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Abstract: The iteration history curve of optimization algorithms is a saturation- type devel-
opment curve or sigmoid shape curve. After an overview of several different sigmoid curves, 
the iteration history curve of the RVA (Random Virus Algorithm) is analysed in order to find 
its best settings for a given optimization problem. The analysis of the characteristics and 
numerical parameters of the iteration history curve provides the possibility to discover the 
speed and efficiency of the algorithm without the necessity to wait throughout the whole 
running until its final result, which can speed up numerical experiments during the search for 
the solution to the optimization problem and while ‘fine tuning’ the algorithm to the given 
task. Since sigmoid-type curves can be found in many different fields of life (the history of 
the sport world records, comparison of the achievements of several groups), the results of 
this analysis can be used in several different domains of life, when the ranking, comparison, 
evaluation or qualification of several individuals or groups is important. 

Keywords: Iteration history curves, sigmoid curves, saturation curves, comparison of algo-
rithms, group achievements.  

1. INTRODUCTION 

Each optimization algorithm has some very important numerical parameters which 
can have important effects on the behaviour and characteristics of the algorithm. 
These important characteristics could be the ‘speed’ (how many objective function 
evaluations are necessary until finding the final optimum solution), or the ‘effi-
ciency’ (how many times the constraints are checked until finding the optimum so-
lution). These characteristics are strongly connected with the quantity of the neces-
sary calculations to be performed until the optimum result. 
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These days Multidisciplinary Optimization (MDO) is a very common approach 
(Abraham, Hassanien, Siarry, & Engelbrecht, 2009), (Cramer , Dennis, Jr., Frank, 
Lewis, & Shubin, 1994), (Martins & Lambe, 2013), (Szabó, 2008), (Vanderplaats, 
2007) and more and more structures are being analysed by MDO methods. During 
an MDO task, the evaluation of the objective function and/or the checking the con-
straints may require long finite element computations, therefore the computer run-
ning of these investigations could take even several days. Nowadays evolutionary 
optimization offers efficient algorithms for the solution of these tasks (Das, 
Dasgupta, Biswas, Abraham, & Konar, 2009), (Deb, 2007), (Eberhart & Kennedy, 
1995), (Fogel, 1999.), (Gao, Hongwei, Zhao, & Cui, 2006), (Goldberg, 1989), 
(Martens, et al., 2007), (Sheel, 1985). Engineering Design Optimization is also an 
increasingly popular field in optimization science (Herskovits, Mappa, Goulart, & 
Mota Soares, 2005), (Pang, Chen, Wang, & Hou, 2012), (Zhang, Zhou, Zhou, Wang, 
& Zhang, 2005), (Szabó, 2016). 
Because the parameters of the algorithm can have important effects on the most im-
portant characteristics of the algorithm, by modifying these parameters it may be 
possible to spare a significant amount of calculations, so we could decrease the num-
ber of days necessary for finding the final solution. The procedure for changing the 
settings of these parameters and finding the effects of these settings on the value of 
the optimum solution and on the time and calculation amount necessary to reach to 
goal, can be called ‘numerical experiments’ on the algorithm settings. If the total 
running time of the algorithm can be several days, this means we have to wait for 
several days in order to see the effects of the current settings of the algorithm param-
eters. After that there will be the time necessary to evaluate and understand these 
effects, and to determine some new values to improve the settings. Once more sev-
eral days will be necessary to see the new results and find the effects of these new 
settings. This procedure makes the total time of the numerical experiments process 
very long.  
In this paper the RVA optimization algorithm (Szabó, 2008) is used to demonstrate 
the usage and efficiency of the iteration curve analysis, showing the numerical ex-
periment (parameter setting combinations) process for a simple optimization task. 
The analysis of the equations of the sigmoid curves can be used not only for investi-
gating one algorithm, but for the comparison of several algorithms (for the same test 
problem for example), thus it could be possible to find the best algorithm for the 
given optimization problem. 
Sigmoid curves describing growth or saturation phenomena are used in many fields 
of life for description, study and forecast of these kinds of situations. These curves 
