Course title:	Machine Structures and Design
Neptun code:	GEGET501M-A

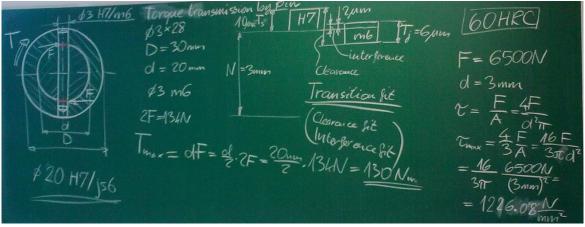
Status: core, specialization,		
optional, other:	core	
Type : lecture/seminar		
(practical)	lecture and seminar	
Number of credits; hours		
per week	3; 2 and 1	
Name and position of		
lecturer:	Dr. Péter József, professor, PhD	
Contact of lecturer:	Institute of Machine and Product Design	
Prerequisite course(s):	Mechanical drawing, Machine Elements I. & II.	
Language of the course:	English	
Suggested semester:		
autumn /spring, 1-6	spring semester	
Requirements		
(exam/practical		
mark/signature/report,		
essay)	signature and exam	
	Significant computations to eliminate the fatigue failure. Fundamentals of design theory and methodology. Theory of three-dimensional gearing. Axoids and axes of meshing. Gear drives connecting intersecting axes. Geometrical design and manufacturing methods for bevel gears. Generating and forming processes. Strength calculation of straight and	
	spiral bevel gears. Gears connecting nonparallel nonintersecting axes using	
Course objectives (50-100	cylindrical and bevel gears. Design of crossed helical gears. Design of	
words):	hypoid gears. Types of worm gearing. Geometric calculation and	
	manufacturing methods. Strength calculation of worm gearing.	
Course content:		

Course content:

Week	Lectures	Practices
1.	Check of screw and nut due to allowable stresses. Guide for the 1st problem and elaboration	Principal units used in mechanics, conversions, ISO metric, ISO trapezoid and BS Whitworth threads, electric motors in 50 and 60Hz systems, kinematic transmission ratio, inch ratio.
2.	Design of screw and nut due to allowable stresses. Elaboration of the 1st problem	Load carrying capacity of Dowel pin (ISO8734), HRC60, loaded by double shear Quality classes of the members of bolted joints
3.	Main dimensions of a shaft due to the allowable stresses. Submission of the first final report	Modelling of threaded fasteners
4.	Fatigue of machine parts. Modifying factors of the endurance limit. Guide for the 2nd problem and elaboration	Thread profiles, load carrying capacity of bolts, loaded by tension and torque
5.	Check of shafts for fatigue. Elaboration of the 2nd problem	Analysis of the elements of a clutch with torque limiting and free-running functions. Practical calculations
6.	Damage of antifriction bearings. Selection of rolling bearings. Elaboration and submission of the 2nd problem	DIN 2093 Disc springs, load-deflection diagram, Square thread analysis
7.	Elastic deflection of machine parts. Guide for the 3rd problem and elaboration	Analysis of the elements of a clutch with torque limiting and free-running functions. Practical calculations Analysis of disk clutch

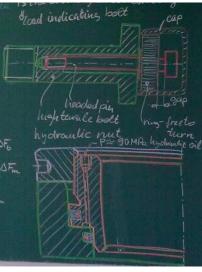
8.	Calculation of the elastic deflection of	holidaya and inad by the Deen
ð.		holidays, ordained by the Dean
	machine parts. Elaboration and	
	submission of the 3rd problem	
9.	Meshing of gears with involute profile.	Involute gear base profile, base circle and
	Guide, elaboration and submission of the	involute curve generation, span measurement
	4th design problem	in practice
10.	Damage of the gear drive. Calculation of	Involute gear, generating span measurement
	the main dimensions of a pair of gears	formula. Practical calculations.
	due to the fatigue limit of the flank.	
	Simple variants of epicyclic gear drives.	
	Transmission ratio and the main	
	dimensions of an internal-exterenal type	
	epicyclic gear drive. Elaboration of the	
	5th design problem	
11.	Traction drives - classification,	Involute gear, generating profile correction
	similiarities to the gear drives. Fixed	factor formula. Practical calculations and
	ratio drives. Calculation of contact	measurements.
	stress. Elaboration of the 6th design	
	problem	
12.	Loading mechanisms - classification of	Involute gear, generating the tooth thickness at
	designs, Calculation of axial force	an arbitrary circle and also at the addendum
	proportional to the output torque.	circle. Practical calculations and measurements
	Elaboration of the 7th design problem	
13.	Traction drives with highly elastic	Thresses at the foot of involute teeth, deriving
	elements - function integration and	the formula of module
	simplicity. Load distribution and stresses	Practical calculations of an outer+inner
	in the elastic elements. Elaboration of	meshing type planetary gear drive.
	the missed problems.	
	-	Three-speed hub gear – kinematic diagram.
		Speed diagram, calculation of transmission
	Summary and repetition. Preparing for	ratio. Controllability
14.	the exam.	, i i i i i i i i i i i i i i i i i i i
		A

