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Abstract: The optimization of the pylon is shown in this paper. The optimization is made by 

using flower pollination algorithm. The objective function is mass of the structure. The de-

sign constraints are static stress, local buckling and buckling. The unknowns are the typical 

dimensions of the circular hollow section truss. Parametric inspections have been made 

changing yield strength of material and the number of grid divisions. The results show that 

the use of higher yield strength steels, do not imply a lighter structure. 

Keywords: evolutionary optimization, finite element method, pylon, truss structure 

1. INTRODUCTION

Metaheuristic and nature inspired evolutionary algorithms are efficiently used for 

solving non-linear engineering problems, such as many dimensional optimization 

problems. Xin-She Yang proposed the flower pollination [4]. It is inspired by the 

reproduction process of plants. The Flower pollination algorithm like most evolu-

tionary algorithms is developed for solving continuous, unconstrained optimization 

problems. 

Usually transmission line towers, pylons are made from angle section trusses [1], 

[2]. The buckling stiffness of angle sections are very small. Orbán et al. [3] had 

shown the usage of a circular hollow section (CHS) is more favorable. 

In this paper, we inspect whether the use of higher yield strength steel has additional 

beneficial effects for CHS. 

2. FLOWER POLLINATION ALGORITHM [FPA]

Flower pollination is a major reproduction process of plants. It can take two forms, 

abiotic (local) and biotic (global). Pollens are transferred long distances during 

global pollination by pollinators such as insects, birds, wind, etc. This is specific to 
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about 90% of flowering plants. The Abiotic form does not require any pollinator. 

This inspired a method to develop FPA algorithm in [4]. 

In the FPA algorithm, global pollination is modelled by following equation 

 

𝐱Gi 
(G+1) = 𝐱i 

(G) + L( 𝐱i 
(G) − 𝐠∗ 

(G) ) (1) 

 

where (G) is Gth generation, 𝐱i is ith individual in population, L is a Levy distribution 

random number and 𝐠∗ represents the fittest individual in a population. Local polli-

nation can be described 

 

𝐱Li 
(G+1) = 𝐱i 

(G) + ϵ( 𝐱j 
(G) − 𝐱k 

(G) )   𝑖 ≠ 𝑗 ≠ 𝑘 (2) 

 

where ϵ is a uniform distribution random number in [0,1] interval and j, k are random 

indicies. A p probability variable decides between the two mutation methods. A more 

detailed description and complete algorithm can be found in [4] 

 

𝐱i 
(G+1) = {

𝐱Gi 
(G+1) p ≤ rand[0, 1)

𝐱Li 
(G+1) otherwise

 
(3) 

 

3. INSPECTED PYLON WITH THEIR LOADS 

In the present case, the subject of the investigation is a 45 m high intermediate pylon. 

The structure can be divided into two parts, a 21 m high top and a 24 m high bottom. 

The loads were according to [5]. The size-giving load is half a wire pull. Without 

detailing the calculations from [1] forces transmitted from the upper pylon part are 

FV = 209.03 kN vertical force, FH = 312.14 kN horizontal force and Mh =
2850.5 kNm bending moment. In the load calculations 400 m span length, weight 

of 12 pieces wire and 1.1 safety factor are applied.  

Forces reduced to vertices as shown in  

 

Fy1 =
Mh

2a2
−
Fv
4
=
2850.5 kNm

2 ∙ 3.7 m
−
209.03 kN

4
= 332.94 kN 

(4) 

Fy2 =
Mh

2a2
+
Fv
4
=
2850.5 kNm

2 ∙ 3.7 m
+
209.03 kN

4
= 437.46 kN 

(5) 

 

where 𝑎2 = 3,7 𝑚 is the width of the upper pylon part. It is sufficient to perform the 

calculations on only one inclined plane relevant to the loads as shown on . In the case 

of a pyramid with a side skew of β = 80°, the forces acting on the inclined plane 

under investigation, as indicated in  

 