are highly multidisciplinary curves, because one can find many different applications 
of these curves in a large variety of problems (biology – population dynamics, 
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economy – lifecycle curve of products, medicine – growth of tumours or time history 
of pandemic disease just like COVID 19, environmental protection – plastic waste 
in oceans, agriculture – growth of fishes and forests, optimization – iteration history 
curve of optimization algorithms). 
Discovery and investigation of the sigmoid curves started in the years of 1700. Mal-
thus (Malthus, 1798), who proved that the increase in the number of members of a 
species is dependent from the actual value of this number. This is the basis of the 
Moore (Moore, 1965) law for computers capacity increase. Verhulst (Verhulst, 
1847) derived the sigmoid curve describing the case of saturation, introducing the 
denomination of this type of curve ‘logistic curve’ or logistic function. Pearl and 
Reed (Pearl & Reed, 1920) applied the logistic curve for the study of the population 
growth of USA. The S-like shape of the curve made possible to use the attribute 
“sigmoid” for these curves. Fisher and Pry (Fisher & Pry, 1971) developed a trans-
formation of the curves from S-shape into linear function, which makes easier to 
calculate the regression coefficient in case of approximation of the curves. Ber-
talanffy (Von Bertalanffy, 1960) used sigmoid curves for the description of the 
growth of the length of sharks, these results are useful also for the study of several 
fish species and in forestry too. Kozuko and Bajzer (Kozuko & Bajzer, 2003) applied 
this growth function for the study of the growth of tumours in medicine. The growth 
function modified by Richards (Richards, 1959) is applicable for the studies of the 
growth of several plants, too. 
Mansfield (Mansfield, 1961) and Rogers (Rogers, 1962) described the products 
lifecycle as sigmoid curve. Jang Show- Ling, Dai, and Sung (Jang, Dai, & Sung, 
2005) shown that the spread of the mobile phones in 29 OECD countries and Taiwan 
can be described also by sigmoid curves. Investigating some pulsating or multi-wave 
phenomena by Meyer (Meyer & Turner II, 1994) shown the possibility of the appli-
cation of bi-logistic, tri-logistic or multi-logistic curves, which were used by Silver-
berg and Lehnert (Silverberg & Lehnert, 2003) for the investigation of the evolution-
ary models of economic growth. Fokasz (Fokasz, 2006) gave interesting examples 
of the application of sigmoid curves for social phenomena. 
Szabó investigated several phenomena by sigmoid curves: one hundred years history 
of sports world records (Szabó, 2011), proposed a comparison and qualification sys-
tem using sigmoid curves (Szabó, 2017) having the name EBSYQ (Evolutionary 
Based System for Qualification and comparison of group achievements), investi-
gated the iteration history curves of optimization algorithms (Szabó, 2018), studied 
the possible future of the plastic waste in oceans of the Earth (Szabó, 2019), investi-
gated wear curves of tools (Szabó, 2021), shown that product lifecycle can be de-
scribed also by sigmoid curves (Vajna, 2020), (Bihari & Sarka, 2018), investigated 
the time curve of COVID 19 disease in Hungary (Szabó, 2020). For all these 
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investigations Szabó applied the approximation procedure based on the Nelder-
Mead optimization algorithm (Nelder & Mead, 1965), defined the approximation 
process as an optimization procedure searching for the minimum of the square dif-
ferences. Rézsó (Rézsó, 2020) shown an example for the application of the EBSYQ 
system for the comparison of several student groups writing the same exam test. 
Because sigmoid type curves can be found in many different fields of the life (history 
of the sport world records, comparison of the achievements of several groups), the 
results of this kind of analysis can be used in several different domains of life; any-
where where the ranking, comparison, evaluation or qualification of several individ-
uals or groups is important. This could help the work of teachers of student groups, 
jury members of grants and competitions, or selection teams and committees for job 
applications, adjudications of grants or awards, etc.  

2. OVERVIEW OF SOME SIGMOID CURVES 

The iteration history curve of the RVA optimization algorithm for a simple demon-
stration optimization problem can be found in Figure 1. It can be seen from the fig-
ure, that in the beginning phase of the optimization, the improvement in the objective 
function is high over several generations, but this ‘improvement speed’ decreases in 
the final phase of the optimum search. This effect can be called ‘saturation’, and this 
gives the sigmoid shape of the curve. 