Required readings:	1. Budynas, R. – Nisbett, K.: Shigley's Mechanical Engineering Design. 8th
	edition. McGraw–Hill Primis, 2006. p. 260 – 348, p. 762 – 801. ISBN:
	0-390-76487-6.
	2. Hamrock, B. J. – Jacobson, B – Schmid, S. R.: Fundamentals of machine
	elements. WBC/McGraw-Hill, 1999. p. 257 – 306. ISBN 0-256-19069-0.
	3. Juvinall, R. C. – Marschek, K. M.: Fundamentals of machine component
	design. 3rd edition. John Wiley & Sons, 2000. p. 301 – 353, p. 692 – 724. ISBN 0-
	471-24448-1.
	4. Norton, R. L.: Machine Design. 3rd edition. Pearson Prentice Hall, 2006. p.
	299-414, p. 714-738. ISBN 0-13-148190-8.
	Stephens, R. I. – Fatemi, A. – Stephens, R. R. – Fuchs, H. O.: Metal fatigue in
	engineering. 2nd edition. John Wiley & Sons, 2001. ISBN 0-471-51059-9.
Recommended readings:	2. Loewenthal, S.H., Zaretsky, E.W., Design of Traction Drives, NASA
	ReferencePubl. 1154, 1985. p1-47.
Assessment methods and	20% of the signature is the mark of the notebook. 80% of the signature
criteria:	is the results of the tasks of the practical course. The mark of the
	notebook and the mark of the practical course should be at least
	satisfactory. The minimum level of the mark of the exam is 40% of the
	problem.


Miskolc, 1st February 2020.

Machine Structures and Design

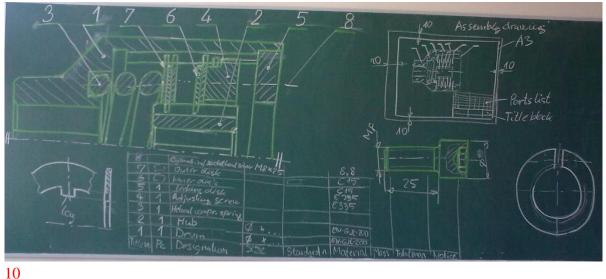
- 1. What is the load carrying capacity of Dowel pin (ISO8734), HRC60, loaded by double shear? The shaft diameter is 20mm, the outer diameter of the hollow cylinder is 30mm. The pin diameter is 3mm.
- 2. Do make a section about a load indicating screw and a hydraulic nut.
- 3. Do enumerate the thread profile angle of the ISO Metric, the ISO Trapezoid, the Acme and the BS Whitworth thread.
- 4. Draw the assembly drawing of an arbitrary torque limiting clutch. Do make the parts list.
- 5. The design processes are the dimensioning, the checking, the material selection and the calculation of load carrying capacity. Specify the relation between the material, the geometry, the safety and the loads for each design processes.
- 6. Do make a kinematic diagram around a three-speed hub gear. List the name of the main parts. Do plot it's speed diagram and do calculate two of the transmission ratios. Do calculate its controllability. The number of teeth of both the sun and planet gears are 17, the module is 0.75mm.


Machine Structures and Design

1. What is the load carrying capacity of Dowel pin (ISO8734), HRC60, loaded by double shear? The shaft diameter is 20mm, the outer diameter of the hollow cylinder is 30mm. The pin diameter is 3mm.

10

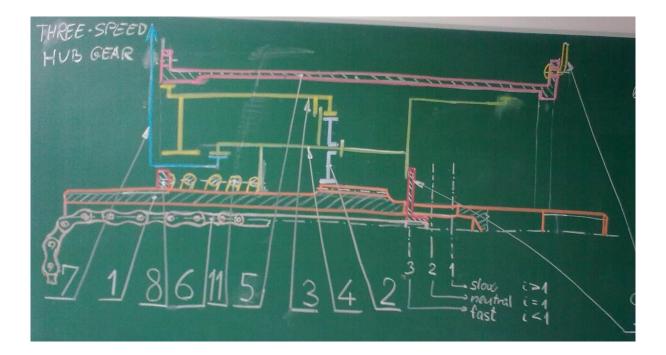
2. Do make a section about a load indicating screw and a hydraulic nut.

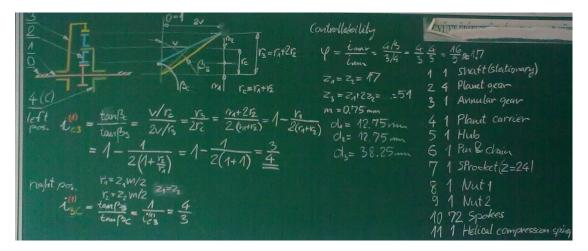


10 + 10

3. Do enumerate the thread profile angle of the ISO Metric, the ISO Trapezoid, the Acme and the BS Whitworth thread.

ISO Metric β =	= 60°			
ISO Trapezoid β =	= 30°			
Acme $\beta =$	= 29°			
BS Whitworth $\beta = 55^{\circ}$				


4. Draw the assembly drawing of an arbitrary torque limiting clutch. Do make the parts list.



5. The design processes are the dimensioning, the checking, the material selection and the calculation of load carrying capacity. Specify the relation between the material, the geometry, the safety and the loads for each design processes.

Do make a kinematic diagram around a three-speed hub gear. List the name of the main parts. Do plot it's speed diagram and do calculate two of the transmission ratios. Do calculate its controllability. The number of teeth of both the sun and planet gears are 17, the module is 0.75mm.

Σ66

- 0-26 failed
- 27-36 passed
- 37-46 average
- 47-56 good
- 57-66 excellent