F1 =
Fy1

sinβ
=
332.94 kN

sin 80°
= 338.08 kN 

(6) 
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F2 =
Fy2

sinβ
=
437.46 kN

sin 80°
= 444.21 kN 

(7) 

  

F3 =
Fh
2
=
312.14 kN

2
= 338.08 kN 

(8) 

 

 illustrates an example with a grid of 𝑛𝑔 = 2. During further investigations, several 

grid division tasks will be solved. Grid divisions are reduced or increased based on 

the following relationship 

h1 =
h

2.5ng
 

(9) 

 

Trusses of the planar truss model were classified into three cross-sectional 

groups. The first group consists of the elements of the side column (1–10 trusses). 

Members of the second group are horizontal elements (17–22 trusses). Finally, the 

third group consists of grid elements forming a deltoid and a triangle (23–26 trusses). 

In each cross-section group, the circular section is used, the characteristic dimensions 

of which are shown in Figure 3 

Cross-section of circular tube. Such as outer diameters D1, D2, D3 and wall thick-

nesses t1, t2, t3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              Figure 1                                                      Figure 2 

             Sketch of lower part of pylon                          Planar truss structure 
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Figure 3 

Cross-section of circular tube 

 

 

4. APPLIED FINITE ELEMENT MODEL 

In this case the planar structure could be modelled as a pushed and pulled truss 

model, as shown in Figure 4.  

 

 
Figure 4 

Finite element model of truss 

 

Node displacement is only possible along the ξ axis (local coordinate system) passing 

through nodes i and j. In the x-y global coordinate system, the x, y projections of this 

displacement are interpreted 

 

𝐮 
′

 
e = [ ui

′
 
e uj

′
 
e ]

T
                𝐮 

e = [ u 
e
ix
 u 

e
iy
 u 

e
jx
 u 

e
jy
 ]𝑇 (10) 

 

The transition between the two coordinate systems is possible with the transfor-

mation matrix 

T 
𝐞 = [

T11
 

 
e T12

 
 
e 0 0

0 0 T23
 

 
e T24

 
 
e ] 

(11) 

  

T11
 

 
e = T23

 
 
e =

ujx
 

 
e − uix

 
 
e

L 
e

           T12
 

 
e = T24

 
 
e =

ujy
 

 
e − uix

 
 
e

L 
e

 
(12) 
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In equilibrium, the total Π potential energy is minimal, that is mean the 𝛿Π first var-

iation of potential energy is zero for whole structure. The total potential energy for 

elements is depicted in the local and then global coordinate system 

 

Π′ 
e =

1

2
∙ 𝐮 
e ′T ∙ ( 𝐊 

e ′ ∙ 𝐮 
e ′ − 𝐟 

e ′) 
(13) 

  

Π 
e =

1

2
∙ 𝐮 
e T ∙ ( 𝐊 

e ∙ 𝐮 
e − 𝐟 

e ) 
(14) 

 

where 𝐟 is a generalized loads vector reduced to nodes, and 𝐊′, 𝐊 are the stiffness 

matrices in local and global coordinate systems 

 

𝐊′ =
E 
e ∙ A 

e

L 
e 

e [
1 −1
−1 1

] 
(15) 

  

𝐊 
e = 𝐓T 

e ∙ 𝐊′ 
e ∙ 𝐓 

e  (16) 

 

Introducing  𝐮 vector of nodal displacements and 𝐟 load vectors of the total system 

potential energy 

 

𝐮 = [ 𝐮 
1 𝐮 

2 𝐮 
3 ⋯ 𝐮 

e ]T       𝐟 = [ 𝐟 
1 𝐟 

2 𝐟 
3 ⋯ 𝐟 

e ]T (17) 

  

δΠ = 0 =
1

2
𝛿𝐮T(𝐊𝐮 − 𝐟) 

(18) 

 

where 𝐊 is the stiffness matrix of the whole system, the elements of this must be 

determined according to the rules of element fitting [6]–[8]. Also, the boundary con-

ditions should be applied to (18) equation. A non-trivial solution of (18) exists only 

if the term in parentheses is zero. 