 

Figure 1. Iteration history curve of RVA algorithm 
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On the basis of the mathematical representation of the iteration history sigmoid curve 
of the algorithm, it will be possible to see the most important parameters determining 
the shape of the curve and also the most important characteristics of the result (max-
imum possible value achievable, steepness of the curve which is in connection with 
the improvement speed of objective function, etc.). If the curve is approximated by 
using only the first 3-4 iterations, it is not necessary to wait for the total running time 
of the algorithm; the current setting can be evaluated and qualified much earlier. This 
gives the possibility for developers to save more than the half of the total develop-
ment time, which is an important achievement. 
Table 1 shows the curve shape, the first derivative and the integral function shape of 
several different sigmoid type functions, in order to see and compare the most im-
portant characteristics of the sigmoid shape curves. One can draw some conclusions 
from the Table 1. Two different types of curves are possible: in the beginning phase 
with a curvature (e.g., Pearl-Reed function), or without beginning curvature (e.g., 
Bertalanffy function). Maybe it is not the curve itself that has the sigmoid shape but 
its integral (e.g., Life-curve). The derivative of the curves also can have different 
shapes (e.g., a Törnquist curve, Mitscherlich curve, Life-curve, or Pearl-Reed curve). 
For further investigations three curves will be selected: the Pearl-Reed curve because 
of its beginning curvature, one curve without beginning curvature (Bertalanffy), and 
later the Life-curve because of its very special shape. 

Table 1 
Sigmoid curves used for approximation 

curve derivative integral
Pearl–Reed 

 
Bertalanffy 

 
 
Equations of the curves and their derivatives or integrals are as follows: 
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a.) Pearl-Reed (logistic) curve (Pearl & Reed, 1920): 
equation of the curve: 

𝑦 𝑥 ,  first derivative:  (1) 

integral: 𝑦 𝑥 𝑑𝑥 ln 𝑒 ln 1 𝑐𝑒  (2) 

 
b.) Bertalanffy growth-curve (Von Bertalanffy, 1960): 
equation of the curve: 

𝑦 𝑥 𝐾 1 𝑐𝑒 , first derivative: 𝐾𝑟𝑐𝑒  (3) 

integral: 𝑦 𝑥 𝑑𝑥 𝐾𝑥 𝑒  (4) 

Since the real iteration history curve of the studied algorithm can be either a growth-
curve type, or a logistic curve, it is enough to select two curves (the Bertalanffy curve 
and the Pearl-Reed curve) from the six sigmoid curves of Table 1. Analysis of the 
Life-curve (equation of the curve, derivative, integral of it) may give further special 
results (eigenvalue of the algorithm, Lorentz-profile (Lorentz, 1905), spreading char-
acteristics). 

3. APPROXIMATION OF THE CURVES 

The iteration history curve will be approximated by the Pearl-Reed and Bertalanffy 
curve, by using the method of least squares, determining the parameter values of K, 
r, c in the equation of the curves which give the best approximation to the iteration 
history curve. 
During the method of least squares it is necessary to approach the given discrete 
values: xi, yi , i 1, 2, 3, … , n,  by a function 𝑦∗ 𝑓 𝑥 , while the parameters of 
the curve should give the minimum possible value of the sum of the squares of the 
differences. This means that regarding the function values 𝑓 𝑥𝑖 𝑦∗𝑖, we have to 
find:  

            𝐻 𝑦 𝑦∗ 𝑚𝑖𝑛 
(5) 

 
The minimum is possible if the first derivative of the function H is 0, therefore:  

0 , 0, 0, this gives three equations for the three unknowns K, r and 

c, so it is possible to find the parameters for the best approximation. Another possible 
way to find the minimum of H as a function of the three parameters, is to solve the 
problem as an unconstrained minimization task of H using the three parameters as 
design variables. In this paper this method of optimization is selected for the 
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calculation of the best curve-parameters during the approximations. For the numeri-
cal solution of this optimization task the Nelder-Mead ‘simplex’ algorithm (Nelder 
& Mead, 1965) is used. 
The linear regression coefficient will be used to check the quality of the approxima-
tion. Thus it is necessary to calculate the regression coefficient for both of the curves. 
Since the two selected curves are non-linear, before the analysis of the regression it 
is necessary to transform the equations of the curves into linear form. The regression 
coefficient calculated for these resulting linear functions will show which curve has 
the better correlation with the discrete data, so the conclusions derived from that 
curve will be stronger, or more realistic. 
The value of the regression coefficient is always between -1 and +1. If it has a value 
of 0, that means there is no relationship between the curve and the discrete values. 
The closer the regression coefficient’s absolute value to 1, the better the correlation 
is between the data and the approximation curve. If the regression coefficient is neg-
ative, it shows a decreasing tendency, while positive value shows an increase. This 
means that the conclusions derived from a curve having a ‘weak’ regression coeffi-
cient will be not ‘true’, not ‘strong’ or not accurate enough, but the conclusions de-
rived on the basis of a curve having good correlation will be true and adequate, or 
‘strong’. 
For calculation of the regression coefficient, the curve equations need to be trans-
formed into linear form for both of the selected functions. The linear transformation 
of the Bertalanffy- function: 
 

