editor to obtain the same results. The usage of Sympy is rather 

straightforward when dealing with open loop mechanisms and when having same 

number of coordinates as there are degrees of freedom. Closed loop mechanisms 

require introducing constraint equations that need to be correctly defined. The user 

must have a good understanding of the problem. 
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