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2. Waves in Elastic Media, Mechanical Waves  
 
 
Wave motion appears in almost every branch of physics. We confine our attention to waves in 
deformable or elastic media. These waves, for example ordinary sound waves in air, are called 
mechanical waves. If a vibratory disturbance occurs at any point in an elastic medium, this 
disturbance will be transmitted from one layer to the next through the medium, because of the 
elastic forces on adjacent layers. The medium itself does not move as a whole. 
 
In a mechanical wave the energy is also transmitted form one point to the next, by the motion 
or propagation of a disturbance, without any corresponding bulk motion of the matter itself. 
 
A material medium is necessary for the transmission of mechanical waves. Such a medium is 
not needed to transmit electromagnetic waves. It propagates in vacuum. 

2.1 Types of Waves 
 
We can distinguish different kinds of mechanical waves by considering how the motions of 
the particles of matter are related to the direction of propagation of the waves themselves. The 
waves are called longitudinal if the motion of each individual particle of the medium is in the 
same direction as the wave propagation through that point. Sound waves in air are 
longitudinal waves. 
If the motions of the matter paticles are perpendicular to the direction of propagation of the 
wave itself, we then have a transverse wave. If we have a stretched string and we oscillate the 
endpoint perpendicular to the direction of the string, the wave is transverse wave. 
 
If our motion is periodic, we produce a periodic train of waves in which each particle of the 
string has a periodic motion. The simplest special case of a periodic wave is a simple 
harmonic wave, which gives each particle a simple harmonic motion. 
 
A wave front is a surface connecting medium particles all of which are moving in the same 
manner at any given moment. A wave called spherical wave or plane wave, if the wave front 
has the corresponding shape. 
 

2.2 Traveling waves  
 
Let us consider a long string stretched in the x-direction along which a transverse wave is 
traveling. At t = 0 the shape of the string can be represented by y = f(x), where y is the 
transverse displacement of the string at the position x. Experiment shows that as time goes on 
such a wave travels along the string without changing its form, if the internal frictional losses 
are small enough. At some time t later the wave has travelled a distance ct to the positive x-
direction, where c is the magnitude of the wave velocity.  
 
The equation of the curve at the time t: 
 

( )y f x ct= −  
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The above equation is the mathematical form of a pulse traveling along the positive x-
direction. 
 
In more general, this y(x, t) function may represent several different physical quantities, such 
as the deformation in a solid, the pressure in a gas, and so on. 
 
An especially interesting case is that in which y(x, t) a sinusoidal or harmonic function. 
Suppose a wave travels from left to right, the direction of increasing x. In a sinusoidal wave, 
all points in the medium move with the same frequency but with phase difference. Suppose, 
that at time t = 0, we have a wave train along the string given by: 
 

2siny A xπ
λ

=  

 
The wave shape is a sine curve, the maximum displacement is A. The value of the transverse 
displacement is the same at , , 2 ...,x x xλ λ+ +  and so on. The symbol λ  is called 
wavelength of the wave train and represents the distance between two adjacent points in the 
wave having the same phase. As the time goes on the wave travels to the right with a phase 
speed c. Hence the equation of the wave at time t is: 
 

( )2( , ) siny x t A x ctπ
λ

= −  
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The period T is the time required for the wave to travel a distance of one wavelengthλ , so 
that 
 

cTλ = . 
 
Putting this relation to the above equation: 
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( ) ( )2 2, sin sin sinx xy x t A x ct A t A t
cT T c c
π π ω

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟= − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
Where the angular frequency ω  is defined: 
 

2
T
πω = , 

 
so the equation of a sine wave traveling to the right: 
 

( ), sin xy x t A t
c

ω
⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠

 

 
It is one way to describe a simple harmonic traveling wave. Let us now consider the other 
way to obtain the mathematical form of a sinusoidal traveling wave. 
 
Suppose the displacement of a particle at he left end of the string (at 0x= ), where the 
motion originates, is given by 
 

siny A tω=−  
 
The cause of the negative sign is shown on the previous figure. The oscillating point at 0x=  
position starts to move into the negative y direction. The time required for the wave 

disturbance to travel from 0x= , to some point x to the right is given by x
c

, where c is the 

phase speed. 
 
The motion of point x at time t is the same as the motion of point 0x= at the earlier time 

xt
c

⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠
. Thus the displacement of point x at time t is obtained by replacing t in the above 

equation by xt
c

⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠
, we find  

( ), sin xy x t A t
c

ω
⎛ ⎞⎜ ⎟=− −⎜ ⎟⎜ ⎟⎝ ⎠

 

The relation ( )sin sinα α− =−  is known, that is 
 

( ), sin xy x t A t
c

ω
⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠

. 

 
The same formula as we have already. 
 