𝑦 𝑥 𝐾 1 𝑐𝑒 , 𝑐𝑒 , 𝑙𝑛 𝑐 𝑙𝑛 𝑒 𝑙𝑛 , (6) 

 
therefore, linear function for the Bertalanffy -curve is: 𝑦∗ 𝑎 𝑏𝑥, where 𝑎 ln 𝑐, 
𝑏 𝑟. 
The linear transformation of the Pearl-Reed function can be done in a similar way: 
 

𝑦 𝑥 , 𝑐𝑒 , 𝑙𝑛 𝑐 𝑙𝑛 𝑒 𝑙𝑛  , 𝑦∗ 𝑎 𝑏𝑥 (7) 

 
The regression coefficient can be calculated as: 
 

𝑅
𝐴

𝐵
𝑛

𝐶
𝐷
𝑛 𝐶

𝐷
𝑛

 
(8) 
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where: 𝐴 ∑ 𝑥 𝑦 , 𝐵 ∑ 𝑥 ∑ 𝑦 , 𝐶 ∑ 𝑥 , 𝐷 ∑ 𝑥  
and 𝐶 ∑ 𝑦 , 𝐷 ∑ 𝑦 . 
 
In equation (8) it is possible to calculate the linear regression coefficient of the 𝑦∗ 
transformed function determined in equation (6) or (7), but for simplicity we return 
to the y notation. 

4. DEMONSTRATION EXAMPLE 

In order to show the steps of the numerical experiments, let us consider the following 
simple optimization problem: Find the maximum of the two variables Rosenbrock-
function (9) (Rosenbrock, 1960): 

𝑓 𝑥, 𝑦 10 1 𝑥 100 𝑦 𝑥  (9) 
when the explicit constraints are: 

2.5 𝑥 2.5 and 2.5 𝑦 2.5, implicit constraint: 𝑥 𝑦 2. 
The shape and contours of the objectives function are shown in Figure 2. 

 

Shape of the function 

 

Contours of the function 

Figure 2. The objective function of the optimization example 

The solution of the problem is that the maximum of the 𝑓 𝑥, 𝑦  is 10 at 𝑥 1 and 
𝑦 1. 
For the solution the RVA (Random Virus Algorithm) optimization algorithm is used 
and the iteration history curve of the algorithm is shown in Figure 1. This curve is a 
sigmoid function having saturation behaviour; therefore the Pearl-Reed function and 
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the Bertalanffy-function is used for its approximation. The approximation of the it-
eration history curve can be seen in Figure 3 which shows that all the three curves 
(the original curve, the Pearl-Reed curve and the Bertalanffy curve) are very close 
each to another, so any of the selected two curves can be used for the approximation. 

 

Figure 3. Approximation of the original iteration history curve 

For further investigations the Bertalanffy curve seems to be better to use, because in 
the original iteration history curve the initial curvature of the Pearl-Reed curve is 
missing, therefore the shape of the curve is closer to the Bertalanffy curve. Also the 
regression coefficient absolute value is higher for the Bertalanffy curve than for the 
Pearl-Reed curve. However, because of the very special shape of its derivative, the 
Pearl-Reed function could give some interesting additional information during com-
parisons of several algorithms. 
Equations of the approximating curves: 

Pearl-Reed curve: 𝑦 , 𝐾 10, 𝑟 0.7, 𝑐 3.8, regression coefficient 

value: -0.99183. 
 
Bertalanffy curve: 𝑦 𝐾 1 𝑐𝑒 , 𝐾 10, 𝑟 0.41, 𝑐 1, regression coeffi-
cient: -0.99607. 
The curves of the approximating functions can be seen in Figure 4 and their deriva-
tives in Figure 5. 
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Figure 4. The approximating functions 

 

Figure 5. First derivative of the approximating functions 

The derivative functions show the speed of the increasing of the objective function. 
It can be seen in Figure 5 that this speed decreases at higher number of iterations. 
The derivative of the Pearl-Reed function can say more: it shows, where the maxi-
mum of this speed is. This could be useful information if we want to compare several 
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algorithms, because a better algorithm should have this maximum earlier, since this 
will give a more efficient search in the starting phase of the optimization. The width 
of the Pearl-Reed derivative curve in the half of its maximum shows how durable 
this maximum speed is, so it could be also very useful for the comparisons of several 
optimization algorithms. 
The integral function of the approximating curves is presented in Figure 6. 