Stress of elements could be calculated from the nodal displacement vector 

 

σ 
e =

E 
e

L 
e
∙ [− T11

 
 
e − T12

 
 
e T11

 
 
e T12

 
 
e ] ∙ 𝐮 

e  
(19) 

 

 

5. THE OPTIMIZATION PROBLEM 

During the optimization, the minimal mass of the structure was searched 

 

min(∑mi

ne

i=1

) = min(ρ∑AiLi

ne

i=1

) 

(20) 
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where 𝑚𝑖 is the mass of elements, Ai is the cross-sectional area of elements, 𝐿𝑖 is 

length of elements and ρ is the density of elements. This optimization is a constrained 

optimization because the structure must meet strength and stability requirements. In 

the present case, three criteria have been considered, such as resistance to tensile, 

buckling, and local buckling. These constraints can be well characterized by the 

cross-sectional utilization factors. 

The first constraint of each element contains the resistance to tensile and buckling 
 

gIi =

{
 
 

 
 
γM0| σ 

e |

χfy
σ 
e < 0

γM0| σ 
e |

fy
σ 
e ≥ 0

 

(21) 

 

where 𝑓𝑦 is the yield strength, 𝛾𝑀0 is the generalized safety factor according to [9], 

and 𝜒 is the buckling factor according to [9]. If the stress is less than zero, that means 

the load is pushing, otherwise the load is pulling. Second constraints of each element 

come from criteria of local buckling. Recommendations of [9] for diameter and wall 

thickness ratio of circular hollow section 
 

gIIi =
Dify

21150ti
 

(22) 

 

Equation (22)(22) is true only if the unit of 𝑓𝑦 yield strength is MPa, and the unit of 

𝐷𝑖, 𝑡𝑖 dimensions are mm. The value of gIi must be calculated for each truss, while 

gIIi is sufficient only once for each cross-sectional group. 

According to previously described equations the fitness function of optimization 

 

ℱ(D1, D2, D3, t1, t2,t3) =∑mi

ne

i=1

+∑pIi

ne

i=1

+∑pIIi

3

i=1

 
(23) 

 

where pIi and pIIi are the “death” penalty functions 
 

pIi = {
0 gIi ≤ 1

106gIi gIi > 1
 

(24) 

  

pIi = {
0 gIi ≤ 1

106gIIi gIIi > 1
  

(25) 

 

6. RESULTS OF OPTIMIZATION 

During the optimization, more grid divisions 𝑛𝑔 = 1⋯6 are investigated, with dif-

ferent base materials. The yield strength of the inspected structural steels varied 
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between 235 MPa and 690 MPa. During running of optimization, the fitness function 

was converging continuously to a minimum value. 

 

Results of optimization shown in Figure 5 and Figure 6. As can be seen, the use of 

higher yield strength steel does not clearly result in a lighter structure. The number 

of grid divisions should also increase to achieve less weight. An increase in yield 

strength on one side improves the overall resistance of the element, but on the other 

hand worsens the buckling factor. The optimal result is obtained when these two 

effects are balanced. In this case the optimal result is when yield strength is fy =

460 MPa and number of grid divisions is ng = 5. 

 

7. CONCLUSIONS 

The combination of flower pollination algorithm and finite element method is effi-

ciently used for optimizing truss like structures. In this case optimizing the lower 

part of a pylon. The iterative calculation process is easy to automate and does not 

require derivatives that are difficult to produce. The presented method can be easily 

adopted to solve other truss problems as well. 

The results of optimization show that, usage of higher strength steel dose not 

contribute to a lighter structure without changing the topology. 
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Figure 5 

Optimized weight 

Figure 6 

Percentage change  

in optimized weight 
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