To reduce the equation to a more compact form we define the wave number k as: 
 

2k π
λ

= . 
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We have already used 2
T
πω= , that is 

 
2 2 k

c cT
ω π π

λ
= = =  

 

( ), siny x t A x t
c
ω ω
⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠

 

( ) ( ), siny x t A kx tω= − . 
 
For a sine wave traveling to the left: 
 

( ) ( ), siny x t A kx tω= + . 
 
In the traveling waves we have assumed that the displacement y is zero at the position 0x= . 
This, of course, need not to be the case. The general expression for a sinusoidal wave 
traveling in the +x direction: 
 

( ) ( ), siny x t A kx tω ϕ= − −  
 
Where the quantity in parentheses is called the phase and ϕ  is called phase constant. 
 

2.3 Superposition and interference 
 
It is expeimental fact, that for many kinds of waves two or more waves can traverse the same 
space independently of one another. It means that the displacement of any particle at a given 
time is simply the sum of the displacements that the individual waves alone would give it. 
This type of addition is called superposition. The wave trains involved are said to interfere. 
 
Interference refers to the physical effects of superimposing two or more wave trains. Let us 
consider two waves of equal frequency and amplitude traveling with the same speed in the 
same direction ( )x+  but with a phase difference ϕ  between them. The equation of the two 
waves are: 

( )1 siny A kx tω= −  

( )2 siny A kx tω ϕ= − − . 
 
Now let us find the resultant wave, if superposition occurs, that is the sum: 
 

( ) ( )1 2 sin siny y y A kx t kx tω ω ϕ⎡ ⎤= + = − + − −⎣ ⎦  
 
From the trigonometric equation for the sum of the sine of two angles: 
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sin sin 2sin cos
2 2

α β α βα β + −+ = ⋅  

we obtain 
 

2 sin cos
2 2

y A kx t ϕ ϕω
⎛ ⎞⎜ ⎟= − −⎜ ⎟⎜ ⎟⎝ ⎠

, or 

2 cos sin
2 2

y A kx tϕ ϕω
⎛ ⎞⎜ ⎟= − −⎜ ⎟⎜ ⎟⎝ ⎠

. 

 
This resultant wave corresponds to a new wave having the same frequency but with am 

amplitude 2 cos
2

A ϕ . 
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The very special cases: 

When 0, cos 1,
2
ϕϕ = =  the two waves have the same phase. The waves interfere 

constructively, and the resultant amplitude is 2A. If 180 , cos 0,
2

o ϕϕ = =  the two waves are 

in opposite phase, they interfere destructively, and the resultant amplitude is zero. 
 
The principle of superposition is of central importance in all types of wave motion. It applies 
not only to waves on a string, but also to sound waves, electromagnetic waves (such as light) 
and all other wave phenomena in which the wave equation is linear. 
 
 

2.4 Standing Waves 
 
Let us tie one end of an elastic string to a support and oscillate on the other end. We can see a 
wave train traveling towards the support. The traveling wave in the string is reflected from the 
boundary, which is the support. Such reflection gives rise to a wave traveling in the string in 
the opposite direction. The reflected wave adds to the incident wave according to the principle 
of superposition. 
 
Consider now two wave trains of the same frequency, speed and amplitude which are 
traveling in opposite direction along a string. Two such waves may be represented by the next 
equations: 
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( )1 siny A kx tω= − , 

( )2 siny A kx tω= + . 
 
We can write the resultant as: 
 

( ) ( )1 2 sin siny y y A kx t kx tω ω⎡ ⎤= + = − + −⎣ ⎦ . 
 

Using the same trigonometrical equation as before we obtain: 
 

2 sin cosy A kx tω= ⋅ . 
 

 
This is the equation of a standing wave. Notice that a particle at any particular point x 
executes simple harmonic motion as time goes on, and that all particles vibrate with the same 
frequency. 
 
In a traveling wave each particle of the string vibrates with the same amplitude. Characteristic 
of a standing wave, however, is the fact that the amplitude is not the same for different 
particles but varies with the location x of the particle. The amplitude is 2 sin ,A kx  and it has 
maximum value of 2A at positions where: 
 

3 5, , , ...
2 2 2

kx etcπ π π=  

or 
3 5, , , ...

4 4 4
x etcλ λ λ= . 

 
These points are called antinodes and are separated or spaced one-half wavelength apart. 
 
The amplitude has a minimum value of zero at positions where: 
 

, 2 , 3 , ...kx etcπ π π=  
or 

3, , , ...
2 2

x etcλ λλ= . 

 
These points are called nodes and are spaced one-half wave length apart. The separation 
between a node and the adjacent antinodes is one-quarter wave length. The superposition of 
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an incident wave and a reflected wave, being the sum of two waves traveling in opposite 
directions, will give rise to a standing wave. 