Figure 6. Integral of approximation curves 

Comparison of the integral function of the approximating Pearl-Reed and Ber-
talanffy curves of the iteration history curve shows that the beginning phase of the 
search is more efficient for the Pearl-Reed function than for the Bertalanffy curve 
(because the same number of iterations shows a higher value of the integral func-
tion). In case of a higher number of iterations (or in the final phase of the optimiza-
tion) the integral functions are parallel, so in this phase there is no difference in the 
efficiency. These curves can be very useful during the comparison of several algo-
rithms. 
In Figure 5 the first derivative of the Pearl-Reed function shows that the most effi-
cient part of the optimization is the first phase of the process, with four generations, 
since the speed increase of the best objective function value of the generations is 
highest here. This leads to the idea to use only the first four iterations for building 
up the approximation curves of the iteration history curve, in this way saving 60% 
of the total time. There is no need to wait until the end of the total running time of 
the algorithm, we can guess the expectable optimum result. On the basis of this re-
sult, it is possible to change the settings of the algorithm and continue the numerical 
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experiment. This method will decrease the total development time by more than 
50%. Comparing the curves belonging to different settings of the algorithm param-
eters, it is possible to compare different states of the algorithm and will be easier to 
find the best setting values. Therefore, by using the proposed system of comparison 
the numerical experiment process can be made quicker and more accurate, based on 
the numerical comparison of different characteristics of the iteration history curves 
resulting from the settings. 
Since the shape of the Life function and the derivative of the Pearl-Reed function 
(logistic function) is very similar, it seems to be useful to approximate the derivative 
of the logistic function with the equation of the Life-curve (Lorentz, 1905), 
(Andrews, 1998), because this way it will be possible to study the dispersion function 
(derivative of the Life-curve) and the error-function (integral of the Life-curve) of 
the algorithm, too (Figure 7.). 
Here 𝐾 1.73, 𝑟 1.85, 𝑐 0.32. The regression coefficient is 0.98381. 

Figure 7. Life-curve, dispersion function and error function of the algorithm 

Equation of the approximating Life-curve of the algorithm (the Lorentz-function): 
 

𝑓 𝑥
𝐾

𝑒
 

(10) 

 
The dispersion function is the derivative of the Life-curve:  
 

𝑓 𝑥
𝐾 2𝑐 𝑥 2𝑐 𝑟

𝑒
 

(11) 
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The integral of the Life-curve is the error function of the algorithm:  
 

𝑓 𝑥  𝑑𝑥 √ erf 𝑐 𝑥 𝑟 , where erf 𝑥
√

𝑒 𝑑𝑡 (12) 

 
The error function of the algorithm is once more a sigmoid curve; therefore it could 
be also used for the comparison of different algorithms or to compare the different 
settings of the same algorithm. Smaller K in this function means smaller expectable 
value of the error function, so it seems to be better than higher K values. If r is 
smaller, the error function is not so steep, which could be better than higher r values 
(when the increase in the error function is slower). 

Table 2 
Comparison of two different settings of the RVA algorithm 

Short description of the point of view Score of 
setting I 

Score of 
setting II 

Point of 
view 
winner 

Expectable optimum (K), Pearl - Reed, (PR) 10 10 both 
Expectable optimum (K), Bertalanffy, (Bfy) 10 10 both 
Obj. function value increasing speed (r), PR 0.7 0.67 setting I 
Obj. function value increasing speed (r), Bfy 0.41 0.39 setting I 
Regression coefficient, PR -0.99183 -0.98743 setting I 
Regression coefficient, Bfy -0.99607 -0.98832 setting I 
Place of the speed maximum, PR derivative 2 3 setting I 
Durability of the speed maximum, PR derivative 5 5 both 
Algorithm efficiency from integral of PR 130 125 setting I 
Algorithm efficiency from integral of Bfy 90 85 setting I 
Eigenvalue in Life-curve 2 3 setting I 
Durability in Life-curve 5 5 both 
Error function K 1.73 1.75 setting I 
Error function r 1.85 2.3 setting I 
Maximum amplitude of the dispersion function 0.94 0.9 setting II 
Half width of the dispersion function 8 7.8 setting II 
Maximum expectable value of the error function K 4.85 5.25 setting I 
Increasing speed of the error function r 0.592 0.678 setting I 
Number of points of view won 16 6 setting I 

 
In Table 2 several points of view are collected comparing two different settings of 
the RVA algorithm for the demonstration example shown above. Comparing the two 
settings of the RVA optimization algorithm to the same problem, it can be concluded 
that the ‘winning’ setting will result the quicker and more efficient work of the algo-
rithm. Applying the four-point approximation method for the sigmoid curve of the 
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algorithm makes possible to decrease the total time necessary for the whole devel-
opment process approximately by 50% comparing to the case when always waiting 
through the total running time of the algorithm with a given setting. 
Results and comparison points of view presented in this work are parts of the EB-
SYQ (Evolution Based System for Qualification of Group Achievements) curve 
analysis system (Szabó, 2017), which is a comparison and evaluation system devel-
oped for the qualification and evaluation of groups. It is intended to help the deci-
sion-making work of teachers of student groups and jury of competitions, grants, or 
awards, but it is based also on sigmoid curves and one can find or ‘translate’ more 
useful comparison points of view from that system into the algorithm comparison 
process, too. 
Main steps of the usage of the EBSYQ system: set up the points of view (which 
represent the most important characteristics to be compared), see the curves and 
equations for comparing these points of view, and compare how many points of view 
has won each item (group, algorithm, or setting) to be compared. 

Table 3 
Comparing setting parameters of the curve obtained by four points and of the 

curve obtained by waiting through the total running time (original curve) 

 K r c
Original curve 10 0.41 1.0
Four points curve 9.88 0.39 0.97

 
According to the results shown in Table 2, Setting I is the winner, winning 73% of 
the total possible points. Taking only the four first generations of the iteration his-
tory, the Bertalanffy curve of the algorithm was approximated with the parameters 
shown in Table 3. It can be seen that the values are in good agreement, which means 
that by using this evaluation system, it is possible to cut down the total development 
time by more than half, during the numerical experiments process. 

5. SUMMARY 

The iteration history curve of optimization algorithms is a sigmoid shape saturation 
curve. The parameters in the equations of these curves are strongly connected to the 
most important characteristics of the algorithm (best objective function value in-
creasing speed in function of the number of generations, expectable final optimum 
result, etc.). These characteristics can be efficiently modified by the setting parame-
ters of the optimization algorithm. A complete numerical experiment process is 
needed for finding the best setting constellation for a given optimization problem. In 
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order to see the effects of the settings, normally it is necessary to wait until the algo-
rithm has finished running, which can be very long in case of some complicated 
Multidisciplinary Optimization problems. This paper shows a proposed approxima-
tion and analysis system of the algorithm’s iteration curve (EBSYQ) which makes 
possible to set up the iteration curve’s equation from just the objective function best 
values of the first four generations. This gives the possibility to reduce the total time 
needed for the numerical experiment process by more than 50%. 
During these investigations it is very interesting to discover the Lorentz-curve, the 
eigenvalue and dispersion function of the algorithm, which can give important addi-
tional information about the characteristics and behaviour of the investigated algo-
rithm. The integral of the Lorentz-function is the error function (erf) of the algorithm, 
while the parameters of this curve also give very useful points of view for describing 
and characterizing the algorithm’s speed and efficiency. On the basis of these results, 
it is possible to investigate one algorithm with several different setting constellations 
or to compare several different algorithms for the same optimization task in order to 
find the most efficient or quick one. 
In this paper the example of the RVA algorithm is shown applied for the optimization 
of the Rosenbrock-function over a cylindrical feasible region in order to demonstrate 
the steps, the usage and efficiency of the EBSYQ curve analysis system. Two differ-
ent setting constellations are compared and using 18 points of view the better setting 
can be selected for the optimization task. Continuing the setting change and compar-
ing process, it is possible to find the settings that give the quickest or most efficient 
working of the algorithm. 
The results and points of view of the EBSYQ system can be used for the analysis of 
several other problems in real life, such as selection and comparison of different 
groups applying for grants, for scholarships or for jobs (jury activity) or for sport 
results analysis during a time period, while teachers of several student groups can 
discover more accurately different sub-groups of their students and they can find 
more easily some target-groups for differentiated training or extra activities. 
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